Numerical simulation on the heat sink with interrupted microchannels regarding of heat transfer enhancement
Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered t...
Saved in:
Published in | Heat and mass transfer Vol. 60; no. 7; pp. 1195 - 1209 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered types are simulated to enhance the performance of the heat sink. The results show that the staggered type microchannels exhibit the lowest thermal resistance but the highest frictional resistance coefficient while the continuous microchannels have the opposite performance. However, the effect of heat transfer enhancement is decreasing with the increment of the interruption spacing for both of the in-lined and staggered interrupted microchannels as the overall heat transfer area is decreasing. Using the performance evaluation criterion (PEC) to evaluate the global heat transfer and flow characteristics of the heat sinks shows that the PEC of the in-lined interrupted microchannel is approximately 1.10 times higher, while the PEC of the staggered type is about 1.23 times higher compared to the continuous microchannel. This improvement is due to the interruption of the boundary layer by the cavity and the flow doping. Besides, when the Reynolds number is lower than 150, the temperature uniformity increases to roughly 1.14 times its original value. It provides a good guidance for the microchannel sink to obtain the better heat dissipation efficiency. |
---|---|
AbstractList | Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the interrupted rectangular microchannel and uses the experimental platform for validation. Two interrupted models including in-lined and staggered types are simulated to enhance the performance of the heat sink. The results show that the staggered type microchannels exhibit the lowest thermal resistance but the highest frictional resistance coefficient while the continuous microchannels have the opposite performance. However, the effect of heat transfer enhancement is decreasing with the increment of the interruption spacing for both of the in-lined and staggered interrupted microchannels as the overall heat transfer area is decreasing. Using the performance evaluation criterion (PEC) to evaluate the global heat transfer and flow characteristics of the heat sinks shows that the PEC of the in-lined interrupted microchannel is approximately 1.10 times higher, while the PEC of the staggered type is about 1.23 times higher compared to the continuous microchannel. This improvement is due to the interruption of the boundary layer by the cavity and the flow doping. Besides, when the Reynolds number is lower than 150, the temperature uniformity increases to roughly 1.14 times its original value. It provides a good guidance for the microchannel sink to obtain the better heat dissipation efficiency. |
Author | Cui, Zheng Shao, Wei Li, Qing-wen Cao, Qun Shang, Xue-shuo |
Author_xml | – sequence: 1 givenname: Qing-wen surname: Li fullname: Li, Qing-wen organization: Institute of Thermal Science and Technology, Shandong University – sequence: 2 givenname: Xue-shuo surname: Shang fullname: Shang, Xue-shuo organization: Institute of Advanced Technology, Shandong University – sequence: 3 givenname: Qun surname: Cao fullname: Cao, Qun organization: Shandong Institute of Advanced Technology – sequence: 4 givenname: Zheng surname: Cui fullname: Cui, Zheng organization: Shandong Institute of Advanced Technology – sequence: 5 givenname: Wei surname: Shao fullname: Shao, Wei email: shao@sdu.edu.cn organization: Shandong Institute of Advanced Technology |
BookMark | eNp9kE1LAzEQhoMoWKt_wFPAczSfm92jiF8geuk9xHS2Td3N1iSL-u-NXUHwUAiEDM-TmXlP0GEYAiB0zuglo1RfJUq5YIRySaiQtSSfB2jGpOCEsZodohltpCZaMnaMTlLaFLySXMzQ2_PYQ_TOdjj5fuxs9kPA5eQ14DXYXMrhDX_4vMY-ZIhx3GZY4t67OLi1DQG6hCOsbFz6sMJDO1k52pBaiBhCgRz0EPIpOmptl-Ds956jxd3t4uaBPL3cP95cPxEnWJOJbaq2slw01lKnRKtflbbMalVxLTkDkLZWrla1dcKVl1o2QoGuAajmSos5upi-3cbhfYSUzWYYYygdjaBaNRWnlBaqnqiyR0oRWuN83m1fRvedYdT8JGumZE1J1uySNZ9F5f_UbfS9jV_7JTFJqcBhBfFvqj3WNzXnkBo |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_105336 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2016.04.091 10.1016/j.ijheatmasstransfer.2008.05.003 10.1016/0894-1777(88)90043-X 10.1016/j.aej.2023.02.016 10.1016/j.ijthermalsci.2022.107714 10.1016/j.csite.2023.103735 10.1016/j.applthermaleng.2012.10.037 10.1016/j.applthermaleng.2021.117738 10.1016/j.ijthermalsci.2022.107926 10.1016/j.ijheatmasstransfer.2004.12.008 10.1007/s11012-022-01534-4 10.1016/j.asej.2023.102417 10.1016/j.ijthermalsci.2009.02.015 10.1016/j.ijthermalsci.2022.107723 10.1016/j.enconman.2014.06.038 10.1016/j.ijthermalsci.2023.108211 10.1016/j.applthermaleng.2024.122365 10.1016/j.ijthermalsci.2020.106721 10.1016/j.ijthermalsci.2020.106609 10.1016/j.ijheatmasstransfer.2019.07.031 10.1016/j.est.2023.107548 10.1016/j.applthermaleng.2016.07.039 10.1016/j.icheatmasstransfer.2021.105360 10.1109/EDL.1981.25367 10.1109/TCAPT.2008.2005783 10.1016/j.ijthermalsci.2019.105975 10.1016/j.ijthermalsci.2022.108080 10.1016/j.cep.2020.108246 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00231-024-03484-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-1181 |
EndPage | 1209 |
ExternalDocumentID | 10_1007_s00231_024_03484_x |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: No. ZR2021QE033 funderid: http://dx.doi.org/10.13039/501100007129 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-a96f6a239aa0c53f7b57a1a75627421ee4a85c858ac3cee45d935e78ee072573 |
IEDL.DBID | U2A |
ISSN | 0947-7411 |
IngestDate | Fri Jul 25 10:54:08 EDT 2025 Tue Jul 01 04:30:43 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a96f6a239aa0c53f7b57a1a75627421ee4a85c858ac3cee45d935e78ee072573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3075962000 |
PQPubID | 2043585 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3075962000 crossref_citationtrail_10_1007_s00231_024_03484_x crossref_primary_10_1007_s00231_024_03484_x springer_journals_10_1007_s00231_024_03484_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Wärme- und Stoffübertragung |
PublicationTitle | Heat and mass transfer |
PublicationTitleAbbrev | Heat Mass Transfer |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SHEN, XIE, WANG (CR5) 2019; 145 LI, ZHANG, YU, J-J (CR30) 2024; 241 Xu, GAN Y H, ZHANG D C (CR15) 2005; 48 BHANDARI, RAWAT K S, PRAJAPATI Y K (CR7) 2023; 66 Ma D D, XIA G D, LI Y F (CR16) 2016; 101 CR13 TIAN, JIAO, HAN (CR22) 2023; 188 CR11 BHANDARI, RAWAT K S, PRAJAPATI Y K (CR28) 2024; 15 SHANG X-S, LI Q-W (CR27) 2023; 184 BHANDARI, PRAJAPATI (CR18) 2022; 179 HAJMOHAMMADI M R, BAHRAMI, AHMADIAN-ELMI (CR4) 2021; 126 BHANDARI, PRAJAPATI Y K (CR19) 2023; 58 BHANDARI, PADALIA (CR20) 2023; 69 JI, YANG, ZHANG (CR6) 2022; 179 CR2 LEE (CR1) 2009; 32 GöNüL, OKBAZ, KAYACI (CR9) 2022; 201 ZHU, XIA, CHEN (CR10) 2021; 161 (CR24) 2014; 86 CHAI, XIA, ZHOU (CR25) 2013; 51 (CR29) 1988; 1 WANG, CHEN (CR21) 2016; 107 TUCKERMAN D B, PEASE R F, W (CR3) 1981; 2 VASILEV M P, ABIEV R S (CR23) 2019; 141 XU, SONG, ZHANG (CR14) 2008; 51 FOONG A J L, RAMESH (CR26) 2009; 48 WANG S-L, YANG Y-R (CR8) 2023; 185 DUAN X-Y, HUANG B-H, ZHU, Y-X (CR12) 2023; 52 BHANDARI (CR17) 2021; 159 LEELA VINODHAN V, RAJAN K S (3484_CR24) 2014; 86 Ma D D (3484_CR16) 2016; 101 P BHANDARI (3484_CR28) 2024; 15 L LI (3484_CR30) 2024; 241 KUMARR VASILEV M P, ABIEV R S (3484_CR23) 2019; 141 TUCKERMAN D B (3484_CR3) 1981; 2 Y TIAN (3484_CR22) 2023; 188 JL Xu (3484_CR15) 2005; 48 P BHANDARI (3484_CR19) 2023; 58 J LEE (3484_CR1) 2009; 32 cr-split#-3484_CR13.1 cr-split#-3484_CR13.2 X JI (3484_CR6) 2022; 179 AND WANG S-L (3484_CR8) 2023; 185 P BHANDARI (3484_CR17) 2021; 159 P BHANDARI (3484_CR7) 2023; 66 A GöNüL (3484_CR9) 2022; 201 J XU (3484_CR14) 2008; 51 M HAJMOHAMMADI M R, BAHRAMI (3484_CR4) 2021; 126 3484_CR11 DUAN X-Y (3484_CR12) 2023; 52 CAOQ SHANG X-S, LI Q-W (3484_CR27) 2023; 184 L CHAI (3484_CR25) 2013; 51 H WANG (3484_CR21) 2016; 107 MOFFAT R J (3484_CR29) 1988; 1 P BHANDARI (3484_CR20) 2023; 69 cr-split#-3484_CR2.1 cr-split#-3484_CR2.2 N FOONG A J L, RAMESH (3484_CR26) 2009; 48 Q ZHU (3484_CR10) 2021; 161 P BHANDARI (3484_CR18) 2022; 179 H SHEN (3484_CR5) 2019; 145 |
References_xml | – volume: 101 start-page: 427 year: 2016 end-page: 435 ident: CR16 article-title: Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zigzag grooves in sidewall [J] publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.04.091 – volume: 51 start-page: 5906 issue: 25 year: 2008 end-page: 5917 ident: CR14 article-title: Numerical simulations of interrupted and conventional microchannel heat sinks [J] publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.05.003 – volume: 1 start-page: 3 issue: 1 year: 1988 end-page: 17 ident: CR29 article-title: Describing the uncertainties in experimental results [J] publication-title: Exp Thermal Fluid Sci doi: 10.1016/0894-1777(88)90043-X – volume: 69 start-page: 457 year: 2023 end-page: 468 ident: CR20 article-title: Thermo-hydraulic investigation of open micro prism pin fin heat sink having varying prism sides [J] publication-title: Alexandria Eng J doi: 10.1016/j.aej.2023.02.016 – volume: 179 start-page: 107714 year: 2022 ident: CR18 article-title: Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107714 – ident: CR2 – volume: 52 start-page: 103735 year: 2023 ident: CR12 article-title: Cavitating flows in microchannel with rough wall using a modified microscale cavitation model [J] publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103735 – volume: 51 start-page: 880 issue: 1 year: 2013 end-page: 889 ident: CR25 article-title: Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers [J] publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.10.037 – volume: 201 start-page: 117738 year: 2022 ident: CR9 article-title: Flow optimization in a microchannel with vortex generators using genetic algorithm [J] publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117738 – volume: 184 start-page: 107926 year: 2023 ident: CR27 article-title: Mathematical modeling and multi-objective optimization on the rectangular micro-channel heat sink [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107926 – volume: 48 start-page: 1662 issue: 9 year: 2005 end-page: 1674 ident: CR15 article-title: Microscale heat transfer enhancement using thermal boundary layer redeveloping concept [J] publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2004.12.008 – volume: 58 start-page: 2113 issue: 11 year: 2023 end-page: 2129 ident: CR19 article-title: Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink [J] publication-title: Meccanica doi: 10.1007/s11012-022-01534-4 – volume: 15 start-page: 102417 issue: 2 year: 2024 ident: CR28 article-title: A review on design alteration in microchannel heat sink for augmented thermohydraulic performance [J] publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2023.102417 – volume: 48 start-page: 1908 issue: 10 year: 2009 end-page: 1913 ident: CR26 article-title: CHANDRATILLEKE T T. laminar convective heat transfer in a microchannel with internal longitudinal fins [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2009.02.015 – volume: 179 start-page: 107723 year: 2022 ident: CR6 article-title: Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107723 – volume: 86 start-page: 595 year: 2014 end-page: 604 ident: CR24 article-title: Computational analysis of new microchannel heat sink configurations [J] publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2014.06.038 – volume: 188 start-page: 108211 year: 2023 ident: CR22 article-title: Study of two-phase flow characteristics in the interrupted microchannels [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2023.108211 – volume: 241 start-page: 122365 year: 2024 ident: CR30 article-title: A novel microchannel heat sink with staggered inlet and outlet to improve base surface temperature uniformity [J] publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2024.122365 – volume: 161 start-page: 106721 year: 2021 ident: CR10 article-title: Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2020.106721 – volume: 159 start-page: 106609 year: 2021 ident: CR17 article-title: Thermal performance of open microchannel heat sink with variable pin fin height [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2020.106609 – volume: 141 start-page: 845 year: 2019 end-page: 854 ident: CR23 article-title: Effect of microchannel heat sink configuration on the thermal performance and pumping power [J] publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.07.031 – ident: CR13 – ident: CR11 – volume: 66 start-page: 107548 year: 2023 ident: CR7 article-title: Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review [J] publication-title: J Energy Storage doi: 10.1016/j.est.2023.107548 – volume: 107 start-page: 870 year: 2016 end-page: 879 ident: CR21 article-title: Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks [J] publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.07.039 – volume: 126 start-page: 105360 year: 2021 ident: CR4 article-title: Thermal performance improvement of microchannel heat sinks by utilizing variable cross-section microchannels filled with porous media [J] publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105360 – volume: 2 start-page: 126 issue: 5 year: 1981 end-page: 129 ident: CR3 article-title: High-performance heat sinking for VLSI [J] publication-title: IEEE Electron Device Lett doi: 10.1109/EDL.1981.25367 – volume: 32 start-page: 453 issue: 2 year: 2009 end-page: 465 ident: CR1 article-title: Low-temperature two-phase microchannel cooling for high-heat-flux Thermal Management of Defense Electronics [J] publication-title: IEEE Trans Compon Packag Technol doi: 10.1109/TCAPT.2008.2005783 – volume: 145 start-page: 105975 year: 2019 ident: CR5 article-title: Heat transfer and thermodynamic analysis by introducing multiple alternation structures into double-layer microchannel heat sinks [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2019.105975 – volume: 185 start-page: 108080 year: 2023 ident: CR8 article-title: Heat transfer and flow characteristics in symmetric and parallel wavy microchannel heat sinks with porous ribs [J] publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.108080 – ident: #cr-split#-3484_CR2.1 – volume: 66 start-page: 107548 year: 2023 ident: 3484_CR7 publication-title: J Energy Storage doi: 10.1016/j.est.2023.107548 – volume: 48 start-page: 1662 issue: 9 year: 2005 ident: 3484_CR15 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2004.12.008 – ident: #cr-split#-3484_CR13.2 – volume: 15 start-page: 102417 issue: 2 year: 2024 ident: 3484_CR28 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2023.102417 – volume: 32 start-page: 453 issue: 2 year: 2009 ident: 3484_CR1 publication-title: IEEE Trans Compon Packag Technol doi: 10.1109/TCAPT.2008.2005783 – volume: 201 start-page: 117738 year: 2022 ident: 3484_CR9 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117738 – volume: 141 start-page: 845 year: 2019 ident: 3484_CR23 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.07.031 – volume: 126 start-page: 105360 year: 2021 ident: 3484_CR4 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105360 – volume: 145 start-page: 105975 year: 2019 ident: 3484_CR5 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2019.105975 – volume: 51 start-page: 5906 issue: 25 year: 2008 ident: 3484_CR14 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.05.003 – volume: 179 start-page: 107723 year: 2022 ident: 3484_CR6 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107723 – volume: 107 start-page: 870 year: 2016 ident: 3484_CR21 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.07.039 – ident: #cr-split#-3484_CR13.1 – volume: 179 start-page: 107714 year: 2022 ident: 3484_CR18 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107714 – ident: 3484_CR11 doi: 10.1016/j.cep.2020.108246 – volume: 184 start-page: 107926 year: 2023 ident: 3484_CR27 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107926 – volume: 101 start-page: 427 year: 2016 ident: 3484_CR16 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.04.091 – volume: 161 start-page: 106721 year: 2021 ident: 3484_CR10 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2020.106721 – volume: 86 start-page: 595 year: 2014 ident: 3484_CR24 publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2014.06.038 – volume: 188 start-page: 108211 year: 2023 ident: 3484_CR22 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2023.108211 – ident: #cr-split#-3484_CR2.2 – volume: 52 start-page: 103735 year: 2023 ident: 3484_CR12 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103735 – volume: 159 start-page: 106609 year: 2021 ident: 3484_CR17 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2020.106609 – volume: 2 start-page: 126 issue: 5 year: 1981 ident: 3484_CR3 publication-title: IEEE Electron Device Lett doi: 10.1109/EDL.1981.25367 – volume: 58 start-page: 2113 issue: 11 year: 2023 ident: 3484_CR19 publication-title: Meccanica doi: 10.1007/s11012-022-01534-4 – volume: 48 start-page: 1908 issue: 10 year: 2009 ident: 3484_CR26 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2009.02.015 – volume: 241 start-page: 122365 year: 2024 ident: 3484_CR30 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2024.122365 – volume: 69 start-page: 457 year: 2023 ident: 3484_CR20 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2023.02.016 – volume: 1 start-page: 3 issue: 1 year: 1988 ident: 3484_CR29 publication-title: Exp Thermal Fluid Sci doi: 10.1016/0894-1777(88)90043-X – volume: 185 start-page: 108080 year: 2023 ident: 3484_CR8 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.108080 – volume: 51 start-page: 880 issue: 1 year: 2013 ident: 3484_CR25 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.10.037 |
SSID | ssj0026423 |
Score | 2.3873615 |
Snippet | Microchannel heat sinks are widely used in the era of electronic equipment heat dissipation. This paper builds a numerical model of the heat sink with the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1195 |
SubjectTerms | Boundary layers Dissipation Electronic equipment Engineering Engineering Thermodynamics Flow characteristics Fluid flow Friction resistance Heat and Mass Transfer Heat sinks Heat transfer Industrial Chemistry/Chemical Engineering Microchannels Numerical models Performance evaluation Reynolds number Thermal resistance Thermodynamics |
Title | Numerical simulation on the heat sink with interrupted microchannels regarding of heat transfer enhancement |
URI | https://link.springer.com/article/10.1007/s00231-024-03484-x https://www.proquest.com/docview/3075962000 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yEfRB_MTplDz4poG1TZb0cZPNobAnB_OppPU6ZbMb3Qb--d6l7fxABaFQaJM8XC53v8t9MXYJBJMD7Ykg9pWQsdUiThO0eWzoGeMlpgku2mLQ6g_l3UiNyqSwRRXtXrkknaReJ7uRekHT15eiGUgjBSLHTUW2O3Lx0G-vzSxE1EUDeakF6kuvTJX5eY2v6ugDY35zizpt09tjuyVM5O1iX_fZBmQHbOdT8cADtuWCN5PFIZsMVoXfZcoXL69lPy6OD4I7TsIWP2cTTleunMpD5PlqjkCTv1IwHmX-ZqggeQ5j4pZszGdpMWvpQC3kHLJnYg66SDxiD73uw01flE0URIKnayls2Epb1g9Ca5uJClIdK209qxU13fE9AGmNSowyNglQYUr1FAYKtAFoajzOwTGrZbMMThiPqXRXCDL2UyPBgk01SgBlvRgQddmwzryKlFFSFhinPhfTaF0a2ZE_QvJHjvzRW51drefMi_Iaf45uVDsUlUdtEaGQog5CKNrr7LratY_fv692-r_hZ2zbd4xDoboNVlvmKzhHQLKML9hmu9fpDOh9-3jfvXD8-A7j99r9 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yEfUgOhWnU3PwpoF-JEt6HOKYOnfaYLeS1tcp27rRbuCf70vazg9UEHpKkxxe3sfvJe-DkCswMNmXLvMjTzAeacmiJEafRweuUm6sHLDRFv1Wd8gfRmJUJoXlVbR79SRpNfU62c2YF3R9Pc4cnyvOEDluIhhQJpBr6LXXbhYi6qKBPJcM7aVbpsr8vMdXc_SBMb89i1pr09kneyVMpO3iXA_IBqR1svupeGCdbNngzTg_JJP-qnh3mdL8dVb246L4IbijRtnicDqh5sqVmvIQWbZaINCkMxOMZzJ_UzSQNIOx4ZZ0TOdJsWppQS1kFNIXwxzmIvGIDDp3g9suK5sosBila8l00Epa2vMDrZ1Y-ImMhNSulsI03fFcAK6ViJVQOvbRYHLxHPgCpAJwJIqzf0xq6TyFE0IjU7orAB55ieKgQScSNYDQbgSIunTQIG5FyjAuC4ybPhfTcF0a2ZI_RPKHlvzhW4Ncr9csivIaf85uVicUlqKWh6ikTAchVO0NclOd2sfv33c7_d_0S7LdHTz1wt59__GM7HiWiUzYbpPUltkKzhGcLKMLy4vvowPa4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QCAQHBAPEeObADSKWNlnSIwImXpo4gLRblXYuIKBMXSfx87HTbgwESEg9pUkOjmN_SezPjB0AweTQSBEmgRYqcUYkWYpnHhdJa2VqW-CjLbrti3t11dO9qSx-H-0-fpKschqIpSkvjwf97HiS-EauBo_BgRKtUFklEEXOoTmWpNf3wcnkyIXouiomr4xA3ynrtJmf5_jqmj7x5rcnUu95OitsuYaM_KRa41U2A3mDLU0RCTbYvA_kTIdr7Lk7qt5gXvjw6bWuzcXxQ6DHyfBic_7M6fqVE1VEUYwGCDr5KwXmURZwjs6SF_BAmpM_8LesGlV6gAsFh_yRFIUuFdfZXef87vRC1AUVRIqiKYWL2lnbBWHkXCvVYWYSbZx0RlMBnkACKGd1arV1aYjOU-l-FGowFqBlcGuHG2w2f8thk_GEaLwiUEmQWQUOXGbQGmgnE0AE5qImk2NRxmlNNk41L17iCU2yF3-M4o-9-OP3JjucjBlUVBt_9t4Zr1Bcb7thjAaLqgmhmW-yo_Gqff7-fbat_3XfZwu3Z5345rJ7vc0WA69DFMG7w2bLYgS7iFPKZM-r4gdTDd8c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+on+the+heat+sink+with+interrupted+microchannels+regarding+of+heat+transfer+enhancement&rft.jtitle=Heat+and+mass+transfer&rft.au=Qing-wen%2C+Li&rft.au=Xue-shuo%2C+Shang&rft.au=Cao+Qun&rft.au=Cui%2C+Zheng&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7411&rft.eissn=1432-1181&rft.volume=60&rft.issue=7&rft.spage=1195&rft.epage=1209&rft_id=info:doi/10.1007%2Fs00231-024-03484-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7411&client=summon |