A Systematic Review on Predicting the Performance of Students in Higher Education in Offline Mode Using Machine Learning Techniques

For scholarly organizations, students’ academic performance (AP) computes student achievements in different academic subjects. Therefore, a systematic literature review based on machine learning approaches to improve student performance is proposed. This field creates a way to discover hidden exampl...

Full description

Saved in:
Bibliographic Details
Published inWireless personal communications Vol. 133; no. 3; pp. 1643 - 1674
Main Authors Rahul, Katarya, Rahul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0929-6212
1572-834X
DOI10.1007/s11277-023-10838-x

Cover

Abstract For scholarly organizations, students’ academic performance (AP) computes student achievements in different academic subjects. Therefore, a systematic literature review based on machine learning approaches to improve student performance is proposed. This field creates a way to discover hidden examples from instructive information. Machine learning (ML) techniques are used for performance prediction. It is become a challenge due to its imbalanced dataset. This review aims to identify the best proposals that focus on various ML methods used for the performance analysis of students. This review will become helpful to the teachers in identifying the weak students, and it helps to improve their performance through proper guidance. Thus, it reflects in the student’s background and boosts their growth. It also brings benefits to students, teachers, and institutions. This study focused on applying machine learning techniques to predict students’ performance in recent times. With a systematic approach, the research identified the existing prediction methods and tools used to predict students’ performance and observed the researchers’ type of variables in this research area. In this study, almost more than 100 papers were analyzed to reveal various modern techniques that are commonly used to predict student performance and the goals they need to achieve in this field. The results from the various research will help improve students’ academics and monitor the student’s performance, which would also improve their literacy rate.
AbstractList For scholarly organizations, students’ academic performance (AP) computes student achievements in different academic subjects. Therefore, a systematic literature review based on machine learning approaches to improve student performance is proposed. This field creates a way to discover hidden examples from instructive information. Machine learning (ML) techniques are used for performance prediction. It is become a challenge due to its imbalanced dataset. This review aims to identify the best proposals that focus on various ML methods used for the performance analysis of students. This review will become helpful to the teachers in identifying the weak students, and it helps to improve their performance through proper guidance. Thus, it reflects in the student’s background and boosts their growth. It also brings benefits to students, teachers, and institutions. This study focused on applying machine learning techniques to predict students’ performance in recent times. With a systematic approach, the research identified the existing prediction methods and tools used to predict students’ performance and observed the researchers’ type of variables in this research area. In this study, almost more than 100 papers were analyzed to reveal various modern techniques that are commonly used to predict student performance and the goals they need to achieve in this field. The results from the various research will help improve students’ academics and monitor the student’s performance, which would also improve their literacy rate.
Author Rahul
Katarya, Rahul
Author_xml – sequence: 1
  surname: Rahul
  fullname: Rahul
  email: rahulzhere023@gmail.com
  organization: Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science and Engineering, Delhi Technological University
– sequence: 2
  givenname: Rahul
  surname: Katarya
  fullname: Katarya, Rahul
  organization: Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science and Engineering, Delhi Technological University
BookMark eNp9kE9LAzEQxYMoWP98AU8Bz6tJdjfJHktRK1Ra1IK3sJudbVPabE1Sbc9-cbOtIHjwNPB4vzcz7wwd29YCQleU3FBCxK2nlAmREJYmlMhUJtsj1KO5YIlMs7dj1CMFKxLOKDtFZ94vCIlYwXroq49fdj7AqgxG42f4MPCJW4snDmqjg7EzHOaAJ-Ca1q1KqwG3DX4Jmxps8NhYPDSzOTh8V290zIho1MZNszQW8FNbA576LuWp1PNOGkHpbCe8gp5b874Bf4FOmnLp4fJnnqPp_d3rYJiMxg-Pg_4o0SktQlIWGirBuci4rJqG5xWtZZZJUXNSyIrlFQcpdV0AzVmW55xKkdNKC8ol13WVnqPrQ-7atd3eoBbtxtm4UrGCSU5ZDI8ueXBp13rvoFHahP1nwZVmqShRXeXqULmKlat95WobUfYHXTuzKt3ufyg9QD6a7Qzc71X_UN9sspd1
CitedBy_id crossref_primary_10_1016_j_ijedro_2024_100433
Cites_doi 10.3991/ijet.v10i1.4189
10.1007/978-3-030-22475-2_1
10.1007/978-3-319-71084-6_55
10.1109/IJCNN.1993.713989
10.1109/ECTI-NCON.2019.8692227
10.1109/FSKD.2016.7603268
10.1016/j.knosys.2013.03.012
10.1186/s40165-014-0010-2
10.1145/3170358.3170410
10.1145/3185089.3185101
10.1109/CNT.2014.7062736
10.1109/IACS.2019.8809106
10.1007/978-3-319-26690-9_5
10.3844/jcssp.2018.654.662
10.1109/ICSIMA.2013.6717966
10.1007/978-981-13-6459-4_18
10.1016/j.ejor.2018.02.031
10.1016/j.compedu.2012.08.015
10.1109/IIAI-AAI.2015.170
10.1109/ISCV49265.2020.9204013
10.1145/2365952.2366027
10.2495/DNE-V11-N3-239-249
10.14786/flr.v1i1.13
10.1016/j.eswa.2013.07.046
10.1016/j.compedu.2018.12.006
10.1109/CIDM.2014.7008697
10.1109/ETCM.2017.8247553
10.1109/ICACCI.2017.8125923
10.1109/INES.2018.8523888
10.1016/j.eswa.2012.02.112
10.1109/BigData.2015.7363847
10.1080/08839510490442058
10.1109/ICCOINS.2018.8510600
10.1007/s10639-017-9645-7
10.1016/j.childyouth.2018.11.030
10.19026/rjaset.9.1403
10.5897/IJSTER2017.0415
10.1145/1140123.1140194
10.1145/3325917.3325919
10.1007/s10758-019-09408-7
10.1109/RITA.2013.2244695
10.1145/2905055.2905150
10.1109/MINTC.2018.8363153
10.1016/j.chb.2017.01.047
10.1016/j.compedu.2019.103676
10.1007/978-3-319-19773-9_59
10.1109/IAC.2018.8780547
10.1109/ACCESS.2020.2986809
10.1109/ICAIIC.2019.8669085
10.3390/app10031042
10.5815/ijmecs.2018.06.01
10.1016/j.nedt.2007.07.012
10.1145/2959100.2959133
10.1109/ITSIM.2008.4631535
10.1186/s40561-022-00192-z
10.1016/j.procs.2015.07.372
10.1145/3230977.3231012
10.1109/ACCESS.2022.3151652
10.1007/978-3-319-91192-2_21
10.1007/978-3-319-74781-1_3
10.1016/j.eswa.2011.05.048
10.1109/ISDA.2009.15
10.1007/s10462-018-9620-8
10.1109/ICACCI.2016.7732181
10.1145/3318396.3318419
10.1109/AICAI.2019.8701260
10.1109/ICETECH.2015.7275025
10.1177/0020720916688484
10.1007/978-3-030-03493-1_14
10.1080/0142159X.2017.1309376
10.1109/ICCED.2018.00055
10.1109/IIAI-AAI.2017.73
10.3233/IFS-141229
10.1007/978-3-319-25159-2_58
10.1109/PDGC.2014.7030728
10.1109/ICIEV.2016.7760058
10.1109/HSI.2017.8005026
10.1109/ISET.2015.33
10.1145/3241815.3241875
10.1109/WEEF.2017.8467150
10.1016/j.eswa.2013.08.042
10.1109/INAPR.2018.8626856
10.1016/j.procs.2016.09.380
10.1007/978-3-319-95168-3_2
10.1016/j.protcy.2016.08.114
10.1007/978-3-319-11200-8_5
10.1016/j.procs.2015.12.157
10.1587/transinf.2016DAP0026
10.1007/978-3-319-44159-7_15
10.1145/3027385.3029479
10.1007/978-3-319-06773-5_16
10.1016/j.iheduc.2018.02.001
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.315
10.1007/978-981-10-2750-5_35
10.1007/978-3-319-23485-4_42
10.1002/9781118548387
10.1007/s11135-017-0644-y
10.1016/j.lindif.2017.05.003
10.1145/3099023.3099034
10.1109/ICICI.2017.8365371
10.3390/electronics11071005
10.1109/MECON53876.2022.9751956
10.1109/ICCSE.2016.7581557
10.1109/HICSS.2016.16
10.9734/cjast/2021/v40i631320
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11277-023-10838-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 1674
ExternalDocumentID 10_1007_s11277_023_10838_x
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-a9ceb7667468bff65b1d84487d6098b25b6e88cd9e152455618751bc71686cdb3
IEDL.DBID U2A
ISSN 0929-6212
IngestDate Fri Jul 25 23:29:18 EDT 2025
Tue Jul 01 03:17:37 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Fri Feb 21 02:42:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Regression
Educational data mining
Student performance prediction
Clustering
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a9ceb7667468bff65b1d84487d6098b25b6e88cd9e152455618751bc71686cdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2928612667
PQPubID 2043826
PageCount 32
ParticipantIDs proquest_journals_2928612667
crossref_citationtrail_10_1007_s11277_023_10838_x
crossref_primary_10_1007_s11277_023_10838_x
springer_journals_10_1007_s11277_023_10838_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR39
Jishan, Rashu, Haque, Rahman (CR71) 2015; 2
CR36
CR35
Pallathadka, Wenda, Ramirez-Asís, Asís-López, Flores-Albornoz, Phasinam (CR5) 2023; 80
Chung, Lee (CR25) 2019; 96
CR34
Xu, Liu, Sun, Zou, Huang, Zhang (CR51) 2017; 100
CR32
Saa, Al-Emran, Shaalan (CR112) 2019; 24
CR31
CR30
Nandeshwar, Menzies, Nelson (CR15) 2011; 38
Navamani, Kannammal (CR11) 2015; 9
Feng, Fan, Chen (CR12) 2022; 10
Tan, Shao (CR19) 2015
Kabakchieva (CR4) 2012; 1
CR49
CR48
CR47
CR46
Manne, Kantheti (CR7) 2021; 40
CR44
CR43
CR42
CR40
Gray, Perkins (CR24) 2019; 131
Masci, Johnes, Agasisti (CR87) 2018; 269
Şen, Uçar, Delen (CR105) 2012; 39
Rochman, Rachmad, Damayanti (CR66) 2018; 7
CR59
CR58
CR57
CR56
Poudyal, Mohammadi-Aragh, Ball (CR111) 2022; 11
CR55
CR54
CR53
CR52
CR50
Hamsa, Indiradevi, Kizhakkethottam (CR73) 2016; 25
Do, Chen (CR78) 2013; 10
Bobadilla, Ortega, Hernando, Gutiérrez (CR45) 2013; 46
Fonteyne, Duyck, De Fruyt (CR20) 2017; 56
Rastrollo-Guerrero, Gomez-Pulido, Duran-Dominguez (CR14) 2020; 10
CR68
CR67
CR64
CR62
CR61
Moseley, Mead (CR82) 2008; 28
Dimililer (CR115) 2018; 52
Iyanda, Ninan, Ajayi, Anyabolu (CR63) 2018; 10
Costa, Fonseca, Santana, de Araújo, Rego (CR86) 2017; 73
Arora, Saini (CR81) 2013; 2
Hosmer, Lemeshow, Sturdivant (CR17) 2013
Hussain, Zhu, Zhang, Abidi, Ali (CR26) 2019; 52
CR79
Shanthini, Vinodhini, Chandrasekaran (CR37) 2018; 14
Bharara, Sabitha, Bansal (CR100) 2018; 23
CR77
CR76
Sultana, Khan, Abbas (CR90) 2017; 54
Huang, Fang (CR27) 2013; 61
CR75
CR113
CR114
CR72
Tomasevic, Gvozdenovic, Vranes (CR70) 2020; 143
CR110
CR6
CR8
CR89
CR88
Yağcı (CR1) 2022; 9
CR85
CR83
Howard, Meehan, Parnell (CR38) 2018; 37
CR80
Ahmed, Rizaner, Ulusoy (CR106) 2016; 102
Kaur, Singh, Josan (CR101) 2015; 57
Kotsiantis, Pierrakeas, Pintelas (CR9) 2004; 18
Saqr, Fors, Tedre (CR84) 2017; 39
CR18
Márquez-Vera, Morales, Soto (CR103) 2013; 8
Chamillard (CR74) 2006; 38
CR13
Abidin, Dom (CR3) 2012; 41
CR99
CR10
CR98
CR97
CR96
Alloghani, Al-Jumeily, Mustafina, Hussain, Aljaaf (CR41) 2020
CR95
Shahiri, Husain (CR69) 2015; 72
CR94
CR93
CR92
CR91
Chen, Do (CR116) 2014; 27
CR29
CR28
Ghorbani, Ghousi (CR33) 2020; 8
Thammasiri, Delen, Meesad, Kasap (CR16) 2014; 41
CR23
CR22
CR104
CR21
CR102
Peña-Ayala (CR2) 2014; 41
Musso, Kyndt, Cascallar, Dochy (CR65) 2013; 1
Adewale, Bamidele, Lateef (CR60) 2018; 9
CR108
CR109
CR107
10838_CR62
10838_CR64
10838_CR61
N Arora (10838_CR81) 2013; 2
AM Shahiri (10838_CR69) 2015; 72
B Şen (10838_CR105) 2012; 39
E Howard (10838_CR38) 2018; 37
P Kaur (10838_CR101) 2015; 57
H Hamsa (10838_CR73) 2016; 25
JY Chung (10838_CR25) 2019; 96
M Alloghani (10838_CR41) 2020
C Masci (10838_CR87) 2018; 269
EMS Rochman (10838_CR66) 2018; 7
10838_CR67
10838_CR68
JMA Navamani (10838_CR11) 2015; 9
AT Chamillard (10838_CR74) 2006; 38
10838_CR52
10838_CR53
10838_CR54
10838_CR50
AM Adewale (10838_CR60) 2018; 9
A Peña-Ayala (10838_CR2) 2014; 41
A Nandeshwar (10838_CR15) 2011; 38
AA Saa (10838_CR112) 2019; 24
10838_CR59
CC Gray (10838_CR24) 2019; 131
10838_CR55
10838_CR56
10838_CR57
10838_CR58
10838_CR40
10838_CR42
10838_CR43
D Thammasiri (10838_CR16) 2014; 41
10838_CR114
S Poudyal (10838_CR111) 2022; 11
10838_CR113
K Dimililer (10838_CR115) 2018; 52
10838_CR110
M Yağcı (10838_CR1) 2022; 9
10838_CR48
10838_CR49
M Tan (10838_CR19) 2015
10838_CR44
10838_CR46
R Manne (10838_CR7) 2021; 40
10838_CR47
10838_CR30
10838_CR31
R Ghorbani (10838_CR33) 2020; 8
S Bharara (10838_CR100) 2018; 23
10838_CR32
A Shanthini (10838_CR37) 2018; 14
10838_CR109
10838_CR108
10838_CR107
N Tomasevic (10838_CR70) 2020; 143
10838_CR104
ST Jishan (10838_CR71) 2015; 2
10838_CR102
M Hussain (10838_CR26) 2019; 52
LG Moseley (10838_CR82) 2008; 28
S Kotsiantis (10838_CR9) 2004; 18
10838_CR39
10838_CR34
10838_CR35
EB Costa (10838_CR86) 2017; 73
10838_CR36
K Xu (10838_CR51) 2017; 100
10838_CR21
G Feng (10838_CR12) 2022; 10
H Pallathadka (10838_CR5) 2023; 80
MF Musso (10838_CR65) 2013; 1
10838_CR28
10838_CR29
10838_CR22
S Sultana (10838_CR90) 2017; 54
10838_CR23
10838_CR95
10838_CR96
10838_CR97
10838_CR10
10838_CR98
10838_CR91
10838_CR92
10838_CR93
10838_CR94
M Saqr (10838_CR84) 2017; 39
J Bobadilla (10838_CR45) 2013; 46
JL Rastrollo-Guerrero (10838_CR14) 2020; 10
10838_CR18
10838_CR99
10838_CR13
10838_CR85
10838_CR80
JF Chen (10838_CR116) 2014; 27
QH Do (10838_CR78) 2013; 10
10838_CR83
L Fonteyne (10838_CR20) 2017; 56
10838_CR88
AR Iyanda (10838_CR63) 2018; 10
10838_CR89
10838_CR75
10838_CR76
C Márquez-Vera (10838_CR103) 2013; 8
10838_CR72
AM Ahmed (10838_CR106) 2016; 102
D Kabakchieva (10838_CR4) 2012; 1
DW Hosmer (10838_CR17) 2013
10838_CR6
B Abidin (10838_CR3) 2012; 41
10838_CR77
10838_CR79
10838_CR8
S Huang (10838_CR27) 2013; 61
References_xml – volume: 61
  start-page: 133
  year: 2013
  end-page: 145
  ident: CR27
  article-title: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models
  publication-title: Computers & Education
– ident: CR22
– ident: CR97
– volume: 9
  start-page: 262
  issue: 4
  year: 2015
  end-page: 271
  ident: CR11
  article-title: Predicting performance of schools by applying data mining techniques on public examination results
  publication-title: Research Journal of Applied Sciences, Engineering and Technology
– ident: CR68
– volume: 18
  start-page: 411
  issue: 5
  year: 2004
  end-page: 426
  ident: CR9
  article-title: Predicting students’ performance in distance learning using machine learning techniques
  publication-title: Applied Artificial Intelligence
– ident: CR39
– volume: 56
  start-page: 34
  year: 2017
  end-page: 48
  ident: CR20
  article-title: Program-specific prediction of academic achievement on the basis of cognitive and non-cognitive factors
  publication-title: Learning and Individual Differences
– volume: 1
  start-page: 686
  issue: 4
  year: 2012
  end-page: 690
  ident: CR4
  article-title: Student performance prediction by using data mining classification algorithms
  publication-title: International Journal of Computer Science and Management Research
– volume: 96
  start-page: 346
  year: 2019
  end-page: 353
  ident: CR25
  article-title: Drop-out early warning systems for high school students using machine learning
  publication-title: Children and Youth Services Review
– volume: 10
  start-page: 396
  issue: 12
  year: 2013
  end-page: 405
  ident: CR78
  article-title: A comparative study of hierarchical ANFIS and ANN in predicting student academic performance
  publication-title: WSEAS Transactions on Information Science and Applications
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  end-page: 25
  ident: CR71
  article-title: Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique
  publication-title: Decision Analytics
– ident: CR54
– volume: 25
  start-page: 326
  year: 2016
  end-page: 332
  ident: CR73
  article-title: Student academic performance prediction model using decision tree and fuzzy genetic algorithm
  publication-title: Procedia Technology
– ident: CR80
– ident: CR77
– ident: CR8
– ident: CR42
– volume: 11
  start-page: 1005
  issue: 7
  year: 2022
  ident: CR111
  article-title: Prediction of student academic performance using a hybrid 2D CNN model
  publication-title: Electronics
– ident: CR92
– ident: CR88
– year: 2015
  ident: CR19
  article-title: Prediction of student drop-out in e-Learning program through the use of machine learning method
  publication-title: International Journal of Emerging Technologies in Learning
  doi: 10.3991/ijet.v10i1.4189
– year: 2013
  ident: CR17
  publication-title: Applied logistic regression
– ident: CR57
– volume: 41
  start-page: 105
  year: 2012
  end-page: 109
  ident: CR3
  article-title: Prediction of preclinical academic performance using ANFIS model
  publication-title: Int Proc Econ Dev Res
– volume: 131
  start-page: 22
  year: 2019
  end-page: 32
  ident: CR24
  article-title: Utilizing early engagement and machine learning to predict student outcomes
  publication-title: Computers & Education
– volume: 2
  start-page: 4425
  issue: 9
  year: 2013
  end-page: 4432
  ident: CR81
  article-title: A fuzzy probabilistic neural network for student’s academic performance prediction
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– ident: CR36
– ident: CR85
– volume: 9
  start-page: 11
  issue: 1
  year: 2022
  ident: CR1
  article-title: Educational data mining: Prediction of students’ academic performance using machine learning algorithms
  publication-title: Smart Learning Environments
– ident: CR109
– year: 2020
  ident: CR41
  article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science
  publication-title: Supervised and Unsupervised Learning for Data Science
  doi: 10.1007/978-3-030-22475-2_1
– volume: 40
  start-page: 78
  issue: 6
  year: 2021
  end-page: 89
  ident: CR7
  article-title: Application of artificial intelligence in healthcare: Chances and challenges
  publication-title: Current Journal of Applied Science and Technology
– ident: CR18
– ident: CR91
– ident: CR47
– ident: CR72
– ident: CR89
– ident: CR30
– ident: CR10
– ident: CR6
– ident: CR108
– volume: 14
  start-page: 654
  issue: 5
  year: 2018
  end-page: 662
  ident: CR37
  article-title: Predicting students’ academic performance in the university using meta decision tree classifiers
  publication-title: Journal of Computer Science
– ident: CR94
– ident: CR44
– volume: 38
  start-page: 14984
  issue: 12
  year: 2011
  end-page: 14996
  ident: CR15
  article-title: Learning patterns of university student retention
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 957
  issue: 2
  year: 2018
  end-page: 984
  ident: CR100
  article-title: Application of learning analytics using clustering data Mining for Students’ disposition analysis
  publication-title: Education and Information Technologies
– ident: CR52
– ident: CR13
– ident: CR114
– volume: 10
  start-page: 19558
  year: 2022
  end-page: 19571
  ident: CR12
  article-title: Analysis and prediction of students’ academic performance based on educational data mining
  publication-title: IEEE Access
– ident: CR55
– ident: CR83
– volume: 39
  start-page: 757
  issue: 7
  year: 2017
  end-page: 767
  ident: CR84
  article-title: How learning analytics can early predict under-achieving students in a blended medical education course
  publication-title: Medical teacher
– volume: 143
  start-page: 103676
  year: 2020
  ident: CR70
  article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Computers & Education
– volume: 28
  start-page: 469
  issue: 4
  year: 2008
  end-page: 475
  ident: CR82
  article-title: Predicting who will drop out of nursing courses: A machine learning exercise
  publication-title: Nurse education today
– ident: CR102
– ident: CR49
– ident: CR93
– volume: 38
  start-page: 260
  issue: 3
  year: 2006
  end-page: 264
  ident: CR74
  article-title: Using student performance predictions in a computer science curriculum
  publication-title: ACM SIGCSE Bulletin
– ident: CR35
– ident: CR29
– ident: CR61
– volume: 52
  start-page: 651
  issue: 1
  year: 2018
  end-page: 662
  ident: CR115
  article-title: Use of Intelligent Student Mood Classification System (ISMCS) to achieve high quality in education
