New analytical models for precise calculation of crystallite size: application to synthetic hydroxyapatite and natural eggshell crystalline materials
Crystallite size is the most significant property of solid crystalline materials. Concerning the point of practical features or applicability any accurate estimation of crystallite size is extremely beneficial. Hence, this research presents two new simulations (Model 1 and Model 2) for precise calcu...
Saved in:
Published in | Chemical papers Vol. 76; no. 11; pp. 7245 - 7251 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Versita
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crystallite size is the most significant property of solid crystalline materials. Concerning the point of practical features or applicability any accurate estimation of crystallite size is extremely beneficial. Hence, this research presents two new simulations (Model 1 and Model 2) for precise calculations of crystallite size. Using hydroxyapatite (Hap) and eggshell (ES) as synthetic and natural crystalline materials, respectively, the applicability of these proposed models was studied. The calculated values of crystallite size of Hap and ES were found to be 35–101 nm and 72 nm, respectively, (in case of developed Model 1) while for Model 2 the values were in the range of 46–81 nm and 72 nm accordingly, which were assumed to be within the acceptable limit. The crystallite size calculated from the two new models increased with the increment of temperature. Furthermore, the defects of straight line model in Scherrer method (SLMSM) and Monshi–Scherrer equation were discussed. |
---|---|
AbstractList | Crystallite size is the most significant property of solid crystalline materials. Concerning the point of practical features or applicability any accurate estimation of crystallite size is extremely beneficial. Hence, this research presents two new simulations (Model 1 and Model 2) for precise calculations of crystallite size. Using hydroxyapatite (Hap) and eggshell (ES) as synthetic and natural crystalline materials, respectively, the applicability of these proposed models was studied. The calculated values of crystallite size of Hap and ES were found to be 35–101 nm and 72 nm, respectively, (in case of developed Model 1) while for Model 2 the values were in the range of 46–81 nm and 72 nm accordingly, which were assumed to be within the acceptable limit. The crystallite size calculated from the two new models increased with the increment of temperature. Furthermore, the defects of straight line model in Scherrer method (SLMSM) and Monshi–Scherrer equation were discussed. Crystallite size is the most significant property of solid crystalline materials. Concerning the point of practical features or applicability any accurate estimation of crystallite size is extremely beneficial. Hence, this research presents two new simulations (Model 1 and Model 2) for precise calculations of crystallite size. Using hydroxyapatite (Hap) and eggshell (ES) as synthetic and natural crystalline materials, respectively, the applicability of these proposed models was studied. The calculated values of crystallite size of Hap and ES were found to be 35–101 nm and 72 nm, respectively, (in case of developed Model 1) while for Model 2 the values were in the range of 46–81 nm and 72 nm accordingly, which were assumed to be within the acceptable limit. The crystallite size calculated from the two new models increased with the increment of temperature. Furthermore, the defects of straight line model in Scherrer method (SLMSM) and Monshi–Scherrer equation were discussed. |
