Numerical simulation on the heat sink with interrupted microchannels regarding of heat transfer enhancement

Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered t...

Full description

Saved in:
Bibliographic Details
Published inHeat and mass transfer Vol. 60; no. 7; pp. 1195 - 1209
Main Authors Li, Qing-wen, Shang, Xue-shuo, Cao, Qun, Cui, Zheng, Shao, Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered types are simulated to enhance the performance of the heat sink. The results show that the staggered type microchannels exhibit the lowest thermal resistance but the highest frictional resistance coefficient while the continuous microchannels have the opposite performance. However, the effect of heat transfer enhancement is decreasing with the increment of the interruption spacing for both of the in-lined and staggered interrupted microchannels as the overall heat transfer area is decreasing. Using the performance evaluation criterion (PEC) to evaluate the global heat transfer and flow characteristics of the heat sinks shows that the PEC of the in-lined interrupted microchannel is approximately 1.10 times higher, while the PEC of the staggered type is about 1.23 times higher compared to the continuous microchannel. This improvement is due to the interruption of the boundary layer by the cavity and the flow doping. Besides, when the Reynolds number is lower than 150, the temperature uniformity increases to roughly 1.14 times its original value. It provides a good guidance for the microchannel sink to obtain the better heat dissipation efficiency.
AbstractList Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered types are simulated to enhance the performance of the heat sink. The results show that the staggered type microchannels exhibit the lowest thermal resistance but the highest frictional resistance coefficient while the continuous microchannels have the opposite performance. However, the effect of heat transfer enhancement is decreasing with the increment of the interruption spacing for both of the in-lined and staggered interrupted microchannels as the overall heat transfer area is decreasing. Using the performance evaluation criterion (PEC) to evaluate the global heat transfer and flow characteristics of the heat sinks shows that the PEC of the in-lined interrupted microchannel is approximately 1.10 times higher, while the PEC of the staggered type is about 1.23 times higher compared to the continuous microchannel. This improvement is due to the interruption of the boundary layer by the cavity and the flow doping. Besides, when the Reynolds number is lower than 150, the temperature uniformity increases to roughly 1.14 times its original value. It provides a good guidance for the microchannel sink to obtain the better heat dissipation efficiency.
Author Cui, Zheng
Shao, Wei
Li, Qing-wen
Cao, Qun
Shang, Xue-shuo
Author_xml – sequence: 1
  givenname: Qing-wen
  surname: Li
  fullname: Li, Qing-wen
  organization: Institute of Thermal Science and Technology, Shandong University
– sequence: 2
  givenname: Xue-shuo
  surname: Shang
  fullname: Shang, Xue-shuo
  organization: Institute of Advanced Technology, Shandong University
– sequence: 3
  givenname: Qun
  surname: Cao
  fullname: Cao, Qun
  organization: Shandong Institute of Advanced Technology
– sequence: 4
  givenname: Zheng
  surname: Cui
  fullname: Cui, Zheng
  organization: Shandong Institute of Advanced Technology
– sequence: 5
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  email: shao@sdu.edu.cn
  organization: Shandong Institute of Advanced Technology
BookMark eNp9kE1LAzEQhoMoWKt_wFPAczSfm92jiF8geuk9xHS2Td3N1iSL-u-NXUHwUAiEDM-TmXlP0GEYAiB0zuglo1RfJUq5YIRySaiQtSSfB2jGpOCEsZodohltpCZaMnaMTlLaFLySXMzQ2_PYQ_TOdjj5fuxs9kPA5eQ14DXYXMrhDX_4vMY-ZIhx3GZY4t67OLi1DQG6hCOsbFz6sMJDO1k52pBaiBhCgRz0EPIpOmptl-Ds956jxd3t4uaBPL3cP95cPxEnWJOJbaq2slw01lKnRKtflbbMalVxLTkDkLZWrla1dcKVl1o2QoGuAajmSos5upi-3cbhfYSUzWYYYygdjaBaNRWnlBaqnqiyR0oRWuN83m1fRvedYdT8JGumZE1J1uySNZ9F5f_UbfS9jV_7JTFJqcBhBfFvqj3WNzXnkBo
CitedBy_id crossref_primary_10_1016_j_csite_2024_105336
Cites_doi 10.1016/j.ijheatmasstransfer.2016.04.091
10.1016/j.ijheatmasstransfer.2008.05.003
10.1016/0894-1777(88)90043-X
10.1016/j.aej.2023.02.016
10.1016/j.ijthermalsci.2022.107714
10.1016/j.csite.2023.103735
10.1016/j.applthermaleng.2012.10.037
10.1016/j.applthermaleng.2021.117738
10.1016/j.ijthermalsci.2022.107926
10.1016/j.ijheatmasstransfer.2004.12.008
10.1007/s11012-022-01534-4
10.1016/j.asej.2023.102417
10.1016/j.ijthermalsci.2009.02.015
10.1016/j.ijthermalsci.2022.107723
10.1016/j.enconman.2014.06.038
10.1016/j.ijthermalsci.2023.108211
10.1016/j.applthermaleng.2024.122365
10.1016/j.ijthermalsci.2020.106721
10.1016/j.ijthermalsci.2020.106609
10.1016/j.ijheatmasstransfer.2019.07.031
10.1016/j.est.2023.107548
10.1016/j.applthermaleng.2016.07.039
10.1016/j.icheatmasstransfer.2021.105360
10.1109/EDL.1981.25367
10.1109/TCAPT.2008.2005783
10.1016/j.ijthermalsci.2019.105975
10.1016/j.ijthermalsci.2022.108080
10.1016/j.cep.2020.108246
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00231-024-03484-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-1181
EndPage 1209
ExternalDocumentID 10_1007_s00231_024_03484_x
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: No. ZR2021QE033
  funderid: http://dx.doi.org/10.13039/501100007129
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-a96f6a239aa0c53f7b57a1a75627421ee4a85c858ac3cee45d935e78ee072573
IEDL.DBID U2A
ISSN 0947-7411
IngestDate Fri Jul 25 10:54:08 EDT 2025
Tue Jul 01 04:30:43 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a96f6a239aa0c53f7b57a1a75627421ee4a85c858ac3cee45d935e78ee072573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3075962000
PQPubID 2043585
PageCount 15
ParticipantIDs proquest_journals_3075962000
crossref_citationtrail_10_1007_s00231_024_03484_x
crossref_primary_10_1007_s00231_024_03484_x
springer_journals_10_1007_s00231_024_03484_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Wärme- und Stoffübertragung
PublicationTitle Heat and mass transfer
PublicationTitleAbbrev Heat Mass Transfer
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SHEN, XIE, WANG (CR5) 2019; 145
LI, ZHANG, YU, J-J (CR30) 2024; 241
Xu, GAN Y H, ZHANG D C (CR15) 2005; 48
BHANDARI, RAWAT K S, PRAJAPATI Y K (CR7) 2023; 66
Ma D D, XIA G D, LI Y F (CR16) 2016; 101
CR13
TIAN, JIAO, HAN (CR22) 2023; 188
CR11
BHANDARI, RAWAT K S, PRAJAPATI Y K (CR28) 2024; 15
SHANG X-S, LI Q-W (CR27) 2023; 184
BHANDARI, PRAJAPATI (CR18) 2022; 179
HAJMOHAMMADI M R, BAHRAMI, AHMADIAN-ELMI (CR4) 2021; 126
BHANDARI, PRAJAPATI Y K (CR19) 2023; 58
BHANDARI, PADALIA (CR20) 2023; 69
JI, YANG, ZHANG (CR6) 2022; 179
CR2
LEE (CR1) 2009; 32
GöNüL, OKBAZ, KAYACI (CR9) 2022; 201
ZHU, XIA, CHEN (CR10) 2021; 161
(CR24) 2014; 86
CHAI, XIA, ZHOU (CR25) 2013; 51
(CR29) 1988; 1
WANG, CHEN (CR21) 2016; 107
TUCKERMAN D B, PEASE R F, W (CR3) 1981; 2
VASILEV M P, ABIEV R S (CR23) 2019; 141
XU, SONG, ZHANG (CR14) 2008; 51
FOONG A J L, RAMESH (CR26) 2009; 48
WANG S-L, YANG Y-R (CR8) 2023; 185
DUAN X-Y, HUANG B-H, ZHU, Y-X (CR12) 2023; 52
BHANDARI (CR17) 2021; 159
LEELA VINODHAN V, RAJAN K S (3484_CR24) 2014; 86
Ma D D (3484_CR16) 2016; 101
P BHANDARI (3484_CR28) 2024; 15
L LI (3484_CR30) 2024; 241
KUMARR VASILEV M P, ABIEV R S (3484_CR23) 2019; 141
TUCKERMAN D B (3484_CR3) 1981; 2
Y TIAN (3484_CR22) 2023; 188
JL Xu (3484_CR15) 2005; 48
P BHANDARI (3484_CR19) 2023; 58
J LEE (3484_CR1) 2009; 32
cr-split#-3484_CR13.1
cr-split#-3484_CR13.2
X JI (3484_CR6) 2022; 179
AND WANG S-L (3484_CR8) 2023; 185
P BHANDARI (3484_CR17) 2021; 159
P BHANDARI (3484_CR7) 2023; 66
A GöNüL (3484_CR9) 2022; 201
J XU (3484_CR14) 2008; 51
M HAJMOHAMMADI M R, BAHRAMI (3484_CR4) 2021; 126
3484_CR11
DUAN X-Y (3484_CR12) 2023; 52
CAOQ SHANG X-S, LI Q-W (3484_CR27) 2023; 184
L CHAI (3484_CR25) 2013; 51
H WANG (3484_CR21) 2016; 107
MOFFAT R J (3484_CR29) 1988; 1
P BHANDARI (3484_CR20) 2023; 69
cr-split#-3484_CR2.1
cr-split#-3484_CR2.2
N FOONG A J L, RAMESH (3484_CR26) 2009; 48
Q ZHU (3484_CR10) 2021; 161
P BHANDARI (3484_CR18) 2022; 179
H SHEN (3484_CR5) 2019; 145
References_xml – volume: 101
  start-page: 427
  year: 2016
  end-page: 435
  ident: CR16
  article-title: Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zigzag grooves in sidewall [J]
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.04.091
– volume: 51
  start-page: 5906
  issue: 25
  year: 2008
  end-page: 5917
  ident: CR14
  article-title: Numerical simulations of interrupted and conventional microchannel heat sinks [J]
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.05.003
– volume: 1
  start-page: 3
  issue: 1
  year: 1988
  end-page: 17
  ident: CR29
  article-title: Describing the uncertainties in experimental results [J]
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/0894-1777(88)90043-X
– volume: 69
  start-page: 457
  year: 2023
  end-page: 468
  ident: CR20
  article-title: Thermo-hydraulic investigation of open micro prism pin fin heat sink having varying prism sides [J]
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2023.02.016
– volume: 179
  start-page: 107714
  year: 2022
  ident: CR18
  article-title: Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107714
– ident: CR2
– volume: 52
  start-page: 103735
  year: 2023
  ident: CR12
  article-title: Cavitating flows in microchannel with rough wall using a modified microscale cavitation model [J]
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.103735
– volume: 51
  start-page: 880
  issue: 1
  year: 2013
  end-page: 889
  ident: CR25
  article-title: Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers [J]
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.10.037
– volume: 201
  start-page: 117738
  year: 2022
  ident: CR9
  article-title: Flow optimization in a microchannel with vortex generators using genetic algorithm [J]
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117738
– volume: 184
  start-page: 107926
  year: 2023
  ident: CR27
  article-title: Mathematical modeling and multi-objective optimization on the rectangular micro-channel heat sink [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107926
– volume: 48
  start-page: 1662
  issue: 9
  year: 2005
  end-page: 1674
  ident: CR15
  article-title: Microscale heat transfer enhancement using thermal boundary layer redeveloping concept [J]
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.12.008
– volume: 58
  start-page: 2113
  issue: 11
  year: 2023
  end-page: 2129
  ident: CR19
  article-title: Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink [J]
  publication-title: Meccanica
  doi: 10.1007/s11012-022-01534-4
– volume: 15
  start-page: 102417
  issue: 2
  year: 2024
  ident: CR28
  article-title: A review on design alteration in microchannel heat sink for augmented thermohydraulic performance [J]
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2023.102417
– volume: 48
  start-page: 1908
  issue: 10
  year: 2009
  end-page: 1913
  ident: CR26
  article-title: CHANDRATILLEKE T T. laminar convective heat transfer in a microchannel with internal longitudinal fins [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2009.02.015
– volume: 179
  start-page: 107723
  year: 2022
  ident: CR6
  article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107723
– volume: 86
  start-page: 595
  year: 2014
  end-page: 604
  ident: CR24
  article-title: Computational analysis of new microchannel heat sink configurations [J]
  publication-title: Energy Conv Manag
  doi: 10.1016/j.enconman.2014.06.038
– volume: 188
  start-page: 108211
  year: 2023
  ident: CR22
  article-title: Study of two-phase flow characteristics in the interrupted microchannels [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2023.108211
– volume: 241
  start-page: 122365
  year: 2024
  ident: CR30
  article-title: A novel microchannel heat sink with staggered inlet and outlet to improve base surface temperature uniformity [J]
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2024.122365
– volume: 161
  start-page: 106721
  year: 2021
  ident: CR10
  article-title: Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106721
– volume: 159
  start-page: 106609
  year: 2021
  ident: CR17
  article-title: Thermal performance of open microchannel heat sink with variable pin fin height [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106609
– volume: 141
  start-page: 845
  year: 2019
  end-page: 854
  ident: CR23
  article-title: Effect of microchannel heat sink configuration on the thermal performance and pumping power [J]
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.07.031
– ident: CR13
– ident: CR11
– volume: 66
  start-page: 107548
  year: 2023
  ident: CR7
  article-title: Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review [J]
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107548
– volume: 107
  start-page: 870
  year: 2016
  end-page: 879
  ident: CR21
  article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks [J]
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.07.039
– volume: 126
  start-page: 105360
  year: 2021
  ident: CR4
  article-title: Thermal performance improvement of microchannel heat sinks by utilizing variable cross-section microchannels filled with porous media [J]
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105360
– volume: 2
  start-page: 126
  issue: 5
  year: 1981
  end-page: 129
  ident: CR3
  article-title: High-performance heat sinking for VLSI [J]
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/EDL.1981.25367
– volume: 32
  start-page: 453
  issue: 2
  year: 2009
  end-page: 465
  ident: CR1
  article-title: Low-temperature two-phase microchannel cooling for high-heat-flux Thermal Management of Defense Electronics [J]
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2008.2005783
– volume: 145
  start-page: 105975
  year: 2019
  ident: CR5
  article-title: Heat transfer and thermodynamic analysis by introducing multiple alternation structures into double-layer microchannel heat sinks [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2019.105975
– volume: 185
  start-page: 108080
  year: 2023
  ident: CR8
  article-title: Heat transfer and flow characteristics in symmetric and parallel wavy microchannel heat sinks with porous ribs [J]
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.108080
– ident: #cr-split#-3484_CR2.1
– volume: 66
  start-page: 107548
  year: 2023
  ident: 3484_CR7
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107548
– volume: 48
  start-page: 1662
  issue: 9
  year: 2005
  ident: 3484_CR15
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.12.008
– ident: #cr-split#-3484_CR13.2
– volume: 15
  start-page: 102417
  issue: 2
  year: 2024
  ident: 3484_CR28
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2023.102417
– volume: 32
  start-page: 453
  issue: 2
  year: 2009
  ident: 3484_CR1
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2008.2005783
– volume: 201
  start-page: 117738
  year: 2022
  ident: 3484_CR9
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117738
– volume: 141
  start-page: 845
  year: 2019
  ident: 3484_CR23
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.07.031
– volume: 126
  start-page: 105360
  year: 2021
  ident: 3484_CR4
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105360
– volume: 145
  start-page: 105975
  year: 2019
  ident: 3484_CR5
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2019.105975
– volume: 51
  start-page: 5906
  issue: 25
  year: 2008
  ident: 3484_CR14
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.05.003
– volume: 179
  start-page: 107723
  year: 2022
  ident: 3484_CR6
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107723
– volume: 107
  start-page: 870
  year: 2016
  ident: 3484_CR21
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.07.039
– ident: #cr-split#-3484_CR13.1
– volume: 179
  start-page: 107714
  year: 2022
  ident: 3484_CR18
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107714
– ident: 3484_CR11
  doi: 10.1016/j.cep.2020.108246
– volume: 184
  start-page: 107926
  year: 2023
  ident: 3484_CR27
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107926
– volume: 101
  start-page: 427
  year: 2016
  ident: 3484_CR16
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.04.091
– volume: 161
  start-page: 106721
  year: 2021
  ident: 3484_CR10
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106721
– volume: 86
  start-page: 595
  year: 2014
  ident: 3484_CR24
  publication-title: Energy Conv Manag
  doi: 10.1016/j.enconman.2014.06.038
– volume: 188
  start-page: 108211
  year: 2023
  ident: 3484_CR22
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2023.108211
– ident: #cr-split#-3484_CR2.2
– volume: 52
  start-page: 103735
  year: 2023
  ident: 3484_CR12
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.103735
– volume: 159
  start-page: 106609
  year: 2021
  ident: 3484_CR17
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106609
– volume: 2
  start-page: 126
  issue: 5
  year: 1981
  ident: 3484_CR3
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/EDL.1981.25367
– volume: 58
  start-page: 2113
  issue: 11
  year: 2023
  ident: 3484_CR19
  publication-title: Meccanica
  doi: 10.1007/s11012-022-01534-4
– volume: 48
  start-page: 1908
  issue: 10
  year: 2009
  ident: 3484_CR26
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2009.02.015
– volume: 241
  start-page: 122365
  year: 2024
  ident: 3484_CR30
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2024.122365
– volume: 69
  start-page: 457
  year: 2023
  ident: 3484_CR20
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2023.02.016
– volume: 1
  start-page: 3
  issue: 1
  year: 1988
  ident: 3484_CR29
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/0894-1777(88)90043-X
– volume: 185
  start-page: 108080
  year: 2023
  ident: 3484_CR8
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.108080
– volume: 51
  start-page: 880
  issue: 1
  year: 2013
  ident: 3484_CR25
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.10.037
SSID ssj0026423
Score 2.3873615
Snippet Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1195
SubjectTerms Boundary layers
Dissipation
Electronic equipment
Engineering
Engineering Thermodynamics
Flow characteristics
Fluid flow
Friction resistance
Heat and Mass Transfer
Heat sinks
Heat transfer
Industrial Chemistry/Chemical Engineering
Microchannels
Numerical models
Performance evaluation
Reynolds number
Thermal resistance
Thermodynamics
Title Numerical simulation on the heat sink with interrupted microchannels regarding of heat transfer enhancement
URI https://link.springer.com/article/10.1007/s00231-024-03484-x
https://www.proquest.com/docview/3075962000
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yEfRB_MTplDz4poG1TZb0cZPNobAnB_OppPU6ZbMb3Qb--d6l7fxABaFQaJM8XC53v8t9MXYJBJMD7Ykg9pWQsdUiThO0eWzoGeMlpgku2mLQ6g_l3UiNyqSwRRXtXrkknaReJ7uRekHT15eiGUgjBSLHTUW2O3Lx0G-vzSxE1EUDeakF6kuvTJX5eY2v6ugDY35zizpt09tjuyVM5O1iX_fZBmQHbOdT8cADtuWCN5PFIZsMVoXfZcoXL69lPy6OD4I7TsIWP2cTTleunMpD5PlqjkCTv1IwHmX-ZqggeQ5j4pZszGdpMWvpQC3kHLJnYg66SDxiD73uw01flE0URIKnayls2Epb1g9Ca5uJClIdK209qxU13fE9AGmNSowyNglQYUr1FAYKtAFoajzOwTGrZbMMThiPqXRXCDL2UyPBgk01SgBlvRgQddmwzryKlFFSFhinPhfTaF0a2ZE_QvJHjvzRW51drefMi_Iaf45uVDsUlUdtEaGQog5CKNrr7LratY_fv692-r_hZ2zbd4xDoboNVlvmKzhHQLKML9hmu9fpDOh9-3jfvXD8-A7j99r9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yEfUgOhWnU3PwpoF-JEt6HOKYOnfaYLeS1tcp27rRbuCf70vazg9UEHpKkxxe3sfvJe-DkCswMNmXLvMjTzAeacmiJEafRweuUm6sHLDRFv1Wd8gfRmJUJoXlVbR79SRpNfU62c2YF3R9Pc4cnyvOEDluIhhQJpBr6LXXbhYi6qKBPJcM7aVbpsr8vMdXc_SBMb89i1pr09kneyVMpO3iXA_IBqR1svupeGCdbNngzTg_JJP-qnh3mdL8dVb246L4IbijRtnicDqh5sqVmvIQWbZaINCkMxOMZzJ_UzSQNIOx4ZZ0TOdJsWppQS1kFNIXwxzmIvGIDDp3g9suK5sosBila8l00Epa2vMDrZ1Y-ImMhNSulsI03fFcAK6ViJVQOvbRYHLxHPgCpAJwJIqzf0xq6TyFE0IjU7orAB55ieKgQScSNYDQbgSIunTQIG5FyjAuC4ybPhfTcF0a2ZI_RPKHlvzhW4Ncr9csivIaf85uVicUlqKWh6ikTAchVO0NclOd2sfv33c7_d_0S7LdHTz1wt59__GM7HiWiUzYbpPUltkKzhGcLKMLy4vvowPa4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QCAQHBAPEeObADSKWNlnSIwImXpo4gLRblXYuIKBMXSfx87HTbgwESEg9pUkOjmN_SezPjB0AweTQSBEmgRYqcUYkWYpnHhdJa2VqW-CjLbrti3t11dO9qSx-H-0-fpKschqIpSkvjwf97HiS-EauBo_BgRKtUFklEEXOoTmWpNf3wcnkyIXouiomr4xA3ynrtJmf5_jqmj7x5rcnUu95OitsuYaM_KRa41U2A3mDLU0RCTbYvA_kTIdr7Lk7qt5gXvjw6bWuzcXxQ6DHyfBic_7M6fqVE1VEUYwGCDr5KwXmURZwjs6SF_BAmpM_8LesGlV6gAsFh_yRFIUuFdfZXef87vRC1AUVRIqiKYWL2lnbBWHkXCvVYWYSbZx0RlMBnkACKGd1arV1aYjOU-l-FGowFqBlcGuHG2w2f8thk_GEaLwiUEmQWQUOXGbQGmgnE0AE5qImk2NRxmlNNk41L17iCU2yF3-M4o-9-OP3JjucjBlUVBt_9t4Zr1Bcb7thjAaLqgmhmW-yo_Gqff7-fbat_3XfZwu3Z5345rJ7vc0WA69DFMG7w2bLYgS7iFPKZM-r4gdTDd8c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+on+the+heat+sink+with+interrupted+microchannels+regarding+of+heat+transfer+enhancement&rft.jtitle=Heat+and+mass+transfer&rft.au=Qing-wen%2C+Li&rft.au=Xue-shuo%2C+Shang&rft.au=Cao+Qun&rft.au=Cui%2C+Zheng&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7411&rft.eissn=1432-1181&rft.volume=60&rft.issue=7&rft.spage=1195&rft.epage=1209&rft_id=info:doi/10.1007%2Fs00231-024-03484-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7411&client=summon