  publication-title: Quality & quantity
– ident: CR58
– ident: CR21
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  ident: CR60
  article-title: Predictive modelling and analysis of academic performance of secondary school students: Artificial Neural Network approach
  publication-title: International Journal of Science and Technology Education Research
– ident: CR46
– volume: 8
  start-page: 67899
  year: 2020
  end-page: 67911
  ident: CR33
  article-title: Comparing different resampling methods in predicting Students’ performance using machine learning techniques
  publication-title: IEEE Access
– volume: 10
  start-page: 1
  issue: 6
  year: 2018
  end-page: 9
  ident: CR63
  article-title: Predicting student academic performance in computer science courses: A comparison of neural network models
  publication-title: International Journal of Modern Education & Computer Science
– ident: CR96
– ident: CR67
– ident: CR75
– ident: CR50
– volume: 39
  start-page: 9468
  issue: 10
  year: 2012
  end-page: 9476
  ident: CR105
  article-title: Predicting and analyzing secondary education placement-test scores: A data mining approach
  publication-title: Expert Systems with Applications
– volume: 269
  start-page: 1072
  issue: 3
  year: 2018
  end-page: 1085
  ident: CR87
  article-title: Student and school performance across countries: A machine learning approach
  publication-title: European Journal of Operational Research
– ident: CR32
– volume: 24
  start-page: 567
  issue: 4
  year: 2019
  end-page: 598
  ident: CR112
  article-title: Factors affecting students’ performance in higher education: A systematic review of predictive data mining techniques
  publication-title: Technology, Knowledge and Learning
– volume: 52
  start-page: 381
  issue: 1
  year: 2019
  end-page: 407
  ident: CR26
  article-title: Using machine learning to predict student difficulties from learning session data
  publication-title: Artificial Intelligence Review
– volume: 10
  start-page: 1042
  issue: 3
  year: 2020
  ident: CR14
  article-title: Analyzing and predicting students’ performance by means of machine learning: A review
  publication-title: Applied sciences
– volume: 37
  start-page: 66
  year: 2018
  end-page: 75
  ident: CR38
  article-title: Contrasting prediction methods for early warning systems at undergraduate level
  publication-title: The Internet and Higher Education
– ident: CR64
– volume: 41
  start-page: 321
  issue: 2
  year: 2014
  end-page: 330
  ident: CR16
  article-title: A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 42
  issue: 1
  year: 2013
  end-page: 71
  ident: CR65
  article-title: Predicting general academic performance and identifying the differential contribution of participating variables using artificial neural networks
  publication-title: Frontline Learning Research
– ident: CR99
– ident: CR95
– ident: CR43
– volume: 72
  start-page: 414
  year: 2015
  end-page: 422
  ident: CR69
  article-title: A review on predicting student’s performance using data mining techniques
  publication-title: Procedia Computer Science
– ident: CR53
– volume: 27
  start-page: 2551
  issue: 5
  year: 2014
  end-page: 2561
  ident: CR116
  article-title: A cooperative cuckoo search–hierarchical adaptive neuro-fuzzy inference system approach for predicting student academic performance
  publication-title: Journal of Intelligent & Fuzzy Systems
– ident: CR113
– volume: 100
  start-page: 768
  issue: 4
  year: 2017
  end-page: 775
  ident: CR51
  article-title: Improve the prediction of student performance with hint’s assistance based on an efficient non-negative factorization
  publication-title: IEICE Transactions on Information and Systems
– ident: CR79
– ident: CR56
– volume: 57
  start-page: 500
  year: 2015
  end-page: 508
  ident: CR101
  article-title: Classification and prediction based data mining algorithms to predict slow learners in education sector
  publication-title: Procedia Computer Science
– ident: CR40
– volume: 73
  start-page: 247
  year: 2017
  end-page: 256
  ident: CR86
  article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses
  publication-title: Computers in Human Behavior
– ident: CR98
– volume: 8
  start-page: 7
  issue: 1
  year: 2013
  end-page: 14
  ident: CR103
  article-title: Predicting school failure and drop-out by using data mining techniques
  publication-title: IEEE Revista Iberoamericana de Tecnologias del Aprendizaje
– ident: CR104
– ident: CR23
– volume: 102
  start-page: 137
  year: 2016
  end-page: 142
  ident: CR106
  article-title: Using data mining to predict instructor performance
  publication-title: Procedia Computer Science
– volume: 54
  start-page: 105
  issue: 2
  year: 2017
  end-page: 118
  ident: CR90
  article-title: Predicting performance of electrical engineering students using cognitive and non-cognitive features for identification of potential drop-outs
  publication-title: International Journal of Electrical Engineering Education
– volume: 46
  start-page: 109
  year: 2013
  end-page: 132
  ident: CR45
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Systems
– ident: CR48
– volume: 80
  start-page: 3782
  year: 2023
  end-page: 3785
  ident: CR5
  article-title: Classification and prediction of student performance data using various machine learning algorithms
  publication-title: Materials today: Proceedings
– ident: CR31
– volume: 41
  start-page: 1432
  issue: 4
  year: 2014
  end-page: 1462
  ident: CR2
  article-title: Educational data mining: A survey and a data mining-based analysis of recent works
  publication-title: Expert systems with applications
– ident: CR34
– ident: CR110
– volume: 7
  start-page: 5
  issue: 2
  year: 2018
  end-page: 10
  ident: CR66
  article-title: Predicting the final result of student national test with extreme learning machine
  publication-title: Pancaran Pendidikan
– ident: CR59
– ident: CR76
– ident: CR107
– ident: CR28
– ident: CR62
– ident: 10838_CR35
  doi: 10.1007/978-3-319-71084-6_55
– ident: 10838_CR61
  doi: 10.1109/IJCNN.1993.713989
– ident: 10838_CR95
  doi: 10.1109/ECTI-NCON.2019.8692227
– ident: 10838_CR64
  doi: 10.1109/FSKD.2016.7603268
– volume: 46
  start-page: 109
  year: 2013
  ident: 10838_CR45
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.03.012
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10838_CR71
  publication-title: Decision Analytics
  doi: 10.1186/s40165-014-0010-2
– ident: 10838_CR21
  doi: 10.1145/3170358.3170410
– ident: 10838_CR97
  doi: 10.1145/3185089.3185101
– ident: 10838_CR68
  doi: 10.1109/CNT.2014.7062736
– year: 2015
  ident: 10838_CR19
  publication-title: International Journal of Emerging Technologies in Learning
  doi: 10.3991/ijet.v10i1.4189
– ident: 10838_CR72
  doi: 10.1109/IACS.2019.8809106
– ident: 10838_CR31
  doi: 10.1007/978-3-319-26690-9_5
– ident: 10838_CR77
– volume: 1
  start-page: 686
  issue: 4
  year: 2012
  ident: 10838_CR4
  publication-title: International Journal of Computer Science and Management Research
– volume: 14
  start-page: 654
  issue: 5
  year: 2018
  ident: 10838_CR37
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2018.654.662
– ident: 10838_CR62
  doi: 10.1109/ICSIMA.2013.6717966
– ident: 10838_CR113
  doi: 10.1007/978-981-13-6459-4_18
– volume: 269
  start-page: 1072
  issue: 3
  year: 2018
  ident: 10838_CR87
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.02.031
– volume: 61
  start-page: 133
  year: 2013
  ident: 10838_CR27
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2012.08.015
– ident: 10838_CR40
  doi: 10.1109/IIAI-AAI.2015.170
– ident: 10838_CR6
  doi: 10.1109/ISCV49265.2020.9204013
– ident: 10838_CR52
  doi: 10.1145/2365952.2366027
– ident: 10838_CR83
– ident: 10838_CR13
– ident: 10838_CR39
  doi: 10.2495/DNE-V11-N3-239-249
– volume: 1
  start-page: 42
  issue: 1
  year: 2013
  ident: 10838_CR65
  publication-title: Frontline Learning Research
  doi: 10.14786/flr.v1i1.13
– volume: 41
  start-page: 321
  issue: 2
  year: 2014
  ident: 10838_CR16
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.046
– volume: 131
  start-page: 22
  year: 2019
  ident: 10838_CR24
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2018.12.006
– volume: 10
  start-page: 396
  issue: 12
  year: 2013
  ident: 10838_CR78
  publication-title: WSEAS Transactions on Information Science and Applications
– ident: 10838_CR28
  doi: 10.1109/CIDM.2014.7008697
– ident: 10838_CR85
  doi: 10.1109/ETCM.2017.8247553
– ident: 10838_CR67
  doi: 10.1109/ICACCI.2017.8125923
– ident: 10838_CR22
  doi: 10.1109/INES.2018.8523888
– volume: 39
  start-page: 9468
  issue: 10
  year: 2012
  ident: 10838_CR105
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.112
– volume: 2
  start-page: 4425
  issue: 9
  year: 2013
  ident: 10838_CR81
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– ident: 10838_CR58
  doi: 10.1109/BigData.2015.7363847
– volume: 18
  start-page: 411
  issue: 5
  year: 2004
  ident: 10838_CR9
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839510490442058
– ident: 10838_CR98
  doi: 10.1109/ICCOINS.2018.8510600
– volume: 23
  start-page: 957
  issue: 2
  year: 2018
  ident: 10838_CR100
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-017-9645-7
– volume: 96
  start-page: 346
  year: 2019
  ident: 10838_CR25
  publication-title: Children and Youth Services Review
  doi: 10.1016/j.childyouth.2018.11.030
– volume: 9
  start-page: 262
  issue: 4
  year: 2015
  ident: 10838_CR11
  publication-title: Research Journal of Applied Sciences, Engineering and Technology
  doi: 10.19026/rjaset.9.1403
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10838_CR60
  publication-title: International Journal of Science and Technology Education Research
  doi: 10.5897/IJSTER2017.0415
– volume: 38
  start-page: 260
  issue: 3
  year: 2006
  ident: 10838_CR74
  publication-title: ACM SIGCSE Bulletin