Author | Hossain, Md. Sahadat Sultana, Sazia Shaikh, Md. Aftab Ali Ahmed, Samina Mahmud, Monika Mobarak, Mashrafi Bin |
Author_xml | – sequence: 1 givenname: Md. Sahadat surname: Hossain fullname: Hossain, Md. Sahadat organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) – sequence: 2 givenname: Monika surname: Mahmud fullname: Mahmud, Monika organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) – sequence: 3 givenname: Mashrafi Bin surname: Mobarak fullname: Mobarak, Mashrafi Bin organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) – sequence: 4 givenname: Sazia surname: Sultana fullname: Sultana, Sazia organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) – sequence: 5 givenname: Md. Aftab Ali surname: Shaikh fullname: Shaikh, Md. Aftab Ali organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Department of Chemistry, University of Dhaka – sequence: 6 givenname: Samina orcidid: 0000-0001-6626-3610 surname: Ahmed fullname: Ahmed, Samina email: shanta_samina@yahoo.com organization: Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) |
BookMark | eNp9kM1q3DAURkVJoJOkL9CVoGu3-rEtq7sS2jQQ0k27Ftfy9YyCRnIlDa37Hn3fKjOBQBdZiAvSd74rzgU5CzEgIW85e88ZUx8y573uGyZEPVKpRr8iG9ENXaOEZmdkw2TfN73sxGtykfMDY23LOrYhf-_xF4UAfi3Ogqf7OKHPdI6JLgmty0jrtT14KC4GGmdq05oLeO8K0uz-4EcKy-IrfAyUSPMayg5rHd2tU4q_V1jqW01DmGiAckh1D263eYfeP9cFpHsomBz4fEXO5zrwzdO8JD--fP5-_bW5-3Zze_3prrGS69JAL1uOs2I4MDtpNUkNAqEX86xBixZH4HyUo1WzHCeF3aC1khNWgI9CCnlJ3p16lxR_HjAX8xAPqdrIRijRajbIXtaUOKVsijknnM2S3B7Sajgzj_rNSb-p-s1Rv9EVGv6DrCtHRyWB8y-j8oTmuidsMT3_6gXqH1ONoPo |
CitedBy_id | crossref_primary_10_1039_D2RA04881G crossref_primary_10_1016_j_cemconres_2024_107654 crossref_primary_10_1016_j_heliyon_2023_e18012 crossref_primary_10_1016_j_clwas_2025_100231 crossref_primary_10_1016_j_jmrt_2024_03_054 crossref_primary_10_1016_j_rineng_2023_101630 crossref_primary_10_1016_j_cartre_2024_100406 crossref_primary_10_1039_D3MA00102D crossref_primary_10_1007_s41204_024_00395_4 crossref_primary_10_1016_j_heliyon_2024_e25347 crossref_primary_10_1016_j_ceramint_2024_08_254 crossref_primary_10_1016_j_rineng_2023_101418 crossref_primary_10_1016_j_rinma_2025_100666 crossref_primary_10_3390_min14050455 crossref_primary_10_1016_j_rechem_2023_100822 crossref_primary_10_1021_acsfoodscitech_4c00699 crossref_primary_10_1016_j_jscs_2023_101649 crossref_primary_10_1016_j_jscs_2023_101769 crossref_primary_10_1016_j_molstruc_2024_137820 crossref_primary_10_1016_j_foodchem_2025_143272 crossref_primary_10_1016_j_rineng_2024_102595 crossref_primary_10_1016_j_molstruc_2023_137321 crossref_primary_10_3390_catal13071139 crossref_primary_10_1016_j_nanoso_2025_101436 crossref_primary_10_1080_23324309_2024_2434020 crossref_primary_10_1039_D4NJ03939D crossref_primary_10_1016_j_rinma_2023_100496 crossref_primary_10_1016_j_hazadv_2024_100406 crossref_primary_10_1016_j_oceram_2024_100625 crossref_primary_10_1039_D4RA03111C crossref_primary_10_1016_j_optmat_2024_115193 crossref_primary_10_1016_j_rinma_2024_100633 crossref_primary_10_1039_D4MA01047G crossref_primary_10_1016_j_hybadv_2024_100308 crossref_primary_10_1039_D3NA01122D crossref_primary_10_1016_j_rinma_2023_100492 crossref_primary_10_1063_5_0149009 crossref_primary_10_1039_D2TB02392J crossref_primary_10_1016_j_inoche_2024_113834 crossref_primary_10_1016_j_heliyon_2024_e37469 |
Cites_doi | 10.1006/jcis.2002.8535 10.1039/C6RA26124H 10.6028/jres.109.042 10.1007/s00339-008-4732-7 10.4236/wjnse.2012.23020 10.1039/D0RA09673C 10.1039/C9CC05454E 10.1016/j.heliyon.2020.e04085 10.3329/jsr.v9i4.32606 10.1088/0959-5309/56/3/303 10.1016/S0965-9773(99)00002-1 10.1016/j.jascer.2015.12.002 10.3390/nano10091627 10.1016/j.ijleo.2020.165837 10.1063/1.1699612 10.1098/rsos.210684 10.1007/BF00557154 10.1080/21870764.2020.1749373 10.1016/S0926-860X(01)00784-0 |
ContentType | Journal Article |
Copyright | Institute of Chemistry, Slovak Academy of Sciences 2022 Institute of Chemistry, Slovak Academy of Sciences 2022. |
Copyright_xml | – notice: Institute of Chemistry, Slovak Academy of Sciences 2022 – notice: Institute of Chemistry, Slovak Academy of Sciences 2022. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1007/s11696-022-02377-9 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2585-7290 1336-9075 |
EndPage | 7251 |
ExternalDocumentID | 10_1007_s11696_022_02377_9 |
GroupedDBID | -58 -5G -BR -Y2 .86 .VR 06D 0VY 1N0 29B 2JY 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 53G 5GY 5VS 67Z 6J9 6NX 8FE 8FG 8TC 8UJ 95. 95~ AAAVM AACDK AAFPC AAJBT AAQCX AASML AASQH AATNV AATVU AAXMT AAYQN AAYZH ABAKF ABAQN ABFKT ABFTV ABJCF ABJNI ABJOX ABKCH ABMNI ABOCM ABQBU ABRQL ABTEG ABTKH ABTMW ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACOMO ACPIV ACREN ACZBO ACZOJ ADGYE ADHHG ADINQ ADKNI ADOZN ADTPH ADURQ ADYFF AEBTG AEFQL AEGNC AEMSY AENEX AEOHA AEPYU AESKC AEXYK AFBAA AFBBN AFCXV AFGCZ AFKRA AFQWF AFWTZ AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AIGIU AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CS3 DPUIP EBLON FIGPU G-Y G-Z GJIRD GQ6 GQ7 H13 HCIFZ HG6 HLICF HMJXF HZ~ IAO IEA IHE IJ- IKXTQ ISR ITC IWAJR IXC IXE IY9 IZQ I~X I~Z JZLTJ KDC KOV L6V LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J OAM OK1 P2P P9N PF0 PT4 PTHSS QD8 QOS R9I RNS ROL RPX RSV S1Z S27 S3B SCM SDH SHX SJYHP SNE SOJ SZN T13 TSK TSV TUC U2A UG4 VC2 WK8 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEXIE AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 7U5 8BQ 8FD ABRTQ JG9 L7M |
ID | FETCH-LOGICAL-c319t-a6341ef70e80cd97d39a2ea62ff9a924eba11b3bc7f3bd7e589973de70e1b2323 |
IEDL.DBID | U2A |
ISSN | 0366-6352 |
IngestDate | Wed Aug 13 08:08:12 EDT 2025 Tue Jul 01 03:17:11 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Fri Feb 21 02:47:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | X-ray diffraction Williamson–Hall model Monshi–Scherrer equation Scherrer method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a6341ef70e80cd97d39a2ea62ff9a924eba11b3bc7f3bd7e589973de70e1b2323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6626-3610 |
PQID | 2724908363 |
PQPubID | 2039839 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2724908363 crossref_primary_10_1007_s11696_022_02377_9 crossref_citationtrail_10_1007_s11696_022_02377_9 springer_journals_10_1007_s11696_022_02377_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw – name: Heidelberg |
PublicationTitle | Chemical papers |
PublicationTitleAbbrev | Chem. Pap |
PublicationYear | 2022 |
Publisher | Versita Springer Nature B.V |
Publisher_xml | – name: Versita – name: Springer Nature B.V |
References | Wu, Hsu, Hsu, Chang, Ho (CR20) 2016; 4 Rabiei, Palevicius, Monshi, Nasiri, Vilkauskas, Janusas (CR12) 2020; 10 Hossain, Mahmud, Sultana, Bin, Islam, Ahmed (CR5) 2021; 8 Jahan, Mollah, Ahmed, Susan (CR6) 2017; 9 Wang, Zhou, Weng, Lv, Schüth, Lu (CR19) 2019; 55 Akl, El Radaf, Hassanien (CR1) 2021; 227 Okada, Nagashima, Kameshima, Yasumori, Tsukada (CR11) 2002; 253 El-Bassyouni, Eldera, Kenawy, Hamzawy (CR3) 2020; 6 Stokes, Wilson (CR15) 1944; 56 Jung, Park, Ihm (CR7) 2002; 224 Zuo, Xu, Liu, Qian (CR21) 1998; 10 Vorokh (CR18) 2018; 9 Sultana, Hossain, Mahmud, Mobarak, Kabir, Sharmin, Ahmed (CR16) 2021; 11 Haider, Haider, Han, Kang (CR4) 2017; 7 Markovic, Fowler, Tung (CR8) 2004; 109 Alexander, Klug (CR2) 1950; 21 Monshi, Messer (CR10) 1991; 26 Sánchez-Bajo, Ortiz, Cumbrera (CR13) 2009; 94 Scherrer (CR14) 1918; 2 Suresh, Dhanaraj, Vimalathithan, Ilaiyaraja, Suresh (CR17) 2020; 8 Monshi, Foroughi, Monshi (CR9) 2012; 2 P Scherrer (2377_CR14) 1918; 2 A Monshi (2377_CR9) 2012; 2 AS Vorokh (2377_CR18) 2018; 9 J Zuo (2377_CR21) 1998; 10 SA Jahan (2377_CR6) 2017; 9 K Okada (2377_CR11) 2002; 253 KC Suresh (2377_CR17) 2020; 8 S-C Wu (2377_CR20) 2016; 4 M Rabiei (2377_CR12) 2020; 10 S Sultana (2377_CR16) 2021; 11 M Markovic (2377_CR8) 2004; 109 GT El-Bassyouni (2377_CR3) 2020; 6 KY Jung (2377_CR7) 2002; 224 L Alexander (2377_CR2) 1950; 21 A Haider (2377_CR4) 2017; 7 AA Akl (2377_CR1) 2021; 227 MS Hossain (2377_CR5) 2021; 8 Q-N Wang (2377_CR19) 2019; 55 AR Stokes (2377_CR15) 1944; 56 F Sánchez-Bajo (2377_CR13) 2009; 94 A Monshi (2377_CR10) 1991; 26 |
References_xml | – volume: 253 start-page: 308 issue: 2 year: 2002 end-page: 314 ident: CR11 article-title: Relationship between formation conditions, properties, and crystallite size of Boehmite publication-title: J Colloid Interface Sci doi: 10.1006/jcis.2002.8535 – volume: 7 start-page: 7442 issue: 13 year: 2017 end-page: 7458 ident: CR4 article-title: Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review publication-title: RSC Adv doi: 10.1039/C6RA26124H – volume: 109 start-page: 553 issue: 6 year: 2004 ident: CR8 article-title: Preparation and comprehensive characterization of a calcium hydroxyapatite reference material publication-title: J Res Nat Inst Stand Technol doi: 10.6028/jres.109.042 – volume: 94 start-page: 189 issue: 1 year: 2009 end-page: 194 ident: CR13 article-title: An analytical model for the determination of crystallite size and crystal lattice microstrain distributions in nanocrystalline materials from the variance of the X-ray diffraction peaks publication-title: Appl Phys A doi: 10.1007/s00339-008-4732-7 – volume: 2 start-page: 154 issue: 3 year: 2012 end-page: 160 ident: CR9 article-title: Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD publication-title: World J Nano Sci Eng doi: 10.4236/wjnse.2012.23020 – volume: 11 start-page: 3686 issue: 6 year: 2021 end-page: 3694 ident: CR16 article-title: UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity publication-title: RSC Adv doi: 10.1039/D0RA09673C – volume: 55 start-page: 10420 issue: 70 year: 2019 end-page: 10423 ident: CR19 article-title: Hydroxyapatite nanowires rich in [Ca–O–P] sites for ethanol direct coupling showing high C 6–12 alcohol yield publication-title: Chem Commun doi: 10.1039/C9CC05454E – volume: 6 start-page: e04085 issue: 6 year: 2020 ident: CR3 article-title: Hydroxyapatite nanoparticles derived from mussel shells for in vitro cytotoxicity test and cell viability publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04085 – volume: 9 start-page: 383 issue: 4 year: 2017 end-page: 402 ident: CR6 article-title: Copper-doped hydroxyapatite for removal of Arsenic (V) from aqueous system publication-title: J Sci Res doi: 10.3329/jsr.v9i4.32606 – volume: 56 start-page: 174 issue: 3 year: 1944 ident: CR15 article-title: The diffraction of X rays by distorted crystal aggregates-I publication-title: Proc Phys Soc(1926–1948) doi: 10.1088/0959-5309/56/3/303 – volume: 9 start-page: 364 issue: 3 year: 2018 end-page: 369 ident: CR18 article-title: Scherrer formula: estimation of error in determining small nanoparticle size publication-title: Haнocиcтeмы: Физикa, Xимия, Мaтeмaтикa – volume: 10 start-page: 1331 issue: 8 year: 1998 end-page: 1335 ident: CR21 article-title: Crystallite size effects on the Raman spectra of Mn3O4 publication-title: Nanostruct Mater doi: 10.1016/S0965-9773(99)00002-1 – volume: 4 start-page: 85 issue: 1 year: 2016 end-page: 90 ident: CR20 article-title: Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment publication-title: J Asian Ceram Soc doi: 10.1016/j.jascer.2015.12.002 – volume: 10 start-page: 1627 issue: 9 year: 2020 ident: CR12 article-title: Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-Ray diffraction publication-title: Nanomaterials doi: 10.3390/nano10091627 – volume: 227 year: 2021 ident: CR1 article-title: An extensive comparative study for microstructural properties and crystal imperfections of novel sprayed Cu SbSe nanoparticle-thin films of different thicknesses publication-title: Optik doi: 10.1016/j.ijleo.2020.165837 – volume: 21 start-page: 137 issue: 2 year: 1950 end-page: 142 ident: CR2 article-title: Determination of crystallite size with the X-Ray spectrometer publication-title: J Appl Phys doi: 10.1063/1.1699612 – volume: 8 issue: 9 year: 2021 ident: CR5 article-title: Coupled effect of particle size of the source materials and calcination temperature on the direct synthesis of hydroxyapatite publication-title: R Soc Open Sci doi: 10.1098/rsos.210684 – volume: 26 start-page: 3623 issue: 13 year: 1991 end-page: 3627 ident: CR10 article-title: Ratio of slopes method for quantitative X-ray diffraction analysis publication-title: J Mater Sci doi: 10.1007/BF00557154 – volume: 8 start-page: 416 issue: 2 year: 2020 end-page: 429 ident: CR17 article-title: Hydroxyapatite for bone related applications derived from sea shell waste by simpleprecipitation method publication-title: J Asian Ceram Soc doi: 10.1080/21870764.2020.1749373 – volume: 224 start-page: 229 issue: 1–2 year: 2002 end-page: 237 ident: CR7 article-title: Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size publication-title: Appl Catal A doi: 10.1016/S0926-860X(01)00784-0 – volume: 2 start-page: 96 year: 1918 end-page: 100 ident: CR14 article-title: Estimation of the size and internal structure of colloidal particles by means of röntgen publication-title: Nachr Ges Wiss Göttingen – volume: 2 start-page: 96 year: 1918 ident: 2377_CR14 publication-title: Nachr Ges Wiss Göttingen – volume: 4 start-page: 85 issue: 1 year: 2016 ident: 2377_CR20 publication-title: J Asian Ceram Soc doi: 10.1016/j.jascer.2015.12.002 – volume: 9 start-page: 383 issue: 4 year: 2017 ident: 2377_CR6 publication-title: J Sci Res doi: 10.3329/jsr.v9i4.32606 – volume: 2 start-page: 154 issue: 3 year: 2012 ident: 2377_CR9 publication-title: World J Nano Sci Eng doi: 10.4236/wjnse.2012.23020 – volume: 26 start-page: 3623 issue: 13 year: 1991 ident: 2377_CR10 publication-title: J Mater Sci doi: 10.1007/BF00557154 – volume: 94 start-page: 189 issue: 1 year: 2009 ident: 2377_CR13 publication-title: Appl Phys A doi: 10.1007/s00339-008-4732-7 – volume: 109 start-page: 553 issue: 6 year: 2004 ident: 2377_CR8 publication-title: J Res Nat Inst Stand Technol doi: 10.6028/jres.109.042 – volume: 21 start-page: 137 issue: 2 year: 1950 ident: 2377_CR2 publication-title: J Appl Phys doi: 10.1063/1.1699612 – volume: 8 issue: 9 year: 2021 ident: 2377_CR5 publication-title: R Soc Open Sci doi: 10.1098/rsos.210684 – volume: 11 start-page: 3686 issue: 6 year: 2021 ident: 2377_CR16 publication-title: RSC Adv doi: 10.1039/D0RA09673C – volume: 10 start-page: 1331 issue: 8 year: 1998 ident: 2377_CR21 publication-title: Nanostruct Mater doi: 10.1016/S0965-9773(99)00002-1 – volume: 55 start-page: 10420 issue: 70 year: 2019 ident: 2377_CR19 publication-title: Chem Commun doi: 10.1039/C9CC05454E – volume: 6 start-page: e04085 issue: 6 year: 2020 ident: 2377_CR3 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04085 – volume: 8 start-page: 416 issue: 2 year: 2020 ident: 2377_CR17 publication-title: J Asian Ceram Soc doi: 10.1080/21870764.2020.1749373 – volume: 253 start-page: 308 issue: 2 year: 2002 ident: 2377_CR11 publication-title: J Colloid Interface Sci doi: 10.1006/jcis.2002.8535 – volume: 56 start-page: 174 issue: 3 year: 1944 ident: 2377_CR15 publication-title: Proc Phys Soc(1926–1948) doi: 10.1088/0959-5309/56/3/303 – volume: 7 start-page: 7442 issue: 13 year: 2017 ident: 2377_CR4 publication-title: RSC Adv doi: 10.1039/C6RA26124H – volume: 227 year: 2021 ident: 2377_CR1 publication-title: Optik doi: 10.1016/j.ijleo.2020.165837 – volume: 10 start-page: 1627 issue: 9 year: 2020 ident: 2377_CR12 publication-title: Nanomaterials doi: 10.3390/nano10091627 – volume: 9 start-page: 364 issue: 3 year: 2018 ident: 2377_CR18 publication-title: Haнocиcтeмы: Физикa, Xимия, Мaтeмaтикa – volume: 224 start-page: 229 issue: 1–2 year: 2002 ident: 2377_CR7 publication-title: Appl Catal A doi: 10.1016/S0926-860X(01)00784-0 |
SSID | ssj0044050 ssib044732867 ssib029106359 |
Score | 2.4824772 |
Snippet | Crystallite size is the most significant property of solid crystalline materials. Concerning the point of practical features or applicability any accurate... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7245 |
SubjectTerms | Biochemistry Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Crystal defects Crystal structure Crystallinity Crystallites Hydroxyapatite Industrial Chemistry/Chemical Engineering Materials Science Mathematical models Medicinal Chemistry Short Communication Straight lines |
Title | New analytical models for precise calculation of crystallite size: application to synthetic hydroxyapatite and natural eggshell crystalline materials |
URI | https://link.springer.com/article/10.1007/s11696-022-02377-9 https://www.proquest.com/docview/2724908363 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLAgPkWhIA9sECmxEzthqyqqioGJSt0iOzkXpCqtmjCU_8H_5ewmDSBAYsiS2I6UO_ve5e7eEXKt0amIlYq9ED01dFC09lQcgaellBnikYCDS5B9FKNx-DCJJnVRWNlkuzchSXdSt8VugXAJswwvbgOP22QnQt_dJnKNWb_RIoYGEK3oxkiHoeWjERs3LESI4q8jmMLDgawupfn5HV_NVYtBv4VNnTUaHpD9GkbS_lruh2QLiiOyO2i6tx2Tdzy9qLKMI-5nNXUdb0qKEJUuLKFFCRRvZ3XzLjo3NFuuECnObE0yLV_e4I5-Cm7Tak7LVYFoEZejz6vcZr8om42No1WRU0cQiu-B6bS0uaXtcgVQRMVrRT8h4-H902Dk1S0YvAz3ZuUpgVYOjPQh9rM8kTlPFAMlmDGJQtcNtAoCzXUmDde5hAjdN8lzwAmBRrDGT0mnmBdwRqhgiTLClwy4sXxKSai4r7MY1cFEsYEuCZovnWY1P7ltkzFLW2ZlK50UpZM66aRJl9xs5izW7Bx_ju41AkzrnVqmTDIb--SCd8ltI9T28e-rnf9v-AXZY1avXBljj3Sq5StcIp6p9JVT3w-GmOu2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgnqI8PbBBpMRO7YStqkAFChOV2CI7OQMSSisShvI_-L-cnaQBBEgMWRLbkXJn33e5u-8IOdboVERKRV6Inho6KFp7KuqBp6WUKeKRgINLkL0Vw3F4dd-7r4vCiibbvQlJupO6LXYLhEuYZXhxG3hcJEsIBiKry2PWb7SIoQFEKzo30mFo-WjE3A0LEaL4VQRTeDiQ1aU0P7_jq7lqMei3sKmzRhdrZLWGkbRfyX2dLEC-QZYHTfe2TfKOpxdVlnHE_aymruNNQRGi0qkltCiA4u20bt5FJ4amLzNEis-2JpkWT29wRj8Ft2k5ocUsR7SIy9HHWWazX5TNxsbRKs-oIwjF98DDQ2FzS9vlcqCIiitF3yLji_O7wdCrWzB4Ke7N0lMCrRwY6UPkp1ksMx4rBkowY2KFrhtoFQSa61QarjMJPXTfJM8AJwQawRrfJp18ksMOoYLFyghfMuDG8inFoeK-TiNUB9OLDHRJ0HzpJK35yW2bjOekZVa20klQOomTThJ3ycl8zrRi5_hz9H4jwKTeqUXCJLOxTy54l5w2Qm0f_77a7v-GH5Hl4d3NKBld3l7vkRVmdcyVNO6TTvnyCgeIbUp96FT5A89F7qk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEG58JOrF-IzrswdvSoSWbcGbUTe-Yjy4iTfSwlRNNuxG8LD-D_-v0wKLGjXxwAX6SJgp8w0z8w0h-xqdikipyAvRU0MHRWtPRV3wtJQyRTwScHAJsrfioh9ePXQfPlXxu2z3JiRZ1TRYlqa8PBpl5qgtfAuES55leHEbhJwms6GtBkaN7rOTRqMYGkO0qBODHYaWm0ZMXLIQ4YpfRTOFhwNZXVbz8x5fTVeLR7-FUJ1l6i2RxRpS0pNKB5bJFOQrZP606eS2St7xS0aVZR9xP66p635TUISrdGTJLQqgeDutG3nRoaHpyxhR48DWJ9Pi-Q2O6adANy2HtBjniBxxOfo0zmwmjLKZ2Tha5Rl1ZKG4Dzw-FjbPtF0uB4oIuVL6NdLvnd-fXnh1OwYvxXNaekqgxQMjfYj8NItlxmPFQAlmTKzQjQOtgkBznUrDdSahi66c5BnghEAjcOPrZCYf5rBBqGCxMsKXDLix3EpxqLiv0whVw3QjAx0SNG86SWuuctsyY5C0LMtWOglKJ3HSSeIOOZjMGVVMHX-O3m4EmNSntkiYZDYOygXvkMNGqO3j31fb_N_wPTJ3d9ZLbi5vr7fIArMq5qobt8lM-fIKOwhzSr3rNPkDeH7y3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+analytical+models+for+precise+calculation+of+crystallite+size%3A+application+to+synthetic+hydroxyapatite+and+natural+eggshell+crystalline+materials&rft.jtitle=Chemical+papers&rft.au=Hossain+Md+Sahadat&rft.au=Mahmud+Monika&rft.au=Mobarak%2C+Mashrafi+Bin&rft.au=Sultana+Sazia&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0366-6352&rft.eissn=1336-9075&rft.volume=76&rft.issue=11&rft.spage=7245&rft.epage=7251&rft_id=info:doi/10.1007%2Fs11696-022-02377-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon |