Generalized Weinstein Sobolev–Gevrey spaces and pseudo-differential operators

The first subject of this paper is to analyze and introduce a class of symbols and their associated pseudo-differential operators. In this case, we consider the generalized Weinstein operator Δ W d , α , n (for n = 0 , we regain the classical Weinstein operator Δ W α , d ). The Weinstein operator, m...

Full description

Saved in:
Bibliographic Details
Published inRendiconti del Circolo matematico di Palermo Vol. 72; no. 1; pp. 273 - 292
Main Authors Ben Mohamed, Hassen, Chaffar, Mohamed Moktar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0009-725X
1973-4409
DOI10.1007/s12215-021-00664-0

Cover

Loading…
Abstract The first subject of this paper is to analyze and introduce a class of symbols and their associated pseudo-differential operators. In this case, we consider the generalized Weinstein operator Δ W d , α , n (for n = 0 , we regain the classical Weinstein operator Δ W α , d ). The Weinstein operator, mostly referred to as the Laplace–Bessel differential operator is now known as an important operator in analysis, because of its applications in pure and applied mathematics, especially in fluid mechanics. We introduce and study the Sobolev–Gevrey spaces associated with the generalized Weinstein operator and investigate their properties. Next, we introduce certain classes of symbols and their associated pseudo-differential operators. We show that these pseudo-differential operators naturally act on the generalized Weinstein Sobolev–Gevrey spaces.
AbstractList The first subject of this paper is to analyze and introduce a class of symbols and their associated pseudo-differential operators. In this case, we consider the generalized Weinstein operator Δ W d , α , n (for n = 0 , we regain the classical Weinstein operator Δ W α , d ). The Weinstein operator, mostly referred to as the Laplace–Bessel differential operator is now known as an important operator in analysis, because of its applications in pure and applied mathematics, especially in fluid mechanics. We introduce and study the Sobolev–Gevrey spaces associated with the generalized Weinstein operator and investigate their properties. Next, we introduce certain classes of symbols and their associated pseudo-differential operators. We show that these pseudo-differential operators naturally act on the generalized Weinstein Sobolev–Gevrey spaces.
The first subject of this paper is to analyze and introduce a class of symbols and their associated pseudo-differential operators. In this case, we consider the generalized Weinstein operator ΔWd,α,n (for n=0, we regain the classical Weinstein operator ΔWα,d). The Weinstein operator, mostly referred to as the Laplace–Bessel differential operator is now known as an important operator in analysis, because of its applications in pure and applied mathematics, especially in fluid mechanics. We introduce and study the Sobolev–Gevrey spaces associated with the generalized Weinstein operator and investigate their properties. Next, we introduce certain classes of symbols and their associated pseudo-differential operators. We show that these pseudo-differential operators naturally act on the generalized Weinstein Sobolev–Gevrey spaces.
Author Ben Mohamed, Hassen
Chaffar, Mohamed Moktar
Author_xml – sequence: 1
  givenname: Hassen
  surname: Ben Mohamed
  fullname: Ben Mohamed, Hassen
  email: hassenbenmohamed@yahoo.fr
  organization: Department of Mathematics, Faculty of Sciences of Gabes
– sequence: 2
  givenname: Mohamed Moktar
  surname: Chaffar
  fullname: Chaffar, Mohamed Moktar
  organization: Department of Mathematics, Faculty of Sciences of Gabes
BookMark eNp9kMFKAzEQhoNUsK2-gKcFz9FJNpvdHKVoFQo9qOgtZHcnsmVN1mRbqCffwTf0SVytIHjoZebyf_8M34SMnHdIyCmDcwaQX0TGOcsocEYBpBQUDsiYqTylQoAakTEAKJrz7OmITGJcDSEGhRqT5RwdBtM2b1gnj9i42A8jufOlb3Hz-f4xx03AbRI7U2FMjKuTLuK69rRurMWArm9Mm_huKOl9iMfk0Jo24snvnpKH66v72Q1dLOe3s8sFrVKmemokCJC8SmUpSo42t8BLgMqKzGTMlJXMQbBUGAVCQsHQprliKEppDbBKplNytuvtgn9dY-z1yq-DG05qnudMKVFINaT4LlUFH2NAq7vQvJiw1Qz0tzi9E6cHcfpHnIYBKv5BVdObvvGuD6Zp96PpDo3DHfeM4e-rPdQX9ymFbQ
CitedBy_id crossref_primary_10_1007_s12215_022_00827_7
crossref_primary_10_1080_10652469_2024_2443503
crossref_primary_10_1007_s11785_023_01342_y
crossref_primary_10_1007_s12215_023_00906_3
crossref_primary_10_1007_s13226_025_00745_1
Cites_doi 10.1016/j.na.2014.03.011
10.1007/s10114-012-0042-2
10.1007/s13226-020-0490-9
10.1007/s11868-020-00328-0
10.1016/j.jmaa.2010.06.007
10.1007/s11868-019-00313-2
10.12816/0041783
10.14445/22315373/IJMTT-V67I3P505
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s12215-021-00664-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1973-4409
EndPage 292
ExternalDocumentID 10_1007_s12215_021_00664_0
GroupedDBID --Z
-EM
-Y2
-~C
-~X
06D
0R~
0VY
123
199
1SB
29P
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
40D
5VS
67Z
6NX
78A
875
8TC
8UJ
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACHXU
ACIWK
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FSGXE
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RSV
RZK
S1Z
S26
S27
S28
S3B
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ACSTC
ADHKG
AETEA
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-a604062c36b4b2ef7f02b00cf45a51abc6704134a9046081ef3791e4b6fa01c63
IEDL.DBID U2A
ISSN 0009-725X
IngestDate Fri Jul 25 11:07:55 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 02:18:42 EDT 2025
Fri Feb 21 02:44:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Generalized Weinstein transform
Generalized Weinstein operator
Pseudo-differential operators
Sobolev–Gevrey spaces
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a604062c36b4b2ef7f02b00cf45a51abc6704134a9046081ef3791e4b6fa01c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2771994869
PQPubID 2044159
PageCount 20
ParticipantIDs proquest_journals_2771994869
crossref_primary_10_1007_s12215_021_00664_0
crossref_citationtrail_10_1007_s12215_021_00664_0
springer_journals_10_1007_s12215_021_00664_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Rendiconti del Circolo matematico di Palermo
PublicationTitleAbbrev Rend. Circ. Mat. Palermo, II. Ser
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Benameur (CR3) 2014; 103
CR6
CR5
Saoudi (CR12) 2020; 11
Benameur, Jlali (CR4) 2016; 104
Aboulez, Achak, Daher, Loualid (CR1) 2015; 9
Mohamed, Bettaibi, Jah (CR8) 2011; 5
Saoudi, Bochra (CR13) 2020; 11
Mohamed, Gasmi, Bettaibi (CR9) 2016; 1
Mohamed, Ghribi (CR7) 2013; 29
Benameur (CR2) 2010; 371
Saitoh (CR10) 1997
Saoudi (CR11) 2020; 51
A Aboulez (664_CR1) 2015; 9
664_CR6
664_CR5
S Saitoh (664_CR10) 1997
HB Mohamed (664_CR9) 2016; 1
HB Mohamed (664_CR8) 2011; 5
J Benameur (664_CR3) 2014; 103
A Saoudi (664_CR11) 2020; 51
HB Mohamed (664_CR7) 2013; 29
J Benameur (664_CR2) 2010; 371
J Benameur (664_CR4) 2016; 104
A Saoudi (664_CR12) 2020; 11
A Saoudi (664_CR13) 2020; 11
References_xml – volume: 103
  start-page: 87
  year: 2014
  end-page: 97
  ident: CR3
  article-title: On the exponential type of Navier–Stokes equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2014.03.011
– volume: 9
  start-page: 19
  issue: 1
  year: 2015
  end-page: 28
  ident: CR1
  article-title: Harmonic analysis associated with the generalized Weinstein operator
  publication-title: Int. J. Anal. Appl.
– volume: 29
  start-page: 591
  issue: 3
  year: 2013
  end-page: 608
  ident: CR7
  article-title: Weinstein-Sobolev spaces of exponential type and applications
  publication-title: Acta Math. Sin. Engl. Ser.
  doi: 10.1007/s10114-012-0042-2
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  end-page: 19
  ident: CR9
  article-title: Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets
  publication-title: An. St. Univ. Ovidius Constanta.
– year: 1997
  ident: CR10
  publication-title: Integral Transform, Reproducing Kernels and Their Applications, Pitman Research Notes in Mathematics Series
– volume: 5
  start-page: 1353
  issue: 28
  year: 2011
  end-page: 1373
  ident: CR8
  article-title: Sobolev type spaces associated with the Weinstein operator
  publication-title: Int. J. Math. Anal.
– ident: CR6
– volume: 104
  start-page: 1
  year: 2016
  end-page: 13
  ident: CR4
  article-title: Long time decay for 3D Navier–Stokes equations in Sobolev–Gevrey spaces
  publication-title: Electron. J. Differ. Equ.
– ident: CR5
– volume: 51
  start-page: 1697
  issue: 4
  year: 2020
  end-page: 1712
  ident: CR11
  article-title: A variation of uncertainty principles in Weinstein setting
  publication-title: Indian J. Pure Appl. Math.
  doi: 10.1007/s13226-020-0490-9
– volume: 11
  start-page: 675
  year: 2020
  end-page: 702
  ident: CR13
  article-title: Boudeness and compactness of localization operators for Weinstein–Winer transform
  publication-title: J. Pseudo Differ. Oper. Appl.
  doi: 10.1007/s11868-020-00328-0
– volume: 371
  start-page: 719
  year: 2010
  end-page: 727
  ident: CR2
  article-title: On the blow-up criterion of 3D Navier–Stokes equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.06.007
– volume: 11
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR12
  article-title: On the Weinstein–Wigner transform and Weinstein–Weyl transform
  publication-title: J. Pseudo Differ. Oper. Appl.
  doi: 10.1007/s11868-019-00313-2
– ident: 664_CR6
  doi: 10.12816/0041783
– volume: 11
  start-page: 1
  year: 2020
  ident: 664_CR12
  publication-title: J. Pseudo Differ. Oper. Appl.
  doi: 10.1007/s11868-019-00313-2
– volume: 11
  start-page: 675
  year: 2020
  ident: 664_CR13
  publication-title: J. Pseudo Differ. Oper. Appl.
  doi: 10.1007/s11868-020-00328-0
– volume: 29
  start-page: 591
  issue: 3
  year: 2013
  ident: 664_CR7
  publication-title: Acta Math. Sin. Engl. Ser.
  doi: 10.1007/s10114-012-0042-2
– volume-title: Integral Transform, Reproducing Kernels and Their Applications, Pitman Research Notes in Mathematics Series
  year: 1997
  ident: 664_CR10
– ident: 664_CR5
  doi: 10.14445/22315373/IJMTT-V67I3P505
– volume: 51
  start-page: 1697
  issue: 4
  year: 2020
  ident: 664_CR11
  publication-title: Indian J. Pure Appl. Math.
  doi: 10.1007/s13226-020-0490-9
– volume: 5
  start-page: 1353
  issue: 28
  year: 2011
  ident: 664_CR8
  publication-title: Int. J. Math. Anal.
– volume: 104
  start-page: 1
  year: 2016
  ident: 664_CR4
  publication-title: Electron. J. Differ. Equ.
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 664_CR9
  publication-title: An. St. Univ. Ovidius Constanta.
– volume: 103
  start-page: 87
  year: 2014
  ident: 664_CR3
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2014.03.011
– volume: 9
  start-page: 19
  issue: 1
  year: 2015
  ident: 664_CR1
  publication-title: Int. J. Anal. Appl.
– volume: 371
  start-page: 719
  year: 2010
  ident: 664_CR2
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.06.007
SSID ssj0061089
Score 2.2923665
Snippet The first subject of this paper is to analyze and introduce a class of symbols and their associated pseudo-differential operators. In this case, we consider...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Algebra
Analysis
Applications of Mathematics
Differential equations
Fluid mechanics
Geometry
Mathematics
Mathematics and Statistics
Operators (mathematics)
Symbols
Title Generalized Weinstein Sobolev–Gevrey spaces and pseudo-differential operators
URI https://link.springer.com/article/10.1007/s12215-021-00664-0
https://www.proquest.com/docview/2771994869
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDAgnqJQkAc2sJQ4jp2MFaJUSMAAFd0ivyJVqpKKtB2Y-A_8Q34J5zRuBAIkFi9xPNz57j7rHh9C54zLkNOavYxqwoSyRAIwISrnuQxNImB11Rb3fDBkt6N41DSFVb7a3acka0_dNrtRCE_ElRS4OMkIPNQ3Yni7u0K-Ie15_wt4IEk9f5qg8ahplfn5jK_hqMWY39KidbTp76DtBibi3lKvu2jNFnto6241Y7XaRw_NxOjxqzX42Y4B58GCH0tVTuzi4-39xi5ATxhcBvgCLAuDp5Wdm5J4UhQw7gkup7bOtFcHaNi_froakIYegWiwmxmRHAyQUx1xxRS1ucgDCkakcxbLOJRKcxFAiGIydcnPJLR5JNLQMgVaCELNo0O0XpSFPULYAOoAZJhHUkl4wQSpibSVLI4NV0antoNCL6VMN7PDHYXFJGunHjvJZiDZrJZsFnTQxeqf6XJyxp-7u174WWNFVUaFcKOLE5520KVXSPv599OO_7f9BG06FvllMXYXrc9e5vYUsMZMndVX6xPdXsox
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQGYAB8SsKBTKwgaXEcexkrBClQFsGWtEtsh1HqlQlFWk7MPEOvCFPwjmNW4EAicVLHA93vrvPup8PoQvKhMdIyV5GFKZcaiwAmGCZslR4SchhNdUWPdYe0PthMKyawgpb7W5TkqWnXjW7EQhP2JQUmDhJMTzU1wEMhOZeD0jT-l_AA2Fk-dM4CYZVq8zPZ3wNRyuM-S0tWkab1g7armCi01zodRet6WwPbXWXM1aLffRYTYweverEedYjwHmwOE-5zMd6_vH2fqvnoCcHXAb4AkdkiTMp9CzJsSVFAeMeO_lEl5n24gANWjf96zau6BGwAruZYsHAABlRPpNUEp3y1CVgRCqlgQg8IRXjLoQoKiKT_Aw9nfo88jSVoAXXU8w_RLUsz_QRchJAHYAMU19IAS8YN0p8pQUNgoTJREW6jjwrpVhVs8MNhcU4Xk09NpKNQbJxKdnYraPL5T-TxeSMP3c3rPDjyoqKmHBuRheHLKqjK6uQ1effTzv-3_ZztNHudztx5673cII2DaP8ojC7gWrTl5k-BdwxlWflNfsEkDDNJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGK1ag7edGmy2WySY1FrfVVBi72FfQUKJSn2cfDkf_Af-kuczaNRUcHLXrLZw8zOzLfMzDcIHVHGHUay6WVEYuoLjTkAEyxiFnNHBT6sptqiyzo9etX3-p-6-LNq9zIlmfc0GJamZNIcqbhZNb4RCFXYlBeYmEkxPNoXwR075vnVI63SFwM2CMJylppPvH7RNvPzGV9DU4U3v6VIs8jTXkOrBWS0WrmO19GCTjbQyu2cb3W8ie4K9ujBi1bWkx4A5oPFekhFOtSz99e3Cz0DnVngPsAvWDxR1mispyrF5YAUMPShlY50lnUfb6Fe-_zxtIOLUQlYgg1NMGdgjIxIlwkqiI792CZgUDKmHvccLiTzbZAP5aFJhAaOjl0_dDQVoBHbkczdRrUkTfQOshQgEECJscsFh9eMHSpXak49TzGhZKjryCmlFMmCR9yMsxhGFQOykWwEko0yyUZ2HR3P_xnlLBp_7m6Uwo8KixpHxPcNjXHAwjo6KRVSff79tN3_bT9ES_dn7ejmsnu9h5bNcPm8RruBapPnqd4HCDIRB9kt-wCojdFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Weinstein+Sobolev%E2%80%93Gevrey+spaces+and+pseudo-differential+operators&rft.jtitle=Rendiconti+del+Circolo+matematico+di+Palermo&rft.au=Ben+Mohamed%2C+Hassen&rft.au=Chaffar%2C+Mohamed+Moktar&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=0009-725X&rft.eissn=1973-4409&rft.volume=72&rft.issue=1&rft.spage=273&rft.epage=292&rft_id=info:doi/10.1007%2Fs12215-021-00664-0&rft.externalDocID=10_1007_s12215_021_00664_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-725X&client=summon