  doi: 10.1145/1140123.1140194
– ident: 10838_CR80
  doi: 10.1145/3325917.3325919
– volume: 24
  start-page: 567
  issue: 4
  year: 2019
  ident: 10838_CR112
  publication-title: Technology, Knowledge and Learning
  doi: 10.1007/s10758-019-09408-7
– volume: 8
  start-page: 7
  issue: 1
  year: 2013
  ident: 10838_CR103
  publication-title: IEEE Revista Iberoamericana de Tecnologias del Aprendizaje
  doi: 10.1109/RITA.2013.2244695
– ident: 10838_CR30
  doi: 10.1145/2905055.2905150
– ident: 10838_CR44
  doi: 10.1109/MINTC.2018.8363153
– volume: 73
  start-page: 247
  year: 2017
  ident: 10838_CR86
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2017.01.047
– volume: 143
  start-page: 103676
  year: 2020
  ident: 10838_CR70
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103676
– ident: 10838_CR53
– ident: 10838_CR46
  doi: 10.1007/978-3-319-19773-9_59
– ident: 10838_CR110
  doi: 10.1109/IAC.2018.8780547
– volume: 8
  start-page: 67899
  year: 2020
  ident: 10838_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986809
– ident: 10838_CR94
  doi: 10.1109/ICAIIC.2019.8669085
– volume: 10
  start-page: 1042
  issue: 3
  year: 2020
  ident: 10838_CR14
  publication-title: Applied sciences
  doi: 10.3390/app10031042
– volume: 10
  start-page: 1
  issue: 6
  year: 2018
  ident: 10838_CR63
  publication-title: International Journal of Modern Education & Computer Science
  doi: 10.5815/ijmecs.2018.06.01
– volume: 28
  start-page: 469
  issue: 4
  year: 2008
  ident: 10838_CR82
  publication-title: Nurse education today
  doi: 10.1016/j.nedt.2007.07.012
– ident: 10838_CR48
  doi: 10.1145/2959100.2959133
– ident: 10838_CR75
  doi: 10.1109/ITSIM.2008.4631535
– volume: 9
  start-page: 11
  issue: 1
  year: 2022
  ident: 10838_CR1
  publication-title: Smart Learning Environments
  doi: 10.1186/s40561-022-00192-z
– volume: 57
  start-page: 500
  year: 2015
  ident: 10838_CR101
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.07.372
– ident: 10838_CR88
  doi: 10.1145/3230977.3231012
– volume: 10
  start-page: 19558
  year: 2022
  ident: 10838_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151652
– ident: 10838_CR114
  doi: 10.1007/978-3-319-91192-2_21
– ident: 10838_CR34
  doi: 10.1007/978-3-319-74781-1_3
– volume: 38
  start-page: 14984
  issue: 12
  year: 2011
  ident: 10838_CR15
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.048
– ident: 10838_CR104
  doi: 10.1109/ISDA.2009.15
– volume: 52
  start-page: 381
  issue: 1
  year: 2019
  ident: 10838_CR26
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-018-9620-8
– ident: 10838_CR32
  doi: 10.1109/ICACCI.2016.7732181
– ident: 10838_CR109
  doi: 10.1145/3318396.3318419
– ident: 10838_CR93
  doi: 10.1109/AICAI.2019.8701260
– ident: 10838_CR102
  doi: 10.1109/ICETECH.2015.7275025
– volume: 54
  start-page: 105
  issue: 2
  year: 2017
  ident: 10838_CR90
  publication-title: International Journal of Electrical Engineering Education
  doi: 10.1177/0020720916688484
– ident: 10838_CR55
  doi: 10.1007/978-3-030-03493-1_14
– volume: 39
  start-page: 757
  issue: 7
  year: 2017
  ident: 10838_CR84
  publication-title: Medical teacher
  doi: 10.1080/0142159X.2017.1309376
– ident: 10838_CR96
  doi: 10.1109/ICCED.2018.00055
– ident: 10838_CR36
  doi: 10.1109/IIAI-AAI.2017.73
– volume: 27
  start-page: 2551
  issue: 5
  year: 2014
  ident: 10838_CR116
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/IFS-141229
– ident: 10838_CR50
  doi: 10.1007/978-3-319-25159-2_58
– ident: 10838_CR92
  doi: 10.1109/PDGC.2014.7030728
– ident: 10838_CR76
  doi: 10.1109/ICIEV.2016.7760058
– ident: 10838_CR107
  doi: 10.1109/HSI.2017.8005026
– ident: 10838_CR42
  doi: 10.1109/ISET.2015.33
– volume: 7
  start-page: 5
  issue: 2
  year: 2018
  ident: 10838_CR66
  publication-title: Pancaran Pendidikan
– ident: 10838_CR47
  doi: 10.1145/3241815.3241875
– ident: 10838_CR57
  doi: 10.1109/WEEF.2017.8467150
– ident: 10838_CR8
– volume: 41
  start-page: 1432
  issue: 4
  year: 2014
  ident: 10838_CR2
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2013.08.042
– ident: 10838_CR99
  doi: 10.1109/INAPR.2018.8626856
– volume: 102
  start-page: 137
  year: 2016
  ident: 10838_CR106
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.09.380
– ident: 10838_CR23
  doi: 10.1007/978-3-319-95168-3_2
– volume: 25
  start-page: 326
  year: 2016
  ident: 10838_CR73
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2016.08.114
– ident: 10838_CR56
  doi: 10.1007/978-3-319-11200-8_5
– volume: 72
  start-page: 414
  year: 2015
  ident: 10838_CR69
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.12.157
– volume: 100
  start-page: 768
  issue: 4
  year: 2017
  ident: 10838_CR51
  publication-title: IEICE Transactions on Information and Systems
  doi: 10.1587/transinf.2016DAP0026
– ident: 10838_CR59
  doi: 10.1007/978-3-319-44159-7_15
– ident: 10838_CR79
  doi: 10.1145/3027385.3029479
– ident: 10838_CR49
  doi: 10.1007/978-3-319-06773-5_16
– volume: 37
  start-page: 66
  year: 2018
  ident: 10838_CR38
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2018.02.001
– ident: 10838_CR18
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.315
– ident: 10838_CR43
  doi: 10.1007/978-981-10-2750-5_35
– ident: 10838_CR89
  doi: 10.1007/978-3-319-23485-4_42
– volume-title: Applied logistic regression
  year: 2013
  ident: 10838_CR17
  doi: 10.1002/9781118548387
– volume: 52
  start-page: 651
  issue: 1
  year: 2018
  ident: 10838_CR115
  publication-title: Quality & quantity
  doi: 10.1007/s11135-017-0644-y
– volume: 41
  start-page: 105
  year: 2012
  ident: 10838_CR3
  publication-title: Int Proc Econ Dev Res
– volume: 56
  start-page: 34
  year: 2017
  ident: 10838_CR20
  publication-title: Learning and Individual Differences
  doi: 10.1016/j.lindif.2017.05.003
– ident: 10838_CR54
  doi: 10.1145/3099023.3099034
– ident: 10838_CR108
  doi: 10.1109/ICICI.2017.8365371
– volume: 11
  start-page: 1005
  issue: 7
  year: 2022
  ident: 10838_CR111
  publication-title: Electronics
  doi: 10.3390/electronics11071005
– ident: 10838_CR10
  doi: 10.1109/MECON53876.2022.9751956
– ident: 10838_CR29
  doi: 10.1109/ICCSE.2016.7581557
– volume: 80
  start-page: 3782
  year: 2023
  ident: 10838_CR5
  publication-title: Materials today: Proceedings
– ident: 10838_CR91
  doi: 10.1109/HICSS.2016.16
– volume: 40
  start-page: 78
  issue: 6
  year: 2021
  ident: 10838_CR7
  publication-title: Current Journal of Applied Science and Technology
  doi: 10.9734/cjast/2021/v40i631320
– year: 2020
  ident: 10838_CR41
  publication-title: Supervised and Unsupervised Learning for Data Science
  doi: 10.1007/978-3-030-22475-2_1
SSID ssj0010092
Score 2.320455
SecondaryResourceType review_article
Snippet For scholarly organizations, students’ academic performance (AP) computes student achievements in different academic subjects. Therefore, a systematic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1643
SubjectTerms Communications Engineering
Computer Communication Networks
Engineering
Literature reviews
Machine learning
Networks
Performance prediction
Signal,Image and Speech Processing
Students
Teachers
Title A Systematic Review on Predicting the Performance of Students in Higher Education in Offline Mode Using Machine Learning Techniques
URI https://link.springer.com/article/10.1007/s11277-023-10838-x
https://www.proquest.com/docview/2928612667
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF3EXvQgWhVra5mDeNGASZPN9thKa1FaC22hnkKyu5GCptJU8O4fdyafVlTwFEg2gWR2Zt9k3rxl7NzUCIt9tIC0lWPYOEuIBOAbIWJbx-QEoek_5HDEBzP7bu7Ms6awOGe75yXJJFKXzW4mlRtxjcHQIdBNETlWHMzdyR1nVqeoHZCMUKKwR8QOjMxZq8zPz9hcjkqM-a0smqw2_X22l8FE6KR2PWBbOqqy3S_igVVWzwYt4he4gI1Gj_iQfXRgUog0Q1oBgGUE4xVVZojrDAj9YFz2DcAyhEmqdBnDIoKUAQIFA4TOPYQhwVKgHdQgYRvAMGFjasiEWp9gmqvCxkds1u9NbwZGtuGCIdET14bfljpwOXdtLoIw5E5gKoH5m6v4dVsElhNwLYRUbY2rvk0ba2K2YwYScy7BpQpax2w7Wkb6hIHSQjqWVK6Paa_CnAszTdUyfd8JMTZzv8bM_Lt7MlMjp00xnr1SR5ls5aGtvMRW3nuNXRb3vKZaHH-ObuTm9DK_jD2rbQnEdPiKNXaVm7i8_PvTTv83vM52rGSWEe-lwbbXqzd9huhlHTRZpdPvdkd0vH287zWTyfsJEuDoyQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA6iB_UgOhXnpr6DeNGC7do0PQ5xTN3mYBvsVtoklYF2sk7w7h_3JU1bJyp4bdNA-5KX7_V973uEnNsSYXGEFuCu8CwXV4kiAURWgtjWs6mC0Oo_ZH9AuxP3fupNTVFYVrDdi5Sk9tRVsZut0o14xqDrYLhNETluIBhgqm_BxGmXuQMlI6QV9hSxAz2zKZX5eY7V46jCmN_Sovq06eySHQMToZ3bdY-sybRGtr-IB9ZIwwyaZS9wASuFHtk--WjDqBRphjwDAPMUhguVmVFcZ0DoB8OqbgDmCYxypcsMZinkDBAoGSDq2mOSKFgKqoMaaLYB9DUbU4IRan2CcaEKmx2QSed2fNO1TMMFi-NOXFpRwGXsU-q7lMVJQr3YFgzjN1_Q64DFjhdTyRgXgcRT31WNNTHasWOOMRejXMStQ7KezlN5REBIxj2HCz_CsFdgzIWRpmjZUeQl6JtpVCd28d1DbtTIVVOM57DSUVa2CtFWobZV-F4nl-Uzr7kWx5-jm4U5Q7Mvs9AJHIaYDl-xTq4KE1e3f5_t-H_Dz8hmd9zvhb27wUODbDl6xSkOTJOsLxdv8gSRzDI-1Qv3E5x-6Kw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1EQfQgWhVrq85BvGioSZPN9ljUUj9aC22ht5DsbqSgaWkqePePO5OPphUVvCabhWRmZ99k3rxl7NzUCIt9tIC0lWPY6CVEAvCNELGtY3KC0PQfstPl7aH9MHJGS138Cds9L0mmPQ2k0hTNa1MV1orGN5NKj7jfYBgRuGQRRW5gODbJ04dWc1FHIEmhRG2PSB4YpbO2mZ_nWN2aCrz5rUSa7DytXbaTQUZopjbeY2s6KrHtJSHBEqtkg8bxG1zAStNHvM8-m9BfCDZDWg2ASQS9GVVpiPcMCAOhV_QQwCSEfqp6GcM4gpQNAgs2CF17DkOCqECnqUHCPIBOwszUkIm2vsAgV4iND9iwdTe4aRvZ4QuGxFU5N_yG1IHLuWtzEYQhdwJTCczlXMWvGyKwnIBrIaRqaEQANh2yiZmPGUjMvwSXKqgfsvVoEukjBkoL6VhSuT6mwArzL8w6Vd30fSfEOM39MjPz7-7JTJmcDsh49QpNZbKVh7byElt5H2V2uXhmmupy_Dm6mpvTy9Zo7FkNSyC-w1css6vcxMXt32c7_t_wM7bZu215T_fdxwrbshKHIzpMla3PZ-_6BEHNPDhN_PYLBNLs6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review+on+Predicting+the+Performance+of+Students+in+Higher+Education+in+Offline+Mode+Using+Machine+Learning+Techniques&rft.jtitle=Wireless+personal+communications&rft.au=Rahul&rft.au=Katarya%2C+Rahul&rft.date=2023-12-01&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=133&rft.issue=3&rft.spage=1643&rft.epage=1674&rft_id=info:doi/10.1007%2Fs11277-023-10838-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11277_023_10838_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon