Constrained High-Index Saddle Dynamics for the Solution Landscape with Equality Constraints

We propose a constrained high-index saddle dynamics (CHiSD) method to search for index- k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index- k saddle point is proved...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 91; no. 2; p. 62
Main Authors Yin, Jianyuan, Huang, Zhen, Zhang, Lei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a constrained high-index saddle dynamics (CHiSD) method to search for index- k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index- k saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method.
AbstractList We propose a constrained high-index saddle dynamics (CHiSD) method to search for index- k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index- k saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method.
We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index-k saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method.
ArticleNumber 62
Author Yin, Jianyuan
Zhang, Lei
Huang, Zhen
Author_xml – sequence: 1
  givenname: Jianyuan
  surname: Yin
  fullname: Yin, Jianyuan
  organization: School of Mathematical Sciences, Peking University
– sequence: 2
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  organization: School of Mathematical Sciences, Peking University
– sequence: 3
  givenname: Lei
  orcidid: 0000-0001-9972-2051
  surname: Zhang
  fullname: Zhang, Lei
  email: zhangl@math.pku.edu.cn
  organization: Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University
BookMark eNp9kL1OwzAURi1UJNrCCzBZYjb4J6ntEZVCK1ViKEwMluM4barUaW1H0LfHJQgkBqa7fOfe754RGLjWWQCuCb4lGPO7QLAkOcKUIkwEE4idgSHJOUN8IskADLEQOeIZzy7AKIQtxlgKSYfgbdq6EL2unS3hvF5v0MKV9gOudFk2Fj4cnd7VJsCq9TBuLFy1TRfr1sGldmUwem_hex03cHbodFPHI_zZF8MlOK90E-zV9xyD18fZy3SOls9Pi-n9EhlGZERack1FURFZVVYSIzLGiqokxk50YbixmmI5yWhqRHnOTMm4zgwXldHClEXOxuCm37v37aGzIapt23mXTioqk43kgZOUon3K-DYEbyu19_VO-6MiWJ0kql6iShLVl0TFEiT-QKaO-iTg9GPzP8p6NKQ7bm39b6t_qE_T84o0
CitedBy_id crossref_primary_10_1021_acs_jpcb_3c00897
crossref_primary_10_1137_22M1487965
crossref_primary_10_1007_s11425_022_2149_2
crossref_primary_10_1007_s11425_021_2093_1
crossref_primary_10_1137_23M1604606
crossref_primary_10_1039_D4SM01372G
crossref_primary_10_1088_1361_6544_acc62d
crossref_primary_10_1080_18824889_2022_2055921
crossref_primary_10_1115_1_4065023
crossref_primary_10_1007_s10915_024_02726_8
crossref_primary_10_1016_j_jcp_2023_111916
crossref_primary_10_1007_s11401_023_0043_8
crossref_primary_10_1137_21M1458314
crossref_primary_10_1002_num_23123
crossref_primary_10_1007_s10915_024_02760_6
crossref_primary_10_1103_PhysRevResearch_6_043085
crossref_primary_10_1016_j_xinn_2023_100546
Cites_doi 10.1103/PhysRevLett.121.197202
10.1007/s10915-018-0774-y
10.1126/science.1181263
10.1016/j.cnsns.2020.105255
10.1103/PhysRevLett.105.160405
10.1103/PhysRevLett.72.2671
10.1017/S0962492921000088
10.1007/s10915-018-0775-x
10.1103/PhysRevA.102.053307
10.1016/j.jcp.2019.06.028
10.1088/0305-4470/24/23/008
10.1017/S0962492919000047
10.1007/s10915-008-9207-7
10.1016/j.jcp.2012.03.006
10.1137/S1064827599365641
10.1515/9781400881802
10.1073/pnas.1524864113
10.1038/npjcompumats.2016.3
10.1103/PhysRevLett.117.028301
10.1016/j.cnsns.2017.05.024
10.1103/PhysRevLett.104.148301
10.1039/DF9582500019
10.1007/s00214-014-1510-9
10.1007/978-0-387-40065-5
10.1103/PhysRevLett.75.3969
10.1063/1.3609924
10.1007/s11425-020-1737-1
10.1103/PhysRevA.89.053606
10.1137/140972676
10.1137/110843149
10.1073/pnas.040580397
10.4310/CMS.2005.v3.n1.a5
10.1007/BF03025291
10.1103/PhysRevLett.124.090601
10.1063/1.1809574
10.1016/j.cpc.2015.07.001
10.3934/krm.2013.6.1
10.1146/annurev.physchem.040808.090412
10.1137/19M1253356
10.1007/s10915-017-0412-0
10.1126/science.269.5221.198
10.1016/j.jcp.2006.04.019
10.1063/1.480097
10.1103/PhysRevB.66.052301
10.1063/1.1323224
10.1063/1.3088532
10.1080/14786440409463107
10.4310/CMS.2009.v7.n4.a11
10.1088/0951-7715/24/6/008
10.1063/1.4921163
10.1007/978-1-4419-7400-6
10.1515/9781400830244
10.1103/PhysRevA.61.043602
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-022-01838-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_022_01838_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12050002
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-a97a28bf19ffe91c8433bfd1ce6abc7cea209642add2753cd37a4c78fca8cdb53
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Sat Aug 23 14:46:11 EDT 2025
Tue Jul 01 00:51:45 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Fri Feb 21 02:45:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 65P99
Bose–Einstein condensation
Solution landscape
Thomson problem
37M05
Manifold optimization
Energy landscape
Saddle point
34K21
49K35
37N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a97a28bf19ffe91c8433bfd1ce6abc7cea209642add2753cd37a4c78fca8cdb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9972-2051
PQID 2918315771
PQPubID 2043771
ParticipantIDs proquest_journals_2918315771
crossref_primary_10_1007_s10915_022_01838_3
crossref_citationtrail_10_1007_s10915_022_01838_3
springer_journals_10_1007_s10915_022_01838_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CharalampidisEGKevrekidisPGFarrellPEComputing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuationCommun. Nonlinear Sci. Numer. Simul.201854482499367142910.1016/j.cnsns.2017.05.02407262023
ZhangJDuQConstrained shrinking dimer dynamics for saddle point search with constraintsJ. Comput. Phys.20122311447454758292796910.1016/j.jcp.2012.03.0061248.65069
MengGArkusNBrennerMPManoharanVNThe free-energy landscape of clusters of attractive hard spheresScience2010327596556056310.1126/science.1181263
AndersonMHEnsherJRMatthewsMRWiemanCECornellEAObservation of Bose-Einstein condensation in a dilute atomic vaporScience1995269522119820110.1126/science.269.5221.198
Machado-CharryEBélandLKCalisteDGenoveseLDeutschTMousseauNPochetPOptimized energy landscape exploration using the ab initio based activation-relaxation techniqueJ. Chem. Phys.2011135303410210.1063/1.3609924
WalesDJEnergy Landscapes2003Cambridge, EnglandCambridge University Press
LiYZhouJA minimax method for finding multiple critical points and its applications to semilinear PDEsSIAM J. Sci. Comput.2001233840865186096710.1137/S10648275993656411002.35004
BaoWChernILLimFYEfficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensatesJ. Comput. Phys.20062192836854227495910.1016/j.jcp.2006.04.0191330.82031
EWRenWVanden-EijndenEString method for the study of rare eventsPhys. Rev. B200210.1103/PhysRevB.66.0523011050.60068
QuappWBofillJMLocating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamicsTheor. Chem. Acc.20141338151010.1007/s00214-014-1510-9
MallamaceFCorsaroCMallamaceDVasiSVasiCBaglioniPBuldyrevSVChenSHStanleyHEEnergy landscape in protein folding and unfoldingProc. Natl. Acad. Sci. U.S.A.2016113123159316310.1073/pnas.1524864113
AbsilPAMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008Princeton, NJPrinceton University Press10.1515/9781400830244
LiZJiBZhouJA local minimax method using virtual geometric objects: part I–for finding saddlesJ. Sci. Comput.2019781202225390288210.1007/s10915-018-0774-y1412.65194
YinJZhangLZhangPHigh-index optimization-based shrinking dimer method for finding high-index saddle pointsSIAM J. Sci. Comput.2019416A3576A3595403147310.1137/19M12533561429.49030
CharalampidisEGBoulléNFarrellPEKevrekidisPGBifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuationCommun. Nonlinear Sci. Numer. Simul.202087105255410196810.1016/j.cnsns.2020.1052551453.37070
BaoWCaiYMathematical theory and numerical methods for Bose-Einstein condensationKinet. Relat. Models2013611135300562410.3934/krm.2013.6.11266.82009
MehtaDChenJChenDZKusumaatmajaHWalesDJKinetic transition networks for the Thomson problem and Smale’s seventh problemPhys. Rev. Lett.2016117202830110.1103/PhysRevLett.117.028301
WuXWenZBaoWA regularized Newton method for computing ground states of Bose-Einstein condensatesJ. Sci. Comput.201773303329370485410.1007/s10915-017-0412-01433.82025
MehtaDChenTMorganJWRWalesDJExploring the potential energy landscape of the Thomson problem via Newton homotopiesJ. Chem. Phys.20151421919411310.1063/1.4921163
ErberTHockneyGMEquilibrium configurations of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} equal charges on a sphereJ. Phys. A Math. Gen.19912423L1369L137710.1088/0305-4470/24/23/008
BessarabPFUzdinVMJónssonHMethod for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilationComput. Phys. Commun.201519633534710.1016/j.cpc.2015.07.001
BoulléNCharalampidisEGFarrellPEKevrekidisPGDeflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equationPhys. Rev. A2020102053307419000310.1103/PhysRevA.102.053307
CancèsELegollFMarinicaMCMinoukadehKWillaimeFSome improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfacesJ. Chem. Phys.20091301111471110.1063/1.3088532
AltschulerELWilliamsTJRatnerERDowlaFWootenFMethod of constrained global optimizationPhys. Rev. Lett.199472172671267410.1103/PhysRevLett.72.2671
HenkelmanGJónssonHImproved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle pointsJ. Chem. Phys.2000113229978998510.1063/1.1323224
LawKJHKevrekidisPGTuckermanLSStable vortex-bright-soliton structures in two-component Bose-Einstein condensatesPhys. Rev. Lett.201010516040510.1103/PhysRevLett.105.160405
LawKJHNeelyTWKevrekidisPGAndersonBPBradleyASCarretero-GonzálezRDynamic and energetic stabilization of persistent currents in Bose-Einstein condensatesPhys. Rev. A20148905360610.1103/PhysRevA.89.053606
OlsenRAKroesGJHenkelmanGArnaldssonAJónssonHComparison of methods for finding saddle points without knowledge of the final statesJ. Chem. Phys.2004121209776979210.1063/1.1809574
Thomson, J.J.: XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. London, Edinburgh, Dublin Phil. Mag. J. Sci. 7(39), 237–265 (1904). https://doi.org/10.1080/14786440409463107
ZhangLDuQZhengZOptimization-based shrinking dimer method for finding transition statesSIAM J. Sci. Comput.2016381A528A544346132010.1137/1409726761332.37062
DavisKBMewesMOAndrewsMRvan DrutenNJDurfeeDSKurnDMKetterleWBose-Einstein condensation in a gas of sodium atomsPhys. Rev. Lett.199575223969397310.1103/PhysRevLett.75.3969
FrankFCI. Liquid crystals. On the theory of liquid crystalsDiscuss. Faraday Soc.195825192810.1039/DF9582500019
YinJWangYChenJZYZhangPZhangLConstruction of a pathway map on a complicated energy landscapePhys. Rev. Lett.20201249090601407512610.1103/PhysRevLett.124.090601
WangWZhangLZhangPModelling and computation of liquid crystalsActa Numerica202130765851429822310.1017/S0962492921000088
EWVanden-EijndenETransition-path theory and path-finding algorithms for the study of rare eventsAnnu. Rev. Phys. Chem.2010611391420265589810.1146/annurev.physchem.040808.090412
ChengXLinLEWZhangPShiACNucleation of ordered phases in block copolymersPhys. Rev. Lett.201010.1103/PhysRevLett.104.148301
BaoWWangHMarkowichPAGround, symmetric and central vortex states in rotating Bose-Einstein condensatesComm. Math. Sci.2005315788213282610.4310/CMS.2005.v3.n1.a5
LeesonDTGaiFRodriguezHMGregoretLMDyerRBProtein folding and unfolding on a complex energy landscapeProc. Natl. Acad. Sci. U.S.A.20009762527253210.1073/pnas.040580397
Li, Z., Zhou, J.: A local minimax method using virtual geometric objects: part II–for finding equality constrained saddles. J. Sci. Comput. 78(1), 226–245 (2019). https://doi.org/10.1007/s10915-018-0775-x
MüllerGPBessarabPFVlasovSMLuxFKiselevNSBlügelSUzdinVMJónssonHDuplication, collapse, and escape of magnetic skyrmions revealed using a systematic saddle point search methodPhys. Rev. Lett.20181211919720210.1103/PhysRevLett.121.197202
EWZhouXThe gentlest ascent dynamicsNonlinearity201124618311842280230710.1088/0951-7715/24/6/0081237.37052
HanYCHuYCZhangPWZhangLTransition pathways between defect patterns in confined nematic liquid crystalsJ. Comput. Phys.2019396111397909910.1016/j.jcp.2019.06.0281452.82039
HenkelmanGJónssonHA dimer method for finding saddle points on high dimensional potential surfaces using only first derivativesJ. Chem. Phys.1999111157010702210.1063/1.480097
NocedalJWrightSJNumerical Optimization2006New YorkSpringer10.1007/978-0-387-40065-51104.65059
MilnorJMorse Theory1963Princeton, NJPrinceton University Press10.1515/9781400881802
Zhang, L., Chen, L.Q., Du, Q.: Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids. J. Sci. Comput. 37(1), 89–102 (2008). https://doi.org/10.1007/s10915-008-9207-7
SmaleSMathematical problems for the next centuryMath. Intell.1998202715163141310.1007/BF030252910947.01011
TuLWAn Introduction to Manifolds2011New YorkSpringer10.1007/978-1-4419-7400-61200.58001
ZhangJDuQShrinking dimer dynamics and its applications to saddle point searchSIAM J. Numer. Anal.201250418991921302220310.1137/1108431491254.37060
ZhangLRenWSamantaADuQRecent developments in computational modelling of nucleation in phase transformationsNPJ Comput. Mater.2016211910.1038/npjcompumats.2016.3
LinLLuJYingLNumerical methods for Kohn-Sham density functional theoryActa Numerica201928405539396350810.1017/S096249291900004707099162
LiebEHSeiringerRYngvasonJBosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functionalPhys. Rev. A20006104360210.1103/PhysRevA.61.043602
DuQZhangLA constrained string method and its numerical analysisCommun. Math. Sci.20097410391051260463010.4310/CMS.2009.v7.n4.a111186.65079
YinJYuBZhangLSearching the solution landscape by generalized high-index saddle dynamicsSci. China Math.20216418011816430954010.1007/s11425-020-1737-107418504
EL Altschuler (1838_CR2) 1994; 72
EG Charalampidis (1838_CR11) 2018; 54
PA Absil (1838_CR1) 2008
G Henkelman (1838_CR21) 1999; 111
G Meng (1838_CR35) 2010; 327
W E (1838_CR17) 2011; 24
Q Du (1838_CR14) 2009; 7
G Henkelman (1838_CR22) 2000; 113
J Milnor (1838_CR36) 1963
W Bao (1838_CR6) 2005; 3
MH Anderson (1838_CR3) 1995; 269
W Bao (1838_CR4) 2013; 6
D Mehta (1838_CR34) 2015; 142
Y Li (1838_CR26) 2001; 23
1838_CR28
L Lin (1838_CR30) 2019; 28
J Yin (1838_CR48) 2021; 64
E Machado-Charry (1838_CR31) 2011; 135
D Mehta (1838_CR33) 2016; 117
PF Bessarab (1838_CR7) 2015; 196
J Yin (1838_CR49) 2019; 41
KJH Law (1838_CR23) 2010; 105
LW Tu (1838_CR43) 2011
X Cheng (1838_CR12) 2010
EH Lieb (1838_CR29) 2000; 61
DT Leeson (1838_CR25) 2000; 97
F Mallamace (1838_CR32) 2016; 113
KB Davis (1838_CR13) 1995; 75
KJH Law (1838_CR24) 2014; 89
L Zhang (1838_CR54) 2016; 2
T Erber (1838_CR18) 1991; 24
DJ Wales (1838_CR44) 2003
J Yin (1838_CR47) 2020; 124
W E (1838_CR15) 2002
L Zhang (1838_CR53) 2016; 38
YC Han (1838_CR20) 2019; 396
J Zhang (1838_CR50) 2012; 231
J Zhang (1838_CR51) 2012; 50
FC Frank (1838_CR19) 1958; 25
W Quapp (1838_CR40) 2014; 133
Z Li (1838_CR27) 2019; 78
W Wang (1838_CR45) 2021; 30
W E (1838_CR16) 2010; 61
J Nocedal (1838_CR38) 2006
1838_CR42
W Bao (1838_CR5) 2006; 219
EG Charalampidis (1838_CR10) 2020; 87
N Boullé (1838_CR8) 2020; 102
S Smale (1838_CR41) 1998; 20
E Cancès (1838_CR9) 2009; 130
GP Müller (1838_CR37) 2018; 121
X Wu (1838_CR46) 2017; 73
RA Olsen (1838_CR39) 2004; 121
1838_CR52
References_xml – reference: AndersonMHEnsherJRMatthewsMRWiemanCECornellEAObservation of Bose-Einstein condensation in a dilute atomic vaporScience1995269522119820110.1126/science.269.5221.198
– reference: DuQZhangLA constrained string method and its numerical analysisCommun. Math. Sci.20097410391051260463010.4310/CMS.2009.v7.n4.a111186.65079
– reference: EWRenWVanden-EijndenEString method for the study of rare eventsPhys. Rev. B200210.1103/PhysRevB.66.0523011050.60068
– reference: EWVanden-EijndenETransition-path theory and path-finding algorithms for the study of rare eventsAnnu. Rev. Phys. Chem.2010611391420265589810.1146/annurev.physchem.040808.090412
– reference: MehtaDChenTMorganJWRWalesDJExploring the potential energy landscape of the Thomson problem via Newton homotopiesJ. Chem. Phys.20151421919411310.1063/1.4921163
– reference: WangWZhangLZhangPModelling and computation of liquid crystalsActa Numerica202130765851429822310.1017/S0962492921000088
– reference: YinJZhangLZhangPHigh-index optimization-based shrinking dimer method for finding high-index saddle pointsSIAM J. Sci. Comput.2019416A3576A3595403147310.1137/19M12533561429.49030
– reference: LawKJHNeelyTWKevrekidisPGAndersonBPBradleyASCarretero-GonzálezRDynamic and energetic stabilization of persistent currents in Bose-Einstein condensatesPhys. Rev. A20148905360610.1103/PhysRevA.89.053606
– reference: OlsenRAKroesGJHenkelmanGArnaldssonAJónssonHComparison of methods for finding saddle points without knowledge of the final statesJ. Chem. Phys.2004121209776979210.1063/1.1809574
– reference: ErberTHockneyGMEquilibrium configurations of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} equal charges on a sphereJ. Phys. A Math. Gen.19912423L1369L137710.1088/0305-4470/24/23/008
– reference: HenkelmanGJónssonHA dimer method for finding saddle points on high dimensional potential surfaces using only first derivativesJ. Chem. Phys.1999111157010702210.1063/1.480097
– reference: NocedalJWrightSJNumerical Optimization2006New YorkSpringer10.1007/978-0-387-40065-51104.65059
– reference: MehtaDChenJChenDZKusumaatmajaHWalesDJKinetic transition networks for the Thomson problem and Smale’s seventh problemPhys. Rev. Lett.2016117202830110.1103/PhysRevLett.117.028301
– reference: ZhangLDuQZhengZOptimization-based shrinking dimer method for finding transition statesSIAM J. Sci. Comput.2016381A528A544346132010.1137/1409726761332.37062
– reference: ZhangLRenWSamantaADuQRecent developments in computational modelling of nucleation in phase transformationsNPJ Comput. Mater.2016211910.1038/npjcompumats.2016.3
– reference: LiYZhouJA minimax method for finding multiple critical points and its applications to semilinear PDEsSIAM J. Sci. Comput.2001233840865186096710.1137/S10648275993656411002.35004
– reference: Thomson, J.J.: XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. London, Edinburgh, Dublin Phil. Mag. J. Sci. 7(39), 237–265 (1904). https://doi.org/10.1080/14786440409463107
– reference: TuLWAn Introduction to Manifolds2011New YorkSpringer10.1007/978-1-4419-7400-61200.58001
– reference: CancèsELegollFMarinicaMCMinoukadehKWillaimeFSome improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfacesJ. Chem. Phys.20091301111471110.1063/1.3088532
– reference: YinJYuBZhangLSearching the solution landscape by generalized high-index saddle dynamicsSci. China Math.20216418011816430954010.1007/s11425-020-1737-107418504
– reference: MallamaceFCorsaroCMallamaceDVasiSVasiCBaglioniPBuldyrevSVChenSHStanleyHEEnergy landscape in protein folding and unfoldingProc. Natl. Acad. Sci. U.S.A.2016113123159316310.1073/pnas.1524864113
– reference: BessarabPFUzdinVMJónssonHMethod for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilationComput. Phys. Commun.201519633534710.1016/j.cpc.2015.07.001
– reference: CharalampidisEGKevrekidisPGFarrellPEComputing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuationCommun. Nonlinear Sci. Numer. Simul.201854482499367142910.1016/j.cnsns.2017.05.02407262023
– reference: AltschulerELWilliamsTJRatnerERDowlaFWootenFMethod of constrained global optimizationPhys. Rev. Lett.199472172671267410.1103/PhysRevLett.72.2671
– reference: LinLLuJYingLNumerical methods for Kohn-Sham density functional theoryActa Numerica201928405539396350810.1017/S096249291900004707099162
– reference: YinJWangYChenJZYZhangPZhangLConstruction of a pathway map on a complicated energy landscapePhys. Rev. Lett.20201249090601407512610.1103/PhysRevLett.124.090601
– reference: WuXWenZBaoWA regularized Newton method for computing ground states of Bose-Einstein condensatesJ. Sci. Comput.201773303329370485410.1007/s10915-017-0412-01433.82025
– reference: BaoWCaiYMathematical theory and numerical methods for Bose-Einstein condensationKinet. Relat. Models2013611135300562410.3934/krm.2013.6.11266.82009
– reference: EWZhouXThe gentlest ascent dynamicsNonlinearity201124618311842280230710.1088/0951-7715/24/6/0081237.37052
– reference: BaoWWangHMarkowichPAGround, symmetric and central vortex states in rotating Bose-Einstein condensatesComm. Math. Sci.2005315788213282610.4310/CMS.2005.v3.n1.a5
– reference: LeesonDTGaiFRodriguezHMGregoretLMDyerRBProtein folding and unfolding on a complex energy landscapeProc. Natl. Acad. Sci. U.S.A.20009762527253210.1073/pnas.040580397
– reference: MengGArkusNBrennerMPManoharanVNThe free-energy landscape of clusters of attractive hard spheresScience2010327596556056310.1126/science.1181263
– reference: WalesDJEnergy Landscapes2003Cambridge, EnglandCambridge University Press
– reference: LiZJiBZhouJA local minimax method using virtual geometric objects: part I–for finding saddlesJ. Sci. Comput.2019781202225390288210.1007/s10915-018-0774-y1412.65194
– reference: Zhang, L., Chen, L.Q., Du, Q.: Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids. J. Sci. Comput. 37(1), 89–102 (2008). https://doi.org/10.1007/s10915-008-9207-7
– reference: CharalampidisEGBoulléNFarrellPEKevrekidisPGBifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuationCommun. Nonlinear Sci. Numer. Simul.202087105255410196810.1016/j.cnsns.2020.1052551453.37070
– reference: SmaleSMathematical problems for the next centuryMath. Intell.1998202715163141310.1007/BF030252910947.01011
– reference: ZhangJDuQConstrained shrinking dimer dynamics for saddle point search with constraintsJ. Comput. Phys.20122311447454758292796910.1016/j.jcp.2012.03.0061248.65069
– reference: MüllerGPBessarabPFVlasovSMLuxFKiselevNSBlügelSUzdinVMJónssonHDuplication, collapse, and escape of magnetic skyrmions revealed using a systematic saddle point search methodPhys. Rev. Lett.20181211919720210.1103/PhysRevLett.121.197202
– reference: AbsilPAMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008Princeton, NJPrinceton University Press10.1515/9781400830244
– reference: BoulléNCharalampidisEGFarrellPEKevrekidisPGDeflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equationPhys. Rev. A2020102053307419000310.1103/PhysRevA.102.053307
– reference: ChengXLinLEWZhangPShiACNucleation of ordered phases in block copolymersPhys. Rev. Lett.201010.1103/PhysRevLett.104.148301
– reference: FrankFCI. Liquid crystals. On the theory of liquid crystalsDiscuss. Faraday Soc.195825192810.1039/DF9582500019
– reference: LawKJHKevrekidisPGTuckermanLSStable vortex-bright-soliton structures in two-component Bose-Einstein condensatesPhys. Rev. Lett.201010516040510.1103/PhysRevLett.105.160405
– reference: QuappWBofillJMLocating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamicsTheor. Chem. Acc.20141338151010.1007/s00214-014-1510-9
– reference: BaoWChernILLimFYEfficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensatesJ. Comput. Phys.20062192836854227495910.1016/j.jcp.2006.04.0191330.82031
– reference: Machado-CharryEBélandLKCalisteDGenoveseLDeutschTMousseauNPochetPOptimized energy landscape exploration using the ab initio based activation-relaxation techniqueJ. Chem. Phys.2011135303410210.1063/1.3609924
– reference: DavisKBMewesMOAndrewsMRvan DrutenNJDurfeeDSKurnDMKetterleWBose-Einstein condensation in a gas of sodium atomsPhys. Rev. Lett.199575223969397310.1103/PhysRevLett.75.3969
– reference: HenkelmanGJónssonHImproved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle pointsJ. Chem. Phys.2000113229978998510.1063/1.1323224
– reference: ZhangJDuQShrinking dimer dynamics and its applications to saddle point searchSIAM J. Numer. Anal.201250418991921302220310.1137/1108431491254.37060
– reference: LiebEHSeiringerRYngvasonJBosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functionalPhys. Rev. A20006104360210.1103/PhysRevA.61.043602
– reference: Li, Z., Zhou, J.: A local minimax method using virtual geometric objects: part II–for finding equality constrained saddles. J. Sci. Comput. 78(1), 226–245 (2019). https://doi.org/10.1007/s10915-018-0775-x
– reference: MilnorJMorse Theory1963Princeton, NJPrinceton University Press10.1515/9781400881802
– reference: HanYCHuYCZhangPWZhangLTransition pathways between defect patterns in confined nematic liquid crystalsJ. Comput. Phys.2019396111397909910.1016/j.jcp.2019.06.0281452.82039
– volume: 121
  start-page: 197202
  issue: 19
  year: 2018
  ident: 1838_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.197202
– volume: 78
  start-page: 202
  issue: 1
  year: 2019
  ident: 1838_CR27
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0774-y
– volume: 327
  start-page: 560
  issue: 5965
  year: 2010
  ident: 1838_CR35
  publication-title: Science
  doi: 10.1126/science.1181263
– volume: 87
  start-page: 105255
  year: 2020
  ident: 1838_CR10
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105255
– volume: 105
  start-page: 160405
  year: 2010
  ident: 1838_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.160405
– volume: 72
  start-page: 2671
  issue: 17
  year: 1994
  ident: 1838_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2671
– volume: 30
  start-page: 765
  year: 2021
  ident: 1838_CR45
  publication-title: Acta Numerica
  doi: 10.1017/S0962492921000088
– ident: 1838_CR28
  doi: 10.1007/s10915-018-0775-x
– volume: 102
  start-page: 053307
  year: 2020
  ident: 1838_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.053307
– volume: 396
  start-page: 1
  year: 2019
  ident: 1838_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.028
– volume: 24
  start-page: L1369
  issue: 23
  year: 1991
  ident: 1838_CR18
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/24/23/008
– volume: 28
  start-page: 405
  year: 2019
  ident: 1838_CR30
  publication-title: Acta Numerica
  doi: 10.1017/S0962492919000047
– ident: 1838_CR52
  doi: 10.1007/s10915-008-9207-7
– volume: 231
  start-page: 4745
  issue: 14
  year: 2012
  ident: 1838_CR50
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.03.006
– volume: 23
  start-page: 840
  issue: 3
  year: 2001
  ident: 1838_CR26
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827599365641
– volume-title: Morse Theory
  year: 1963
  ident: 1838_CR36
  doi: 10.1515/9781400881802
– volume: 113
  start-page: 3159
  issue: 12
  year: 2016
  ident: 1838_CR32
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1524864113
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  ident: 1838_CR54
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/npjcompumats.2016.3
– volume-title: Energy Landscapes
  year: 2003
  ident: 1838_CR44
– volume: 117
  start-page: 028301
  issue: 2
  year: 2016
  ident: 1838_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.028301
– volume: 54
  start-page: 482
  year: 2018
  ident: 1838_CR11
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.05.024
– year: 2010
  ident: 1838_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.148301
– volume: 25
  start-page: 19
  year: 1958
  ident: 1838_CR19
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/DF9582500019
– volume: 133
  start-page: 1510
  issue: 8
  year: 2014
  ident: 1838_CR40
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-014-1510-9
– volume-title: Numerical Optimization
  year: 2006
  ident: 1838_CR38
  doi: 10.1007/978-0-387-40065-5
– volume: 75
  start-page: 3969
  issue: 22
  year: 1995
  ident: 1838_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3969
– volume: 135
  start-page: 034102
  issue: 3
  year: 2011
  ident: 1838_CR31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3609924
– volume: 64
  start-page: 1801
  year: 2021
  ident: 1838_CR48
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-020-1737-1
– volume: 89
  start-page: 053606
  year: 2014
  ident: 1838_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.053606
– volume: 38
  start-page: A528
  issue: 1
  year: 2016
  ident: 1838_CR53
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140972676
– volume: 50
  start-page: 1899
  issue: 4
  year: 2012
  ident: 1838_CR51
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110843149
– volume: 97
  start-page: 2527
  issue: 6
  year: 2000
  ident: 1838_CR25
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.040580397
– volume: 3
  start-page: 57
  issue: 1
  year: 2005
  ident: 1838_CR6
  publication-title: Comm. Math. Sci.
  doi: 10.4310/CMS.2005.v3.n1.a5
– volume: 20
  start-page: 7
  issue: 2
  year: 1998
  ident: 1838_CR41
  publication-title: Math. Intell.
  doi: 10.1007/BF03025291
– volume: 124
  start-page: 090601
  issue: 9
  year: 2020
  ident: 1838_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.090601
– volume: 121
  start-page: 9776
  issue: 20
  year: 2004
  ident: 1838_CR39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1809574
– volume: 196
  start-page: 335
  year: 2015
  ident: 1838_CR7
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.07.001
– volume: 6
  start-page: 1
  issue: 1
  year: 2013
  ident: 1838_CR4
  publication-title: Kinet. Relat. Models
  doi: 10.3934/krm.2013.6.1
– volume: 61
  start-page: 391
  issue: 1
  year: 2010
  ident: 1838_CR16
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.040808.090412
– volume: 41
  start-page: A3576
  issue: 6
  year: 2019
  ident: 1838_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1253356
– volume: 73
  start-page: 303
  year: 2017
  ident: 1838_CR46
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0412-0
– volume: 269
  start-page: 198
  issue: 5221
  year: 1995
  ident: 1838_CR3
  publication-title: Science
  doi: 10.1126/science.269.5221.198
– volume: 219
  start-page: 836
  issue: 2
  year: 2006
  ident: 1838_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.04.019
– volume: 111
  start-page: 7010
  issue: 15
  year: 1999
  ident: 1838_CR21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
– year: 2002
  ident: 1838_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.052301
– volume: 113
  start-page: 9978
  issue: 22
  year: 2000
  ident: 1838_CR22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 130
  start-page: 114711
  issue: 11
  year: 2009
  ident: 1838_CR9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3088532
– ident: 1838_CR42
  doi: 10.1080/14786440409463107
– volume: 7
  start-page: 1039
  issue: 4
  year: 2009
  ident: 1838_CR14
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2009.v7.n4.a11
– volume: 24
  start-page: 1831
  issue: 6
  year: 2011
  ident: 1838_CR17
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/6/008
– volume: 142
  start-page: 194113
  issue: 19
  year: 2015
  ident: 1838_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4921163
– volume-title: An Introduction to Manifolds
  year: 2011
  ident: 1838_CR43
  doi: 10.1007/978-1-4419-7400-6
– volume-title: Optimization Algorithms on Matrix Manifolds
  year: 2008
  ident: 1838_CR1
  doi: 10.1515/9781400830244
– volume: 61
  start-page: 043602
  year: 2000
  ident: 1838_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.043602
SSID ssj0009892
Score 2.4568987
Snippet We propose a constrained high-index saddle dynamics (CHiSD) method to search for index- k saddle points of an energy functional subject to equality...
We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-k saddle points of an energy functional subject to equality constraints....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 62
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Constraints
Eigenvalues
Eigenvectors
Energy
Euclidean space
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Minimax technique
Numerical analysis
Riemann manifold
Saddle points
Search algorithms
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVgQ5SEKBXlgAEFEHSe1MyEerQqCCgGVkBgivzKhtpAw8O-5S51GINE1D8u6h_35fPcdIUeGMWM1VwHXDA4oWVcHEhlodaKttVpEymHt8MOoNxxHd6_xqw-45T6tsloTy4XaTg3GyM_DBIyPxUKwi9lHgF2j8HbVt9BYJU1YgqVskOZVf_T4VNPuyrItMrhSHABwjnzZjC-eSxhWJ2NqggS357-3phpv_rkiLXeewQZZ95CRXs513CIrbrJJWt4pc3rsmaNPtsgbtt8smz44SzGDI7hFMkT6rDAKQW_m3edzCkCVAvCjVUyM3mPBL6ZCUYzL0v681PKbLsYr8m0yHvRfroeB754QGHCrIlCJUKHUGUuyzCXMyIhznVlmXE9pI4xTIRxfohBmEMKZxVguVGSEzIySoL6Y75DGZDpxu4RKmQnDuypUEgAMN6qrRWJjBw9tBJiwTVgluNR4anGc3HtakyKjsFMQdloKO-Vtcrr4ZzYn1lj6dafSR-qdLE9rk2iTs0pH9ev_R9tbPto-WQtLs8C0xg5pFJ9f7gCgR6EPvX39AMxd1eI
  priority: 102
  providerName: ProQuest
Title Constrained High-Index Saddle Dynamics for the Solution Landscape with Equality Constraints
URI https://link.springer.com/article/10.1007/s10915-022-01838-3
https://www.proquest.com/docview/2918315771
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDYgPEYEw5cABBpaVpl_Q4YA8emxAwaYhDlVdPaCA6Dvx7nK7dAAESp0pNakV23NiO_RngQFOqjWLSY4qig5K0lCccAq2KlDFG8UBaVzs8HLUH4-ByEk7yorC0yHYvriSzP_WnYreIumpil0ogUE1ZCSoh-u4ukWvsd5ZQuyJrhYzqE3poLAd5qczPNL4eR0sb89u1aHba9DZgPTcTSWcu1yqs2GkN1oYLjNW0BtVcLVNymGNHH23Co2vAmbV9sIa4HA7vwsEhkjvp4hDkfN5_PiVoqhKkRYqoGLl2Jb8uGYq4yCzpzost38mC3izdgnGve3828PL-CZ5GxZp5MuLSFyqhUZLYiGoRMKYSQ7VtS6W5ttJHBybwcQU-ei3aMC4DzUWipUABhmwbytPnqd0BIkTCNWtJXwo0YZiWLcUjE1p8aQK0CutACzbGOgcXd4t7ipewyI71MbI-zlgfszocL755mUNr_Dm7UUgnztUsjf0IB2nIOa3DSSGx5fDv1Hb_N30PVv1s07hExwaUZ69vdh-NkZlqQkn0-k2odPoPV118nnZHN7fNbEd-AOBU2gE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1F7QEuiBQQKSndA0ggsJrdtbPrQ4WqtiEhaS-0UqUezH75hNKCjar8qf7GzvgjFkj0lqvtXdmzb8dvd2fmAbxznDtvpYmk5bhAyUc20lSB1qbWe29VbALlDp-dj6eX8ber5KoH920uDIVVtj6xctT-xtEe-YFIEXw8UYp_uf0VkWoUna62Eho1LOZhdYdLtuJwdoLj-16IyenF8TRqVAUih3ArI5MqI7TNeZrnIeVOx1La3HMXxsY65YIRSOtjgRNfIJd3XioTO6VzZzR-FqlEoMvfxlYpLfb05GtX5FdXIsw4cZMIaXrcJOk0qXopp1xoCoTQ6GTk3z_Cjt3-cyBb_ecmz-FZQ1DZUY2oPvTCcgf6jQso2IemTvXHF3BNYp-VxETwjOJFohmVXmTfDe15sJNa675gSIsZ0kzW7sCxBaUXU-AVo11gdlondq7Yur-yeAmXG7HqK9ha3izDa2Ba58rJkRFGI12SzoysSn0S8KKPkYEOgLeGy1xTyJxe7mfWlWAmY2do7KwydiYH8Gnd5rYu4_Ho08N2PLJmShdZB8ABfG7HqLv9_952H-9tH55ML84W2WJ2Pn8DT0UFEQqoHMJW-ftP2EPSU9q3FdIY_Ng0tB8Ayj8UPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BdGDuD5wddUcPCha3DStSY-L67LrC0EXBA8lr56kiq0H_72TPrarqOC1SYcwDzJJ5vsG4EBTqo1i0mOK4gEl6SlPOAZaFSljjOKBtA47fHN7NpoEl4_h4wyKv6h2r58kS0yDY2lK89NXk5zOAN8i6pDFrqxAYMiyeVgIHBoYPXri9xvaXVG0RcZQCj1MnIMKNvOzjK9bU5NvfnsiLXae4SqsVCkj6Zc2bsOcTddg-WbKt5qtQbsK0YwcVjzSR-vw5JpxFi0grCGunsMbO2pEci_dnQQZlL3oM4JpK0FZpL4hI9cO_usKo4i7pSUXJfDyg0zl5dkGTIYXD-cjr-ql4GkMstyTEZe-UAmNksRGVIuAMZUYqu2ZVJprK308zAQ-rsDHE4w2jMtAc5FoKdCYIduEVvqS2i0gQiRcs570pcB0hmnZUzwyocWPJsAMsQO0VmOsK6Jxt7jnuKFIdqqPUfVxofqYdeB4-s9rSbPx5-xubZ24Crks9iMcpCHntAMntcWa4d-lbf9v-j4s3g2G8fX49moHlvzCf1z9Yxda-du73cUcJVd7hRt-Aila3RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+High-Index+Saddle+Dynamics+for+the+Solution+Landscape+with+Equality+Constraints&rft.jtitle=Journal+of+scientific+computing&rft.au=Yin%2C+Jianyuan&rft.au=Huang%2C+Zhen&rft.au=Zhang%2C+Lei&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=91&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-022-01838-3&rft.externalDocID=10_1007_s10915_022_01838_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon