Constrained High-Index Saddle Dynamics for the Solution Landscape with Equality Constraints
We propose a constrained high-index saddle dynamics (CHiSD) method to search for index- k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index- k saddle point is proved...
Saved in:
Published in | Journal of scientific computing Vol. 91; no. 2; p. 62 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-
k
saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index-
k
saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method. |
---|---|
AbstractList | We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-
k
saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index-
k
saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method. We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-k saddle points of an energy functional subject to equality constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax framework, and its linear stability at an index-k saddle point is proved. To ensure the manifold property, the CHiSD is numerically implemented using retractions and vector transport. Then we present a numerical approach by combining CHiSD with downward and upward search algorithms to construct the solution landscape in the presence of equality constraints. We apply the Thomson problem and the Bose–Einstein condensation as numerical examples to demonstrate the efficiency of the proposed method. |
ArticleNumber | 62 |
Author | Yin, Jianyuan Zhang, Lei Huang, Zhen |
Author_xml | – sequence: 1 givenname: Jianyuan surname: Yin fullname: Yin, Jianyuan organization: School of Mathematical Sciences, Peking University – sequence: 2 givenname: Zhen surname: Huang fullname: Huang, Zhen organization: School of Mathematical Sciences, Peking University – sequence: 3 givenname: Lei orcidid: 0000-0001-9972-2051 surname: Zhang fullname: Zhang, Lei email: zhangl@math.pku.edu.cn organization: Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University |
BookMark | eNp9kL1OwzAURi1UJNrCCzBZYjb4J6ntEZVCK1ViKEwMluM4barUaW1H0LfHJQgkBqa7fOfe754RGLjWWQCuCb4lGPO7QLAkOcKUIkwEE4idgSHJOUN8IskADLEQOeIZzy7AKIQtxlgKSYfgbdq6EL2unS3hvF5v0MKV9gOudFk2Fj4cnd7VJsCq9TBuLFy1TRfr1sGldmUwem_hex03cHbodFPHI_zZF8MlOK90E-zV9xyD18fZy3SOls9Pi-n9EhlGZERack1FURFZVVYSIzLGiqokxk50YbixmmI5yWhqRHnOTMm4zgwXldHClEXOxuCm37v37aGzIapt23mXTioqk43kgZOUon3K-DYEbyu19_VO-6MiWJ0kql6iShLVl0TFEiT-QKaO-iTg9GPzP8p6NKQ7bm39b6t_qE_T84o0 |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_3c00897 crossref_primary_10_1137_22M1487965 crossref_primary_10_1007_s11425_022_2149_2 crossref_primary_10_1007_s11425_021_2093_1 crossref_primary_10_1137_23M1604606 crossref_primary_10_1039_D4SM01372G crossref_primary_10_1088_1361_6544_acc62d crossref_primary_10_1080_18824889_2022_2055921 crossref_primary_10_1115_1_4065023 crossref_primary_10_1007_s10915_024_02726_8 crossref_primary_10_1016_j_jcp_2023_111916 crossref_primary_10_1007_s11401_023_0043_8 crossref_primary_10_1137_21M1458314 crossref_primary_10_1002_num_23123 crossref_primary_10_1007_s10915_024_02760_6 crossref_primary_10_1103_PhysRevResearch_6_043085 crossref_primary_10_1016_j_xinn_2023_100546 |
Cites_doi | 10.1103/PhysRevLett.121.197202 10.1007/s10915-018-0774-y 10.1126/science.1181263 10.1016/j.cnsns.2020.105255 10.1103/PhysRevLett.105.160405 10.1103/PhysRevLett.72.2671 10.1017/S0962492921000088 10.1007/s10915-018-0775-x 10.1103/PhysRevA.102.053307 10.1016/j.jcp.2019.06.028 10.1088/0305-4470/24/23/008 10.1017/S0962492919000047 10.1007/s10915-008-9207-7 10.1016/j.jcp.2012.03.006 10.1137/S1064827599365641 10.1515/9781400881802 10.1073/pnas.1524864113 10.1038/npjcompumats.2016.3 10.1103/PhysRevLett.117.028301 10.1016/j.cnsns.2017.05.024 10.1103/PhysRevLett.104.148301 10.1039/DF9582500019 10.1007/s00214-014-1510-9 10.1007/978-0-387-40065-5 10.1103/PhysRevLett.75.3969 10.1063/1.3609924 10.1007/s11425-020-1737-1 10.1103/PhysRevA.89.053606 10.1137/140972676 10.1137/110843149 10.1073/pnas.040580397 10.4310/CMS.2005.v3.n1.a5 10.1007/BF03025291 10.1103/PhysRevLett.124.090601 10.1063/1.1809574 10.1016/j.cpc.2015.07.001 10.3934/krm.2013.6.1 10.1146/annurev.physchem.040808.090412 10.1137/19M1253356 10.1007/s10915-017-0412-0 10.1126/science.269.5221.198 10.1016/j.jcp.2006.04.019 10.1063/1.480097 10.1103/PhysRevB.66.052301 10.1063/1.1323224 10.1063/1.3088532 10.1080/14786440409463107 10.4310/CMS.2009.v7.n4.a11 10.1088/0951-7715/24/6/008 10.1063/1.4921163 10.1007/978-1-4419-7400-6 10.1515/9781400830244 10.1103/PhysRevA.61.043602 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s10915-022-01838-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
ExternalDocumentID | 10_1007_s10915_022_01838_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12050002 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-a97a28bf19ffe91c8433bfd1ce6abc7cea209642add2753cd37a4c78fca8cdb53 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Sat Aug 23 14:46:11 EDT 2025 Tue Jul 01 00:51:45 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Fri Feb 21 02:45:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 65P99 Bose–Einstein condensation Solution landscape Thomson problem 37M05 Manifold optimization Energy landscape Saddle point 34K21 49K35 37N30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a97a28bf19ffe91c8433bfd1ce6abc7cea209642add2753cd37a4c78fca8cdb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9972-2051 |
PQID | 2918315771 |
PQPubID | 2043771 |
ParticipantIDs | proquest_journals_2918315771 crossref_primary_10_1007_s10915_022_01838_3 crossref_citationtrail_10_1007_s10915_022_01838_3 springer_journals_10_1007_s10915_022_01838_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220500 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CharalampidisEGKevrekidisPGFarrellPEComputing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuationCommun. Nonlinear Sci. Numer. Simul.201854482499367142910.1016/j.cnsns.2017.05.02407262023 ZhangJDuQConstrained shrinking dimer dynamics for saddle point search with constraintsJ. Comput. Phys.20122311447454758292796910.1016/j.jcp.2012.03.0061248.65069 MengGArkusNBrennerMPManoharanVNThe free-energy landscape of clusters of attractive hard spheresScience2010327596556056310.1126/science.1181263 AndersonMHEnsherJRMatthewsMRWiemanCECornellEAObservation of Bose-Einstein condensation in a dilute atomic vaporScience1995269522119820110.1126/science.269.5221.198 Machado-CharryEBélandLKCalisteDGenoveseLDeutschTMousseauNPochetPOptimized energy landscape exploration using the ab initio based activation-relaxation techniqueJ. Chem. Phys.2011135303410210.1063/1.3609924 WalesDJEnergy Landscapes2003Cambridge, EnglandCambridge University Press LiYZhouJA minimax method for finding multiple critical points and its applications to semilinear PDEsSIAM J. Sci. Comput.2001233840865186096710.1137/S10648275993656411002.35004 BaoWChernILLimFYEfficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensatesJ. Comput. Phys.20062192836854227495910.1016/j.jcp.2006.04.0191330.82031 EWRenWVanden-EijndenEString method for the study of rare eventsPhys. Rev. B200210.1103/PhysRevB.66.0523011050.60068 QuappWBofillJMLocating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamicsTheor. Chem. Acc.20141338151010.1007/s00214-014-1510-9 MallamaceFCorsaroCMallamaceDVasiSVasiCBaglioniPBuldyrevSVChenSHStanleyHEEnergy landscape in protein folding and unfoldingProc. Natl. Acad. Sci. U.S.A.2016113123159316310.1073/pnas.1524864113 AbsilPAMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008Princeton, NJPrinceton University Press10.1515/9781400830244 LiZJiBZhouJA local minimax method using virtual geometric objects: part I–for finding saddlesJ. Sci. Comput.2019781202225390288210.1007/s10915-018-0774-y1412.65194 YinJZhangLZhangPHigh-index optimization-based shrinking dimer method for finding high-index saddle pointsSIAM J. Sci. Comput.2019416A3576A3595403147310.1137/19M12533561429.49030 CharalampidisEGBoulléNFarrellPEKevrekidisPGBifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuationCommun. Nonlinear Sci. Numer. Simul.202087105255410196810.1016/j.cnsns.2020.1052551453.37070 BaoWCaiYMathematical theory and numerical methods for Bose-Einstein condensationKinet. Relat. Models2013611135300562410.3934/krm.2013.6.11266.82009 MehtaDChenJChenDZKusumaatmajaHWalesDJKinetic transition networks for the Thomson problem and Smale’s seventh problemPhys. Rev. Lett.2016117202830110.1103/PhysRevLett.117.028301 WuXWenZBaoWA regularized Newton method for computing ground states of Bose-Einstein condensatesJ. Sci. Comput.201773303329370485410.1007/s10915-017-0412-01433.82025 MehtaDChenTMorganJWRWalesDJExploring the potential energy landscape of the Thomson problem via Newton homotopiesJ. Chem. Phys.20151421919411310.1063/1.4921163 ErberTHockneyGMEquilibrium configurations of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} equal charges on a sphereJ. Phys. A Math. Gen.19912423L1369L137710.1088/0305-4470/24/23/008 BessarabPFUzdinVMJónssonHMethod for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilationComput. Phys. Commun.201519633534710.1016/j.cpc.2015.07.001 BoulléNCharalampidisEGFarrellPEKevrekidisPGDeflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equationPhys. Rev. A2020102053307419000310.1103/PhysRevA.102.053307 CancèsELegollFMarinicaMCMinoukadehKWillaimeFSome improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfacesJ. Chem. Phys.20091301111471110.1063/1.3088532 AltschulerELWilliamsTJRatnerERDowlaFWootenFMethod of constrained global optimizationPhys. Rev. Lett.199472172671267410.1103/PhysRevLett.72.2671 HenkelmanGJónssonHImproved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle pointsJ. Chem. Phys.2000113229978998510.1063/1.1323224 LawKJHKevrekidisPGTuckermanLSStable vortex-bright-soliton structures in two-component Bose-Einstein condensatesPhys. Rev. Lett.201010516040510.1103/PhysRevLett.105.160405 LawKJHNeelyTWKevrekidisPGAndersonBPBradleyASCarretero-GonzálezRDynamic and energetic stabilization of persistent currents in Bose-Einstein condensatesPhys. Rev. A20148905360610.1103/PhysRevA.89.053606 OlsenRAKroesGJHenkelmanGArnaldssonAJónssonHComparison of methods for finding saddle points without knowledge of the final statesJ. Chem. Phys.2004121209776979210.1063/1.1809574 Thomson, J.J.: XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. London, Edinburgh, Dublin Phil. Mag. J. Sci. 7(39), 237–265 (1904). https://doi.org/10.1080/14786440409463107 ZhangLDuQZhengZOptimization-based shrinking dimer method for finding transition statesSIAM J. Sci. Comput.2016381A528A544346132010.1137/1409726761332.37062 DavisKBMewesMOAndrewsMRvan DrutenNJDurfeeDSKurnDMKetterleWBose-Einstein condensation in a gas of sodium atomsPhys. Rev. Lett.199575223969397310.1103/PhysRevLett.75.3969 FrankFCI. Liquid crystals. On the theory of liquid crystalsDiscuss. Faraday Soc.195825192810.1039/DF9582500019 YinJWangYChenJZYZhangPZhangLConstruction of a pathway map on a complicated energy landscapePhys. Rev. Lett.20201249090601407512610.1103/PhysRevLett.124.090601 WangWZhangLZhangPModelling and computation of liquid crystalsActa Numerica202130765851429822310.1017/S0962492921000088 EWVanden-EijndenETransition-path theory and path-finding algorithms for the study of rare eventsAnnu. Rev. Phys. Chem.2010611391420265589810.1146/annurev.physchem.040808.090412 ChengXLinLEWZhangPShiACNucleation of ordered phases in block copolymersPhys. Rev. Lett.201010.1103/PhysRevLett.104.148301 BaoWWangHMarkowichPAGround, symmetric and central vortex states in rotating Bose-Einstein condensatesComm. Math. Sci.2005315788213282610.4310/CMS.2005.v3.n1.a5 LeesonDTGaiFRodriguezHMGregoretLMDyerRBProtein folding and unfolding on a complex energy landscapeProc. Natl. Acad. Sci. U.S.A.20009762527253210.1073/pnas.040580397 Li, Z., Zhou, J.: A local minimax method using virtual geometric objects: part II–for finding equality constrained saddles. J. Sci. Comput. 78(1), 226–245 (2019). https://doi.org/10.1007/s10915-018-0775-x MüllerGPBessarabPFVlasovSMLuxFKiselevNSBlügelSUzdinVMJónssonHDuplication, collapse, and escape of magnetic skyrmions revealed using a systematic saddle point search methodPhys. Rev. Lett.20181211919720210.1103/PhysRevLett.121.197202 EWZhouXThe gentlest ascent dynamicsNonlinearity201124618311842280230710.1088/0951-7715/24/6/0081237.37052 HanYCHuYCZhangPWZhangLTransition pathways between defect patterns in confined nematic liquid crystalsJ. Comput. Phys.2019396111397909910.1016/j.jcp.2019.06.0281452.82039 HenkelmanGJónssonHA dimer method for finding saddle points on high dimensional potential surfaces using only first derivativesJ. Chem. Phys.1999111157010702210.1063/1.480097 NocedalJWrightSJNumerical Optimization2006New YorkSpringer10.1007/978-0-387-40065-51104.65059 MilnorJMorse Theory1963Princeton, NJPrinceton University Press10.1515/9781400881802 Zhang, L., Chen, L.Q., Du, Q.: Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids. J. Sci. Comput. 37(1), 89–102 (2008). https://doi.org/10.1007/s10915-008-9207-7 SmaleSMathematical problems for the next centuryMath. Intell.1998202715163141310.1007/BF030252910947.01011 TuLWAn Introduction to Manifolds2011New YorkSpringer10.1007/978-1-4419-7400-61200.58001 ZhangJDuQShrinking dimer dynamics and its applications to saddle point searchSIAM J. Numer. Anal.201250418991921302220310.1137/1108431491254.37060 ZhangLRenWSamantaADuQRecent developments in computational modelling of nucleation in phase transformationsNPJ Comput. Mater.2016211910.1038/npjcompumats.2016.3 LinLLuJYingLNumerical methods for Kohn-Sham density functional theoryActa Numerica201928405539396350810.1017/S096249291900004707099162 LiebEHSeiringerRYngvasonJBosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functionalPhys. Rev. A20006104360210.1103/PhysRevA.61.043602 DuQZhangLA constrained string method and its numerical analysisCommun. Math. Sci.20097410391051260463010.4310/CMS.2009.v7.n4.a111186.65079 YinJYuBZhangLSearching the solution landscape by generalized high-index saddle dynamicsSci. China Math.20216418011816430954010.1007/s11425-020-1737-107418504 EL Altschuler (1838_CR2) 1994; 72 EG Charalampidis (1838_CR11) 2018; 54 PA Absil (1838_CR1) 2008 G Henkelman (1838_CR21) 1999; 111 G Meng (1838_CR35) 2010; 327 W E (1838_CR17) 2011; 24 Q Du (1838_CR14) 2009; 7 G Henkelman (1838_CR22) 2000; 113 J Milnor (1838_CR36) 1963 W Bao (1838_CR6) 2005; 3 MH Anderson (1838_CR3) 1995; 269 W Bao (1838_CR4) 2013; 6 D Mehta (1838_CR34) 2015; 142 Y Li (1838_CR26) 2001; 23 1838_CR28 L Lin (1838_CR30) 2019; 28 J Yin (1838_CR48) 2021; 64 E Machado-Charry (1838_CR31) 2011; 135 D Mehta (1838_CR33) 2016; 117 PF Bessarab (1838_CR7) 2015; 196 J Yin (1838_CR49) 2019; 41 KJH Law (1838_CR23) 2010; 105 LW Tu (1838_CR43) 2011 X Cheng (1838_CR12) 2010 EH Lieb (1838_CR29) 2000; 61 DT Leeson (1838_CR25) 2000; 97 F Mallamace (1838_CR32) 2016; 113 KB Davis (1838_CR13) 1995; 75 KJH Law (1838_CR24) 2014; 89 L Zhang (1838_CR54) 2016; 2 T Erber (1838_CR18) 1991; 24 DJ Wales (1838_CR44) 2003 J Yin (1838_CR47) 2020; 124 W E (1838_CR15) 2002 L Zhang (1838_CR53) 2016; 38 YC Han (1838_CR20) 2019; 396 J Zhang (1838_CR50) 2012; 231 J Zhang (1838_CR51) 2012; 50 FC Frank (1838_CR19) 1958; 25 W Quapp (1838_CR40) 2014; 133 Z Li (1838_CR27) 2019; 78 W Wang (1838_CR45) 2021; 30 W E (1838_CR16) 2010; 61 J Nocedal (1838_CR38) 2006 1838_CR42 W Bao (1838_CR5) 2006; 219 EG Charalampidis (1838_CR10) 2020; 87 N Boullé (1838_CR8) 2020; 102 S Smale (1838_CR41) 1998; 20 E Cancès (1838_CR9) 2009; 130 GP Müller (1838_CR37) 2018; 121 X Wu (1838_CR46) 2017; 73 RA Olsen (1838_CR39) 2004; 121 1838_CR52 |
References_xml | – reference: AndersonMHEnsherJRMatthewsMRWiemanCECornellEAObservation of Bose-Einstein condensation in a dilute atomic vaporScience1995269522119820110.1126/science.269.5221.198 – reference: DuQZhangLA constrained string method and its numerical analysisCommun. Math. Sci.20097410391051260463010.4310/CMS.2009.v7.n4.a111186.65079 – reference: EWRenWVanden-EijndenEString method for the study of rare eventsPhys. Rev. B200210.1103/PhysRevB.66.0523011050.60068 – reference: EWVanden-EijndenETransition-path theory and path-finding algorithms for the study of rare eventsAnnu. Rev. Phys. Chem.2010611391420265589810.1146/annurev.physchem.040808.090412 – reference: MehtaDChenTMorganJWRWalesDJExploring the potential energy landscape of the Thomson problem via Newton homotopiesJ. Chem. Phys.20151421919411310.1063/1.4921163 – reference: WangWZhangLZhangPModelling and computation of liquid crystalsActa Numerica202130765851429822310.1017/S0962492921000088 – reference: YinJZhangLZhangPHigh-index optimization-based shrinking dimer method for finding high-index saddle pointsSIAM J. Sci. Comput.2019416A3576A3595403147310.1137/19M12533561429.49030 – reference: LawKJHNeelyTWKevrekidisPGAndersonBPBradleyASCarretero-GonzálezRDynamic and energetic stabilization of persistent currents in Bose-Einstein condensatesPhys. Rev. A20148905360610.1103/PhysRevA.89.053606 – reference: OlsenRAKroesGJHenkelmanGArnaldssonAJónssonHComparison of methods for finding saddle points without knowledge of the final statesJ. Chem. Phys.2004121209776979210.1063/1.1809574 – reference: ErberTHockneyGMEquilibrium configurations of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} equal charges on a sphereJ. Phys. A Math. Gen.19912423L1369L137710.1088/0305-4470/24/23/008 – reference: HenkelmanGJónssonHA dimer method for finding saddle points on high dimensional potential surfaces using only first derivativesJ. Chem. Phys.1999111157010702210.1063/1.480097 – reference: NocedalJWrightSJNumerical Optimization2006New YorkSpringer10.1007/978-0-387-40065-51104.65059 – reference: MehtaDChenJChenDZKusumaatmajaHWalesDJKinetic transition networks for the Thomson problem and Smale’s seventh problemPhys. Rev. Lett.2016117202830110.1103/PhysRevLett.117.028301 – reference: ZhangLDuQZhengZOptimization-based shrinking dimer method for finding transition statesSIAM J. Sci. Comput.2016381A528A544346132010.1137/1409726761332.37062 – reference: ZhangLRenWSamantaADuQRecent developments in computational modelling of nucleation in phase transformationsNPJ Comput. Mater.2016211910.1038/npjcompumats.2016.3 – reference: LiYZhouJA minimax method for finding multiple critical points and its applications to semilinear PDEsSIAM J. Sci. Comput.2001233840865186096710.1137/S10648275993656411002.35004 – reference: Thomson, J.J.: XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. London, Edinburgh, Dublin Phil. Mag. J. Sci. 7(39), 237–265 (1904). https://doi.org/10.1080/14786440409463107 – reference: TuLWAn Introduction to Manifolds2011New YorkSpringer10.1007/978-1-4419-7400-61200.58001 – reference: CancèsELegollFMarinicaMCMinoukadehKWillaimeFSome improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfacesJ. Chem. Phys.20091301111471110.1063/1.3088532 – reference: YinJYuBZhangLSearching the solution landscape by generalized high-index saddle dynamicsSci. China Math.20216418011816430954010.1007/s11425-020-1737-107418504 – reference: MallamaceFCorsaroCMallamaceDVasiSVasiCBaglioniPBuldyrevSVChenSHStanleyHEEnergy landscape in protein folding and unfoldingProc. Natl. Acad. Sci. U.S.A.2016113123159316310.1073/pnas.1524864113 – reference: BessarabPFUzdinVMJónssonHMethod for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilationComput. Phys. Commun.201519633534710.1016/j.cpc.2015.07.001 – reference: CharalampidisEGKevrekidisPGFarrellPEComputing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuationCommun. Nonlinear Sci. Numer. Simul.201854482499367142910.1016/j.cnsns.2017.05.02407262023 – reference: AltschulerELWilliamsTJRatnerERDowlaFWootenFMethod of constrained global optimizationPhys. Rev. Lett.199472172671267410.1103/PhysRevLett.72.2671 – reference: LinLLuJYingLNumerical methods for Kohn-Sham density functional theoryActa Numerica201928405539396350810.1017/S096249291900004707099162 – reference: YinJWangYChenJZYZhangPZhangLConstruction of a pathway map on a complicated energy landscapePhys. Rev. Lett.20201249090601407512610.1103/PhysRevLett.124.090601 – reference: WuXWenZBaoWA regularized Newton method for computing ground states of Bose-Einstein condensatesJ. Sci. Comput.201773303329370485410.1007/s10915-017-0412-01433.82025 – reference: BaoWCaiYMathematical theory and numerical methods for Bose-Einstein condensationKinet. Relat. Models2013611135300562410.3934/krm.2013.6.11266.82009 – reference: EWZhouXThe gentlest ascent dynamicsNonlinearity201124618311842280230710.1088/0951-7715/24/6/0081237.37052 – reference: BaoWWangHMarkowichPAGround, symmetric and central vortex states in rotating Bose-Einstein condensatesComm. Math. Sci.2005315788213282610.4310/CMS.2005.v3.n1.a5 – reference: LeesonDTGaiFRodriguezHMGregoretLMDyerRBProtein folding and unfolding on a complex energy landscapeProc. Natl. Acad. Sci. U.S.A.20009762527253210.1073/pnas.040580397 – reference: MengGArkusNBrennerMPManoharanVNThe free-energy landscape of clusters of attractive hard spheresScience2010327596556056310.1126/science.1181263 – reference: WalesDJEnergy Landscapes2003Cambridge, EnglandCambridge University Press – reference: LiZJiBZhouJA local minimax method using virtual geometric objects: part I–for finding saddlesJ. Sci. Comput.2019781202225390288210.1007/s10915-018-0774-y1412.65194 – reference: Zhang, L., Chen, L.Q., Du, Q.: Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids. J. Sci. Comput. 37(1), 89–102 (2008). https://doi.org/10.1007/s10915-008-9207-7 – reference: CharalampidisEGBoulléNFarrellPEKevrekidisPGBifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuationCommun. Nonlinear Sci. Numer. Simul.202087105255410196810.1016/j.cnsns.2020.1052551453.37070 – reference: SmaleSMathematical problems for the next centuryMath. Intell.1998202715163141310.1007/BF030252910947.01011 – reference: ZhangJDuQConstrained shrinking dimer dynamics for saddle point search with constraintsJ. Comput. Phys.20122311447454758292796910.1016/j.jcp.2012.03.0061248.65069 – reference: MüllerGPBessarabPFVlasovSMLuxFKiselevNSBlügelSUzdinVMJónssonHDuplication, collapse, and escape of magnetic skyrmions revealed using a systematic saddle point search methodPhys. Rev. Lett.20181211919720210.1103/PhysRevLett.121.197202 – reference: AbsilPAMahonyRSepulchreROptimization Algorithms on Matrix Manifolds2008Princeton, NJPrinceton University Press10.1515/9781400830244 – reference: BoulléNCharalampidisEGFarrellPEKevrekidisPGDeflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equationPhys. Rev. A2020102053307419000310.1103/PhysRevA.102.053307 – reference: ChengXLinLEWZhangPShiACNucleation of ordered phases in block copolymersPhys. Rev. Lett.201010.1103/PhysRevLett.104.148301 – reference: FrankFCI. Liquid crystals. On the theory of liquid crystalsDiscuss. Faraday Soc.195825192810.1039/DF9582500019 – reference: LawKJHKevrekidisPGTuckermanLSStable vortex-bright-soliton structures in two-component Bose-Einstein condensatesPhys. Rev. Lett.201010516040510.1103/PhysRevLett.105.160405 – reference: QuappWBofillJMLocating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamicsTheor. Chem. Acc.20141338151010.1007/s00214-014-1510-9 – reference: BaoWChernILLimFYEfficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensatesJ. Comput. Phys.20062192836854227495910.1016/j.jcp.2006.04.0191330.82031 – reference: Machado-CharryEBélandLKCalisteDGenoveseLDeutschTMousseauNPochetPOptimized energy landscape exploration using the ab initio based activation-relaxation techniqueJ. Chem. Phys.2011135303410210.1063/1.3609924 – reference: DavisKBMewesMOAndrewsMRvan DrutenNJDurfeeDSKurnDMKetterleWBose-Einstein condensation in a gas of sodium atomsPhys. Rev. Lett.199575223969397310.1103/PhysRevLett.75.3969 – reference: HenkelmanGJónssonHImproved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle pointsJ. Chem. Phys.2000113229978998510.1063/1.1323224 – reference: ZhangJDuQShrinking dimer dynamics and its applications to saddle point searchSIAM J. Numer. Anal.201250418991921302220310.1137/1108431491254.37060 – reference: LiebEHSeiringerRYngvasonJBosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functionalPhys. Rev. A20006104360210.1103/PhysRevA.61.043602 – reference: Li, Z., Zhou, J.: A local minimax method using virtual geometric objects: part II–for finding equality constrained saddles. J. Sci. Comput. 78(1), 226–245 (2019). https://doi.org/10.1007/s10915-018-0775-x – reference: MilnorJMorse Theory1963Princeton, NJPrinceton University Press10.1515/9781400881802 – reference: HanYCHuYCZhangPWZhangLTransition pathways between defect patterns in confined nematic liquid crystalsJ. Comput. Phys.2019396111397909910.1016/j.jcp.2019.06.0281452.82039 – volume: 121 start-page: 197202 issue: 19 year: 2018 ident: 1838_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.197202 – volume: 78 start-page: 202 issue: 1 year: 2019 ident: 1838_CR27 publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0774-y – volume: 327 start-page: 560 issue: 5965 year: 2010 ident: 1838_CR35 publication-title: Science doi: 10.1126/science.1181263 – volume: 87 start-page: 105255 year: 2020 ident: 1838_CR10 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105255 – volume: 105 start-page: 160405 year: 2010 ident: 1838_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.160405 – volume: 72 start-page: 2671 issue: 17 year: 1994 ident: 1838_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2671 – volume: 30 start-page: 765 year: 2021 ident: 1838_CR45 publication-title: Acta Numerica doi: 10.1017/S0962492921000088 – ident: 1838_CR28 doi: 10.1007/s10915-018-0775-x – volume: 102 start-page: 053307 year: 2020 ident: 1838_CR8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.053307 – volume: 396 start-page: 1 year: 2019 ident: 1838_CR20 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.06.028 – volume: 24 start-page: L1369 issue: 23 year: 1991 ident: 1838_CR18 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/24/23/008 – volume: 28 start-page: 405 year: 2019 ident: 1838_CR30 publication-title: Acta Numerica doi: 10.1017/S0962492919000047 – ident: 1838_CR52 doi: 10.1007/s10915-008-9207-7 – volume: 231 start-page: 4745 issue: 14 year: 2012 ident: 1838_CR50 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.03.006 – volume: 23 start-page: 840 issue: 3 year: 2001 ident: 1838_CR26 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827599365641 – volume-title: Morse Theory year: 1963 ident: 1838_CR36 doi: 10.1515/9781400881802 – volume: 113 start-page: 3159 issue: 12 year: 2016 ident: 1838_CR32 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1524864113 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 1838_CR54 publication-title: NPJ Comput. Mater. doi: 10.1038/npjcompumats.2016.3 – volume-title: Energy Landscapes year: 2003 ident: 1838_CR44 – volume: 117 start-page: 028301 issue: 2 year: 2016 ident: 1838_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.028301 – volume: 54 start-page: 482 year: 2018 ident: 1838_CR11 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.05.024 – year: 2010 ident: 1838_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.148301 – volume: 25 start-page: 19 year: 1958 ident: 1838_CR19 publication-title: Discuss. Faraday Soc. doi: 10.1039/DF9582500019 – volume: 133 start-page: 1510 issue: 8 year: 2014 ident: 1838_CR40 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-014-1510-9 – volume-title: Numerical Optimization year: 2006 ident: 1838_CR38 doi: 10.1007/978-0-387-40065-5 – volume: 75 start-page: 3969 issue: 22 year: 1995 ident: 1838_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.3969 – volume: 135 start-page: 034102 issue: 3 year: 2011 ident: 1838_CR31 publication-title: J. Chem. Phys. doi: 10.1063/1.3609924 – volume: 64 start-page: 1801 year: 2021 ident: 1838_CR48 publication-title: Sci. China Math. doi: 10.1007/s11425-020-1737-1 – volume: 89 start-page: 053606 year: 2014 ident: 1838_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.053606 – volume: 38 start-page: A528 issue: 1 year: 2016 ident: 1838_CR53 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140972676 – volume: 50 start-page: 1899 issue: 4 year: 2012 ident: 1838_CR51 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110843149 – volume: 97 start-page: 2527 issue: 6 year: 2000 ident: 1838_CR25 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.040580397 – volume: 3 start-page: 57 issue: 1 year: 2005 ident: 1838_CR6 publication-title: Comm. Math. Sci. doi: 10.4310/CMS.2005.v3.n1.a5 – volume: 20 start-page: 7 issue: 2 year: 1998 ident: 1838_CR41 publication-title: Math. Intell. doi: 10.1007/BF03025291 – volume: 124 start-page: 090601 issue: 9 year: 2020 ident: 1838_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.090601 – volume: 121 start-page: 9776 issue: 20 year: 2004 ident: 1838_CR39 publication-title: J. Chem. Phys. doi: 10.1063/1.1809574 – volume: 196 start-page: 335 year: 2015 ident: 1838_CR7 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.07.001 – volume: 6 start-page: 1 issue: 1 year: 2013 ident: 1838_CR4 publication-title: Kinet. Relat. Models doi: 10.3934/krm.2013.6.1 – volume: 61 start-page: 391 issue: 1 year: 2010 ident: 1838_CR16 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.040808.090412 – volume: 41 start-page: A3576 issue: 6 year: 2019 ident: 1838_CR49 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1253356 – volume: 73 start-page: 303 year: 2017 ident: 1838_CR46 publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0412-0 – volume: 269 start-page: 198 issue: 5221 year: 1995 ident: 1838_CR3 publication-title: Science doi: 10.1126/science.269.5221.198 – volume: 219 start-page: 836 issue: 2 year: 2006 ident: 1838_CR5 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.04.019 – volume: 111 start-page: 7010 issue: 15 year: 1999 ident: 1838_CR21 publication-title: J. Chem. Phys. doi: 10.1063/1.480097 – year: 2002 ident: 1838_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.052301 – volume: 113 start-page: 9978 issue: 22 year: 2000 ident: 1838_CR22 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 130 start-page: 114711 issue: 11 year: 2009 ident: 1838_CR9 publication-title: J. Chem. Phys. doi: 10.1063/1.3088532 – ident: 1838_CR42 doi: 10.1080/14786440409463107 – volume: 7 start-page: 1039 issue: 4 year: 2009 ident: 1838_CR14 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n4.a11 – volume: 24 start-page: 1831 issue: 6 year: 2011 ident: 1838_CR17 publication-title: Nonlinearity doi: 10.1088/0951-7715/24/6/008 – volume: 142 start-page: 194113 issue: 19 year: 2015 ident: 1838_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.4921163 – volume-title: An Introduction to Manifolds year: 2011 ident: 1838_CR43 doi: 10.1007/978-1-4419-7400-6 – volume-title: Optimization Algorithms on Matrix Manifolds year: 2008 ident: 1838_CR1 doi: 10.1515/9781400830244 – volume: 61 start-page: 043602 year: 2000 ident: 1838_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.043602 |
SSID | ssj0009892 |
Score | 2.4568987 |
Snippet | We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-
k
saddle points of an energy functional subject to equality... We propose a constrained high-index saddle dynamics (CHiSD) method to search for index-k saddle points of an energy functional subject to equality constraints.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 62 |
SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Constraints Eigenvalues Eigenvectors Energy Euclidean space Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Minimax technique Numerical analysis Riemann manifold Saddle points Search algorithms Theoretical |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVgQ5SEKBXlgAEFEHSe1MyEerQqCCgGVkBgivzKhtpAw8O-5S51GINE1D8u6h_35fPcdIUeGMWM1VwHXDA4oWVcHEhlodaKttVpEymHt8MOoNxxHd6_xqw-45T6tsloTy4XaTg3GyM_DBIyPxUKwi9lHgF2j8HbVt9BYJU1YgqVskOZVf_T4VNPuyrItMrhSHABwjnzZjC-eSxhWJ2NqggS357-3phpv_rkiLXeewQZZ95CRXs513CIrbrJJWt4pc3rsmaNPtsgbtt8smz44SzGDI7hFMkT6rDAKQW_m3edzCkCVAvCjVUyM3mPBL6ZCUYzL0v681PKbLsYr8m0yHvRfroeB754QGHCrIlCJUKHUGUuyzCXMyIhznVlmXE9pI4xTIRxfohBmEMKZxVguVGSEzIySoL6Y75DGZDpxu4RKmQnDuypUEgAMN6qrRWJjBw9tBJiwTVgluNR4anGc3HtakyKjsFMQdloKO-Vtcrr4ZzYn1lj6dafSR-qdLE9rk2iTs0pH9ev_R9tbPto-WQtLs8C0xg5pFJ9f7gCgR6EPvX39AMxd1eI priority: 102 providerName: ProQuest |
Title | Constrained High-Index Saddle Dynamics for the Solution Landscape with Equality Constraints |
URI | https://link.springer.com/article/10.1007/s10915-022-01838-3 https://www.proquest.com/docview/2918315771 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDYgPEYEw5cABBpaVpl_Q4YA8emxAwaYhDlVdPaCA6Dvx7nK7dAAESp0pNakV23NiO_RngQFOqjWLSY4qig5K0lCccAq2KlDFG8UBaVzs8HLUH4-ByEk7yorC0yHYvriSzP_WnYreIumpil0ogUE1ZCSoh-u4ukWvsd5ZQuyJrhYzqE3poLAd5qczPNL4eR0sb89u1aHba9DZgPTcTSWcu1yqs2GkN1oYLjNW0BtVcLVNymGNHH23Co2vAmbV9sIa4HA7vwsEhkjvp4hDkfN5_PiVoqhKkRYqoGLl2Jb8uGYq4yCzpzost38mC3izdgnGve3828PL-CZ5GxZp5MuLSFyqhUZLYiGoRMKYSQ7VtS6W5ttJHBybwcQU-ei3aMC4DzUWipUABhmwbytPnqd0BIkTCNWtJXwo0YZiWLcUjE1p8aQK0CutACzbGOgcXd4t7ipewyI71MbI-zlgfszocL755mUNr_Dm7UUgnztUsjf0IB2nIOa3DSSGx5fDv1Hb_N30PVv1s07hExwaUZ69vdh-NkZlqQkn0-k2odPoPV118nnZHN7fNbEd-AOBU2gE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1F7QEuiBQQKSndA0ggsJrdtbPrQ4WqtiEhaS-0UqUezH75hNKCjar8qf7GzvgjFkj0lqvtXdmzb8dvd2fmAbxznDtvpYmk5bhAyUc20lSB1qbWe29VbALlDp-dj6eX8ber5KoH920uDIVVtj6xctT-xtEe-YFIEXw8UYp_uf0VkWoUna62Eho1LOZhdYdLtuJwdoLj-16IyenF8TRqVAUih3ArI5MqI7TNeZrnIeVOx1La3HMXxsY65YIRSOtjgRNfIJd3XioTO6VzZzR-FqlEoMvfxlYpLfb05GtX5FdXIsw4cZMIaXrcJOk0qXopp1xoCoTQ6GTk3z_Cjt3-cyBb_ecmz-FZQ1DZUY2oPvTCcgf6jQso2IemTvXHF3BNYp-VxETwjOJFohmVXmTfDe15sJNa675gSIsZ0kzW7sCxBaUXU-AVo11gdlondq7Yur-yeAmXG7HqK9ha3izDa2Ba58rJkRFGI12SzoysSn0S8KKPkYEOgLeGy1xTyJxe7mfWlWAmY2do7KwydiYH8Gnd5rYu4_Ho08N2PLJmShdZB8ABfG7HqLv9_952H-9tH55ML84W2WJ2Pn8DT0UFEQqoHMJW-ftP2EPSU9q3FdIY_Ng0tB8Ayj8UPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BdGDuD5wddUcPCha3DStSY-L67LrC0EXBA8lr56kiq0H_72TPrarqOC1SYcwDzJJ5vsG4EBTqo1i0mOK4gEl6SlPOAZaFSljjOKBtA47fHN7NpoEl4_h4wyKv6h2r58kS0yDY2lK89NXk5zOAN8i6pDFrqxAYMiyeVgIHBoYPXri9xvaXVG0RcZQCj1MnIMKNvOzjK9bU5NvfnsiLXae4SqsVCkj6Zc2bsOcTddg-WbKt5qtQbsK0YwcVjzSR-vw5JpxFi0grCGunsMbO2pEci_dnQQZlL3oM4JpK0FZpL4hI9cO_usKo4i7pSUXJfDyg0zl5dkGTIYXD-cjr-ql4GkMstyTEZe-UAmNksRGVIuAMZUYqu2ZVJprK308zAQ-rsDHE4w2jMtAc5FoKdCYIduEVvqS2i0gQiRcs570pcB0hmnZUzwyocWPJsAMsQO0VmOsK6Jxt7jnuKFIdqqPUfVxofqYdeB4-s9rSbPx5-xubZ24Crks9iMcpCHntAMntcWa4d-lbf9v-j4s3g2G8fX49moHlvzCf1z9Yxda-du73cUcJVd7hRt-Aila3RM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+High-Index+Saddle+Dynamics+for+the+Solution+Landscape+with+Equality+Constraints&rft.jtitle=Journal+of+scientific+computing&rft.au=Yin%2C+Jianyuan&rft.au=Huang%2C+Zhen&rft.au=Zhang%2C+Lei&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=91&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-022-01838-3&rft.externalDocID=10_1007_s10915_022_01838_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |