Strong mixed-integer programming formulations for trained neural networks
We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial i...
Saved in:
Published in | Mathematical programming Vol. 183; no. 1-2; pp. 3 - 39 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. We present a generic framework, which may be of independent interest, that provides a way to construct sharp or ideal formulations for the maximum of
d
affine functions over arbitrary polyhedral input domains. We apply this result to derive MIP formulations for a number of the most popular nonlinear operations (e.g. ReLU and max pooling) that are strictly stronger than other approaches from the literature. We corroborate this computationally, showing that our formulations are able to offer substantial improvements in solve time on verification tasks for image classification networks. |
---|---|
AbstractList | We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. We present a generic framework, which may be of independent interest, that provides a way to construct sharp or ideal formulations for the maximum of d affine functions over arbitrary polyhedral input domains. We apply this result to derive MIP formulations for a number of the most popular nonlinear operations (e.g. ReLU and max pooling) that are strictly stronger than other approaches from the literature. We corroborate this computationally, showing that our formulations are able to offer substantial improvements in solve time on verification tasks for image classification networks. We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. We present a generic framework, which may be of independent interest, that provides a way to construct sharp or ideal formulations for the maximum of d affine functions over arbitrary polyhedral input domains. We apply this result to derive MIP formulations for a number of the most popular nonlinear operations (e.g. ReLU and max pooling) that are strictly stronger than other approaches from the literature. We corroborate this computationally, showing that our formulations are able to offer substantial improvements in solve time on verification tasks for image classification networks. |
Author | Vielma, Juan Pablo Anderson, Ross Ma, Will Huchette, Joey Tjandraatmadja, Christian |
Author_xml | – sequence: 1 givenname: Ross surname: Anderson fullname: Anderson, Ross organization: Google Inc – sequence: 2 givenname: Joey orcidid: 0000-0003-3552-0316 surname: Huchette fullname: Huchette, Joey email: joehuchette@rice.edu organization: Rice University – sequence: 3 givenname: Will orcidid: 0000-0002-2420-4468 surname: Ma fullname: Ma, Will organization: Columbia University – sequence: 4 givenname: Christian surname: Tjandraatmadja fullname: Tjandraatmadja, Christian organization: Google Inc – sequence: 5 givenname: Juan Pablo surname: Vielma fullname: Vielma, Juan Pablo organization: Google Inc, Massachusetts Institute of Technology |
BookMark | eNp9kF1LwzAUhoNMcE7_gFcFr6Mn3-2lDD8GAy_U65C26ehsk5m0qP_ebBUEL3Z1CHmf5D3POZo57yxCVwRuCIC6jQQIKAwUMBCuOBYnaE44k5hLLmdoDkAFFpLAGTqPcQsAhOX5HK1ehuDdJuvbL1vj1g12Y0O2C34TTN-36abxoR87M7Texf0hG4Jpna0zZ8dgujSGTx_e4wU6bUwX7eXvXKC3h_vX5RNePz-ulndrXDFSDNgIw5RiSkLT1KIipSCECporLqlVsiwaU4gcWClkbYEbCyWnXJU1JWVTQcUW6Hp6N5X8GG0c9NaPwaUvNeVM5DwvOKRUPqWq4GMMttFVOxyW2NfvNAG9F6cncTqJ0wdxWiSU_kN3oe1N-D4OsQmKKeySw79WR6gfbq2Cog |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3334976 crossref_primary_10_2514_1_A36122 crossref_primary_10_1007_s10458_021_09529_3 crossref_primary_10_3389_fenrg_2021_719658 crossref_primary_10_1137_22M1542313 crossref_primary_10_1287_ijoc_2022_0312 crossref_primary_10_1016_j_tre_2023_103379 crossref_primary_10_1007_s10107_022_01874_9 crossref_primary_10_1016_j_compchemeng_2023_108411 crossref_primary_10_1088_1361_6560_ad2d7e crossref_primary_10_1007_s10994_023_06482_y crossref_primary_10_3389_fenrg_2024_1514705 crossref_primary_10_2139_ssrn_3179994 crossref_primary_10_3390_math10203902 crossref_primary_10_1287_ijoo_2024_0033 crossref_primary_10_1145_3527319 crossref_primary_10_3390_en16165913 crossref_primary_10_1287_opre_2022_0150 crossref_primary_10_1016_j_ejor_2024_06_038 crossref_primary_10_1109_TPWRS_2022_3223418 crossref_primary_10_2139_ssrn_2986630 crossref_primary_10_1007_s11634_022_00508_4 crossref_primary_10_1016_j_neucom_2024_127936 crossref_primary_10_1007_s10957_023_02317_x crossref_primary_10_1016_j_compchemeng_2024_108660 crossref_primary_10_1016_j_compchemeng_2022_107970 crossref_primary_10_1016_j_compchemeng_2022_107850 crossref_primary_10_1016_j_neucom_2023_126995 crossref_primary_10_1016_j_disopt_2023_100795 crossref_primary_10_1109_TCAD_2024_3447577 crossref_primary_10_1287_ijoc_2023_0281 crossref_primary_10_1016_j_ejtl_2023_100105 crossref_primary_10_1137_22M1489332 crossref_primary_10_1109_TPAMI_2024_3416514 crossref_primary_10_1007_s10898_024_01434_9 crossref_primary_10_1287_mnsc_2020_3741 crossref_primary_10_1287_opre_2022_0035 crossref_primary_10_1016_j_compchemeng_2024_108596 crossref_primary_10_1287_msom_2022_0617 crossref_primary_10_1111_poms_13877 crossref_primary_10_1287_opre_2021_0707 crossref_primary_10_1016_j_ces_2022_117469 crossref_primary_10_1016_j_compchemeng_2023_108518 crossref_primary_10_1007_s10898_022_01228_x crossref_primary_10_1287_ijoc_2023_1285 crossref_primary_10_1287_ijoc_2023_0153 crossref_primary_10_2139_ssrn_4217092 crossref_primary_10_1016_j_dche_2024_100200 crossref_primary_10_1287_ijoc_2020_1023 crossref_primary_10_1145_3498704 crossref_primary_10_1109_TSTE_2022_3223764 crossref_primary_10_1287_trsc_2023_0438 crossref_primary_10_1016_j_ces_2024_120165 crossref_primary_10_1109_TAC_2023_3283213 crossref_primary_10_1016_j_orl_2024_107194 crossref_primary_10_1016_j_conengprac_2024_105841 crossref_primary_10_1016_j_ejor_2023_04_041 crossref_primary_10_1016_j_apm_2023_04_032 crossref_primary_10_1016_j_compchemeng_2024_108684 crossref_primary_10_1016_j_compchemeng_2023_108347 crossref_primary_10_1016_j_compchemeng_2024_108764 crossref_primary_10_1109_TSTE_2023_3268140 crossref_primary_10_1016_j_eswa_2023_120895 crossref_primary_10_1016_j_ifacol_2024_09_011 crossref_primary_10_1109_TSTE_2023_3274735 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_1287_opre_2021_0034 crossref_primary_10_1007_s10107_021_01652_z crossref_primary_10_1016_j_compchemeng_2024_108807 crossref_primary_10_1016_j_eswa_2023_121022 |
Cites_doi | 10.1007/BFb0121119 10.24963/ijcai.2017/346 10.1007/s10107-015-0891-4 10.1007/s10957-018-1396-0 10.1007/s10107-018-1301-5 10.1007/s100970050003 10.24963/ijcai.2017/104 10.1007/978-1-4757-3532-1 10.2139/ssrn.3159473 10.24963/ijcai.2018/772 10.1007/978-3-319-68167-2_19 10.1038/nature14539 10.1137/130915303 10.1287/mnsc.1080.0951 10.1038/nbt.3300 10.1109/5.726791 10.1016/S0166-218X(98)00136-X 10.1137/0606047 10.1007/s10601-018-9285-6 10.1007/s10601-015-9234-6 10.1609/aaai.v26i1.8138 10.1093/bioinformatics/btw255 10.1007/s10107-018-1258-4 10.1109/MSP.2017.2743240 10.1016/j.compchemeng.2015.02.013 10.1007/s10589-011-9424-0 10.1007/s10107-009-0295-4 10.1007/978-3-642-23786-7_11 10.1109/SP.2017.49 10.1287/opre.34.4.595 10.1007/978-3-662-21708-5 10.1016/j.artint.2016.01.005 10.1007/978-3-319-77935-5_9 10.1007/BFb0121015 10.1109/EuroSP.2016.36 10.1109/CVPR.2010.5539963 10.1016/j.compchemeng.2019.106580 10.1007/978-3-319-68167-2_18 10.1007/s10589-016-9847-8 10.1007/BF02186369 10.1007/978-3-319-63387-9_5 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-020-01474-5 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 39 |
ExternalDocumentID | 10_1007_s10107_020_01474_5 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c319t-a5a3773760ffd5c1b51125287462e76b9fa95803b56de04ae0b4247bd21bfc0c3 |
IEDL.DBID | U2A |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:49:16 EDT 2025 Tue Jul 01 02:15:12 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:32:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Formulations Deep learning Mixed-integer programming 90C11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a5a3773760ffd5c1b51125287462e76b9fa95803b56de04ae0b4247bd21bfc0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2420-4468 0000-0003-3552-0316 |
PQID | 2435848940 |
PQPubID | 25307 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2435848940 crossref_citationtrail_10_1007_s10107_020_01474_5 crossref_primary_10_1007_s10107_020_01474_5 springer_journals_10_1007_s10107_020_01474_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled systems: a case study on thermal aware workload dispatching. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 427–433 (2012) LombardiMMilanoMBartoliniAEmpirical decision model learningArtif. Intell.201724434336736060041404.68113 BertsimasDTsitsiklisJIntroduction to Linear Optimization1997Belmont, MAAthena Scientific VielmaJPNemhauserGModeling disjunctive constraints with a logarithmic number of binary variables and constraintsMath. Program.20111281–2497228109521218.90137 Haneveld, W.K.K.: Robustness against dependence in pert: an application of duality and distributions with known marginals. In: Stochastic Programming 84 Part I, pp. 153–182. Springer (1986) Hanin, B.: Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). arXiv preprint arXiv:1708.02691 Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arxiv:1412.6980 ZengHEdwardsMDLiuGGiffordDKConvolutional neural network architectures for predicting DNA-protein bindingBioinformatics20163212121127 GrimstadBAnderssonHReLU networks as surrogate models in mixed-integer linear programsComput. Chem. Eng.2019131106580 Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., Boutilier, C.: CAQL: Continuous action Q-learning (2019). arxiv:1909.12397 VielmaJPMixed integer linear programming formulation techniquesSIAM Rev.201557135733065821338.90277 Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017) BalasEDisjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.19988934416630990921.90118 Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear domains. In: Advances in Neural Information Processing Systems, pp. 6276–6286 (2017) Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. In: A. Lodi, V. Nagarajan (eds.) Proceedings of the 20th Conference on Integer Programming and Combinatorial Optimization, pp. 27–42. Springer International Publishing, Cham (2019). arxiv:1811.08359 Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014) Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer programming. In: International Conference on Learning Representations (2019) Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial defenses. In: 32nd Conference on Neural Information Processing Systems (2018) HuberBRambauJSantosFThe Cayley Trick, lifting subdivisions and the Bohne-Dress theorem of zonotopal tiltingsJ. Eur. Math. Soc.20002217919817633040988.52017 Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://distill.pub/2017/feature-visualization. Accessed 6 Feb 2020 Huchette, J.: Advanced mixed-integer programming formulations: methodology, computation, and application. Ph.D. thesis, Massachusetts Institute of Technology (2018) JeroslowRGAlternative formulations of mixed integer programsAnn. Oper. Res.198812241276948042 Cheng, C.H., Nührenberg, G., Ruess, N.: Maximum resilience of artifical neural networks. In: International Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017) WeissGStochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliabilityOper. Res.19863445956058742980609.90093 SchweidtmannAMMitsosAGlobal deterministic optimization with artificial neural networks embeddedJ. Optim. Theory Appl.201918092594839139161407.90263 VielmaJPEmbedding formulations and complexity for unions of polyhedraManage. Sci.2018641044714965 Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., Kohli, P.: Training verified learners with learned verifiers (2018). arxiv:1805.10265 VielmaJPSmall and strong formulations for unions of convex sets from the Cayley embeddingMath. Program.2018177215339871931418.90180 Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural networks (2019). arxiv:1903.06758 Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings IJCAI, pp. 5472–5478 (2018) Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, pp. 2613–2621 (2016) Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: NASA Formal Methods Symposium (2018) Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying robustness to adversarial examples. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 10,900–10,910. Curran Associates Inc. (2018) Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: International Conference on the Principles and Practice of Constraint Programming, pp. 115–129. Springer, Berlin (2011) Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language (2013) TrespalaciosFGrossmannIEImproved big-M reformulation for generalized disjunctive programsComput. Chem. Eng.20157698103 Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2559–2566 (2010) LombardiMGualandiSA lagrangian propagator for artificial neural networks in constraint programmingConstraints201621443546235513211368.90148 Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural networks (2017). arxiv:1706.07351 Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015). arxiv:1508.06576 LeCunYBengioYHintonGDeep learningNature20155217553436444 Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial robustness verification via inducing ReLU stability. In: International Conference on Learning Representations (2019) Bienstock, D., Muñoz, G., Pokutta, S.: Principled deep neural network training through linear programming (2018). arXiv preprint arXiv:1810.03218 Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier networks (2018). arxiv:1810.03370 TawarmalaniMSahinidisNConvexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications2002BerlinSpringer1031.90022 AtamtürkAGómezAStrong formulations for quadratic optimization with M-matrices and indicator variablesMath. Program.201817014117638165611391.90423 GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009 Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear regions of deep neural networks. In: Thirty-Fifth International Conference on Machine Learning (2018) Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural networks (2015). https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 6 Feb 2020 Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811. PMLR, Long Beach, CA (2019). http://proceedings.mlr.press/v97/engstrom19a.html. Accessed 6 Feb 2020 Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large discrete action spaces (2015). arxiv:1512.07679 Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2016). arXiv preprint arXiv:1611.01491 HijaziHBonamiPCornuéjolsGOuorouAMixed-integer nonlinear programs featuring “on/off” constraintsComput. Optim. Appl.201252253755829257851250.90058 Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural networks. In: International Conference on Learning Representations (2019) Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning (2018) Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relaxation barrier to tight robustness verification of neural networks (2019). arxiv:1902.08722 ArulkumaranKDeisenrothMPBrundageMBharathAADeep reinforcement learning: a brief surveyIEEE Signal Process. Mag.20173462638 Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 1319–1327 (2013) Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 146–155. PMLR, International Convention Centre, Sydney (2017) BonamiPLodiATramontaniAWieseSOn mathematical programming with indicator constraintsMath. Program.2015151119122333475541328.90086 Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verification of deep networks. In: Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (2018) BelottiPBonamiPFischettiMLodiAMonaciMNogales-GomezASalvagninDOn handling indicator constraints in mixed integer programmingComput. Optim. Appl.201665354556635696101357.90094 BalasEDisjunctive programming and a hierarchy E Balas (1474_CR9) 1998; 89 1474_CR52 1474_CR50 1474_CR12 1474_CR56 1474_CR11 1474_CR55 1474_CR10 B Grimstad (1474_CR34) 2019; 131 1474_CR54 1474_CR15 M Lombardi (1474_CR51) 2016; 21 1474_CR59 JP Vielma (1474_CR72) 2015; 57 1474_CR57 1474_CR19 1474_CR18 K Arulkumaran (1474_CR6) 2017; 34 G Weiss (1474_CR77) 1986; 34 B Alipanahi (1474_CR2) 2015; 33 F Trespalacios (1474_CR71) 2015; 76 CM Bishop (1474_CR16) 2006 R Jeroslow (1474_CR41) 1984; 22 1474_CR81 1474_CR80 M Tawarmalani (1474_CR69) 2002 1474_CR40 JP Vielma (1474_CR74) 2018; 177 1474_CR82 1474_CR45 RG Jeroslow (1474_CR42) 1988; 12 1474_CR44 1474_CR43 1474_CR47 K Natarajan (1474_CR58) 2009; 55 P Belotti (1474_CR13) 2016; 65 H Zeng (1474_CR83) 2016; 32 E Balas (1474_CR8) 1985; 6 1474_CR70 1474_CR30 H Hijazi (1474_CR37) 2012; 52 M Lombardi (1474_CR53) 2017; 244 1474_CR78 1474_CR33 1474_CR76 1474_CR31 AM Schweidtmann (1474_CR65) 2019; 180 1474_CR38 1474_CR36 1474_CR35 1474_CR79 Y LeCun (1474_CR49) 1998; 86 B Huber (1474_CR39) 2000; 2 B Korte (1474_CR46) 2000 1474_CR1 I Goodfellow (1474_CR32) 2016 1474_CR3 1474_CR5 1474_CR4 1474_CR63 D Bertsimas (1474_CR14) 1997 P Bonami (1474_CR17) 2015; 151 1474_CR62 1474_CR61 1474_CR60 1474_CR23 1474_CR67 1474_CR22 1474_CR66 1474_CR21 JP Vielma (1474_CR73) 2018; 64 1474_CR20 1474_CR64 1474_CR27 1474_CR26 1474_CR25 1474_CR24 1474_CR68 A Atamtürk (1474_CR7) 2018; 170 1474_CR28 M Fischetti (1474_CR29) 2018; 23 Y LeCun (1474_CR48) 2015; 521 JP Vielma (1474_CR75) 2011; 128 |
References_xml | – reference: BalasEDisjunctive programming: properties of the convex hull of feasible pointsDiscrete Appl. Math.19988934416630990921.90118 – reference: Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., Boutilier, C.: CAQL: Continuous action Q-learning (2019). arxiv:1909.12397 – reference: Mladenov, M., Boutilier, C., Schuurmans, D., Elidan, G., Meshi, O., Lu, T.: Approximate linear programming for logistic Markov decision processes. In: Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 2486–2493. Melbourne, Australia (2017) – reference: Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: International Conference on the Principles and Practice of Constraint Programming, pp. 115–129. Springer, Berlin (2011) – reference: Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piecewise linear neural network verification. In: Advances in Neural Information Processing Systems (2018) – reference: SchweidtmannAMMitsosAGlobal deterministic optimization with artificial neural networks embeddedJ. Optim. Theory Appl.201918092594839139161407.90263 – reference: Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: International Conference on Computer Aided Verification, pp. 97–117 (2017) – reference: Cheng, C.H., Nührenberg, G., Ruess, N.: Maximum resilience of artifical neural networks. In: International Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017) – reference: Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 146–155. PMLR, International Convention Centre, Sydney (2017) – reference: Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer programming. In: International Conference on Learning Representations (2019) – reference: Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://distill.pub/2017/feature-visualization. Accessed 6 Feb 2020 – reference: Hijazi, H., Bonami, P., Ouorou, A.: A note on linear on/off constraints (2014). http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf. Accessed 6 Feb 2020 – reference: Chen, L., Ma, W., Natarajan, K., Simchi-Levi, D., Yan, Z.: Distributionally robust linear and discrete optimization with marginals. Available at SSRN 3159473 (2018) – reference: Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: NASA Formal Methods Symposium (2018) – reference: Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 750–756 (2017) – reference: Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying robustness to adversarial examples. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 10,900–10,910. Curran Associates Inc. (2018) – reference: Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arxiv:1412.6980 – reference: BonamiPLodiATramontaniAWieseSOn mathematical programming with indicator constraintsMath. Program.2015151119122333475541328.90086 – reference: HijaziHBonamiPCornuéjolsGOuorouAMixed-integer nonlinear programs featuring “on/off” constraintsComput. Optim. Appl.201252253755829257851250.90058 – reference: Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017) – reference: VielmaJPSmall and strong formulations for unions of convex sets from the Cayley embeddingMath. Program.2018177215339871931418.90180 – reference: Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear domains. In: Advances in Neural Information Processing Systems, pp. 6276–6286 (2017) – reference: Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial defenses. In: 32nd Conference on Neural Information Processing Systems (2018) – reference: Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial robustness verification via inducing ReLU stability. In: International Conference on Learning Representations (2019) – reference: Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large discrete action spaces (2015). arxiv:1512.07679 – reference: LombardiMGualandiSA lagrangian propagator for artificial neural networks in constraint programmingConstraints201621443546235513211368.90148 – reference: Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., Kohli, P.: Training verified learners with learned verifiers (2018). arxiv:1805.10265 – reference: Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear regions of deep neural networks. In: Thirty-Fifth International Conference on Machine Learning (2018) – reference: BishopCMPattern Recognition and Machine Learning2006BerlinSpringer1107.68072 – reference: Huchette, J.: Advanced mixed-integer programming formulations: methodology, computation, and application. Ph.D. thesis, Massachusetts Institute of Technology (2018) – reference: Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2559–2566 (2010) – reference: Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transformations of deep neural networks (2019). arxiv:1905.11428 – reference: Hanin, B.: Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). arXiv preprint arXiv:1708.02691 – reference: ZengHEdwardsMDLiuGGiffordDKConvolutional neural network architectures for predicting DNA-protein bindingBioinformatics20163212121127 – reference: BalasEDisjunctive programming and a hierarchy of relaxations for discrete optimization problemsSIAM J. Algorithmic Discrete Methods1985634664867911750592.90070 – reference: LombardiMMilanoMBartoliniAEmpirical decision model learningArtif. Intell.201724434336736060041404.68113 – reference: Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2016). arXiv preprint arXiv:1611.01491 – reference: Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: IEEE European Symposium on Security and Privacy, pp. 372–387 (2016) – reference: GrimstadBAnderssonHReLU networks as surrogate models in mixed-integer linear programsComput. Chem. Eng.2019131106580 – reference: TrespalaciosFGrossmannIEImproved big-M reformulation for generalized disjunctive programsComput. Chem. Eng.20157698103 – reference: Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, pp. 2613–2621 (2016) – reference: Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011) – reference: LeCunYBengioYHintonGDeep learningNature20155217553436444 – reference: Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015). arxiv:1508.06576 – reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014) – reference: Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled systems: a case study on thermal aware workload dispatching. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 427–433 (2012) – reference: BelottiPBonamiPFischettiMLodiAMonaciMNogales-GomezASalvagninDOn handling indicator constraints in mixed integer programmingComput. Optim. Appl.201665354556635696101357.90094 – reference: AtamtürkAGómezAStrong formulations for quadratic optimization with M-matrices and indicator variablesMath. Program.201817014117638165611391.90423 – reference: TawarmalaniMSahinidisNConvexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications2002BerlinSpringer1031.90022 – reference: Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 1319–1327 (2013) – reference: JeroslowRLoweJModelling with integer variablesMath. Program. Study1984221671847742410554.90081 – reference: Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural networks (2015). https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 6 Feb 2020 – reference: Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning (2018) – reference: Bienstock, D., Muñoz, G., Pokutta, S.: Principled deep neural network training through linear programming (2018). arXiv preprint arXiv:1810.03218 – reference: Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811. PMLR, Long Beach, CA (2019). http://proceedings.mlr.press/v97/engstrom19a.html. Accessed 6 Feb 2020 – reference: https://developers.google.com/machine-learning/glossary/#logits. Accessed 6 Feb 2020 – reference: BertsimasDTsitsiklisJIntroduction to Linear Optimization1997Belmont, MAAthena Scientific – reference: Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolution network (2015). arxiv:1505.00853 – reference: Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings IJCAI, pp. 5472–5478 (2018) – reference: Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural networks (2017). arxiv:1706.07351 – reference: Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural networks (2019). arxiv:1903.06758 – reference: ArulkumaranKDeisenrothMPBrundageMBharathAADeep reinforcement learning: a brief surveyIEEE Signal Process. Mag.20173462638 – reference: FischettiMJoJDeep neural networks and mixed integer linear optimizationConstraints20182329630938146721402.90096 – reference: HuberBRambauJSantosFThe Cayley Trick, lifting subdivisions and the Bohne-Dress theorem of zonotopal tiltingsJ. Eur. Math. Soc.20002217919817633040988.52017 – reference: Weibel, C.: Minkowski sums of polytopes: combinatorics and computation. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2007) – reference: VielmaJPNemhauserGModeling disjunctive constraints with a logarithmic number of binary variables and constraintsMath. Program.20111281–2497228109521218.90137 – reference: Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural networks. In: International Conference on Learning Representations (2019) – reference: Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verification of deep networks. In: Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (2018) – reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009 – reference: Haneveld, W.K.K.: Robustness against dependence in pert: an application of duality and distributions with known marginals. In: Stochastic Programming 84 Part I, pp. 153–182. Springer (1986) – reference: Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relaxation barrier to tight robustness verification of neural networks (2019). arxiv:1902.08722 – reference: AlipanahiBDelongAWeirauchMTFreyBJPredicting the sequence specificities of DNA- and RNA-binding proteins by deep learningNat. Biotechnol.201533831838 – reference: VielmaJPEmbedding formulations and complexity for unions of polyhedraManage. Sci.2018641044714965 – reference: VielmaJPMixed integer linear programming formulation techniquesSIAM Rev.201557135733065821338.90277 – reference: NatarajanKSongMTeoCPPersistency model and its applications in choice modelingManage. Sci.20095534534691232.91139 – reference: Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. In: A. Lodi, V. Nagarajan (eds.) Proceedings of the 20th Conference on Integer Programming and Combinatorial Optimization, pp. 27–42. Springer International Publishing, Cham (2019). arxiv:1811.08359 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE19988622782324 – reference: Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language (2013) – reference: Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier networks (2018). arxiv:1810.03370 – reference: WeissGStochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliabilityOper. Res.19863445956058742980609.90093 – reference: JeroslowRGAlternative formulations of mixed integer programsAnn. Oper. Res.198812241276948042 – reference: KorteBVygenJCombinatorial Optimization: Theory and Algorithms2000BerlinSpringer0953.90052 – reference: Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: International Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017) – ident: 1474_CR54 – ident: 1474_CR31 – ident: 1474_CR35 doi: 10.1007/BFb0121119 – ident: 1474_CR56 doi: 10.24963/ijcai.2017/346 – volume: 151 start-page: 191 issue: 1 year: 2015 ident: 1474_CR17 publication-title: Math. Program. doi: 10.1007/s10107-015-0891-4 – volume: 180 start-page: 925 year: 2019 ident: 1474_CR65 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1396-0 – ident: 1474_CR4 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 1474_CR16 – ident: 1474_CR50 – ident: 1474_CR19 – volume: 170 start-page: 141 year: 2018 ident: 1474_CR7 publication-title: Math. Program. doi: 10.1007/s10107-018-1301-5 – volume: 2 start-page: 179 issue: 2 year: 2000 ident: 1474_CR39 publication-title: J. Eur. Math. Soc. doi: 10.1007/s100970050003 – ident: 1474_CR64 doi: 10.24963/ijcai.2017/104 – volume-title: Deep Learning year: 2016 ident: 1474_CR32 – volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications year: 2002 ident: 1474_CR69 doi: 10.1007/978-1-4757-3532-1 – ident: 1474_CR21 doi: 10.2139/ssrn.3159473 – ident: 1474_CR12 – ident: 1474_CR52 doi: 10.24963/ijcai.2018/772 – ident: 1474_CR27 doi: 10.1007/978-3-319-68167-2_19 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1474_CR48 publication-title: Nature doi: 10.1038/nature14539 – ident: 1474_CR68 – ident: 1474_CR45 – volume: 57 start-page: 3 issue: 1 year: 2015 ident: 1474_CR72 publication-title: SIAM Rev. doi: 10.1137/130915303 – ident: 1474_CR28 – ident: 1474_CR30 – volume: 55 start-page: 453 issue: 3 year: 2009 ident: 1474_CR58 publication-title: Manage. Sci. doi: 10.1287/mnsc.1080.0951 – volume: 33 start-page: 831 year: 2015 ident: 1474_CR2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3300 – volume: 64 start-page: 4471 issue: 10 year: 2018 ident: 1474_CR73 publication-title: Manage. Sci. – ident: 1474_CR3 – volume: 86 start-page: 2278 year: 1998 ident: 1474_CR49 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 89 start-page: 3 year: 1998 ident: 1474_CR9 publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(98)00136-X – ident: 1474_CR59 – ident: 1474_CR38 – ident: 1474_CR55 – ident: 1474_CR76 – volume: 6 start-page: 466 issue: 3 year: 1985 ident: 1474_CR8 publication-title: SIAM J. Algorithmic Discrete Methods doi: 10.1137/0606047 – volume: 23 start-page: 296 year: 2018 ident: 1474_CR29 publication-title: Constraints doi: 10.1007/s10601-018-9285-6 – ident: 1474_CR40 – volume: 21 start-page: 435 issue: 4 year: 2016 ident: 1474_CR51 publication-title: Constraints doi: 10.1007/s10601-015-9234-6 – ident: 1474_CR11 doi: 10.1609/aaai.v26i1.8138 – volume: 32 start-page: 121 issue: 12 year: 2016 ident: 1474_CR83 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw255 – ident: 1474_CR23 – volume: 177 start-page: 21 year: 2018 ident: 1474_CR74 publication-title: Math. Program. doi: 10.1007/s10107-018-1258-4 – ident: 1474_CR61 – ident: 1474_CR44 – volume: 34 start-page: 26 issue: 6 year: 2017 ident: 1474_CR6 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – ident: 1474_CR82 – ident: 1474_CR79 – volume: 76 start-page: 98 year: 2015 ident: 1474_CR71 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.02.013 – volume: 52 start-page: 537 issue: 2 year: 2012 ident: 1474_CR37 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-011-9424-0 – ident: 1474_CR33 – volume: 128 start-page: 49 issue: 1–2 year: 2011 ident: 1474_CR75 publication-title: Math. Program. doi: 10.1007/s10107-009-0295-4 – ident: 1474_CR10 doi: 10.1007/978-3-642-23786-7_11 – ident: 1474_CR20 doi: 10.1109/SP.2017.49 – volume: 34 start-page: 595 issue: 4 year: 1986 ident: 1474_CR77 publication-title: Oper. Res. doi: 10.1287/opre.34.4.595 – volume-title: Combinatorial Optimization: Theory and Algorithms year: 2000 ident: 1474_CR46 doi: 10.1007/978-3-662-21708-5 – volume: 244 start-page: 343 year: 2017 ident: 1474_CR53 publication-title: Artif. Intell. doi: 10.1016/j.artint.2016.01.005 – volume-title: Introduction to Linear Optimization year: 1997 ident: 1474_CR14 – ident: 1474_CR47 – ident: 1474_CR24 doi: 10.1007/978-3-319-77935-5_9 – volume: 22 start-page: 167 year: 1984 ident: 1474_CR41 publication-title: Math. Program. Study doi: 10.1007/BFb0121015 – ident: 1474_CR81 – ident: 1474_CR60 doi: 10.1109/EuroSP.2016.36 – ident: 1474_CR62 – ident: 1474_CR18 doi: 10.1109/CVPR.2010.5539963 – ident: 1474_CR66 – ident: 1474_CR1 – ident: 1474_CR78 – ident: 1474_CR26 – volume: 131 start-page: 106580 year: 2019 ident: 1474_CR34 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106580 – ident: 1474_CR36 – ident: 1474_CR5 – ident: 1474_CR70 – ident: 1474_CR22 doi: 10.1007/978-3-319-68167-2_18 – ident: 1474_CR57 – volume: 65 start-page: 545 issue: 3 year: 2016 ident: 1474_CR13 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9847-8 – volume: 12 start-page: 241 year: 1988 ident: 1474_CR42 publication-title: Ann. Oper. Res. doi: 10.1007/BF02186369 – ident: 1474_CR15 – ident: 1474_CR43 doi: 10.1007/978-3-319-63387-9_5 – ident: 1474_CR25 – ident: 1474_CR63 – ident: 1474_CR67 – ident: 1474_CR80 |
SSID | ssj0001388 |
Score | 2.6625407 |
Snippet | We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Image classification Integer programming Linear functions Linear programming Machine learning Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Neural networks Numerical Analysis Theoretical |
Title | Strong mixed-integer programming formulations for trained neural networks |
URI | https://link.springer.com/article/10.1007/s10107-020-01474-5 https://www.proquest.com/docview/2435848940 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA66XfQgfuJ0jh68aaD5atfjpptTmRcdzFNJmkQEV2Wd4M83b5duU1TwVEKTtLz5epI87_MidCoTJbVb-LGb-uDohjGsEsVxYrUr4DCGZeCcPLyLBiN-MxZj7xRWVGz36kqynKlXnN0IHKtRIFLxmGOxjurC7d2ByDWincX8S1i7XQVqBXTgXWV-ruPrcrTEmN-uRcvVpr-NtjxMDDrzdt1BaybfRZsr4oEuNVworhZ76PoezrSfgsnzh9G4FIEw08CzryauQADo1MfqKiARlNEhjA5A0tJ9K58Twot9NOr3Hi4G2IdJwJkbPzMshWRxDOQWa7XIiAIMJUDHPqImjlRiZSLaIVMi0ibk0oSKUx4rTYmyWZixA1TLX3NziAJDM0qYCZk0hEvLJSda2UQSzYXbR9sGIpW10sxriMPPvqRL9WOwcOosnJYWTkUDnS3KvM0VNP7M3awaIfWjqUipw3SuKyU8bKDzqmGWr3-v7eh_2Y_RBi37BlDImqg2m76bE4c5ZqqF6p3uZbcPz6vH216r7HKfbYXPMQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGIAB8RTlmQEmiBQ_8hoYEFC19LHQSt2CHdsICQoiRcD_4YdyTpO2IEBiYLRiO9b5bH8-330HcCBiKRQe_C5ufdZ0w5grY8nd2ChsgBjDMBuc3O4E9R6_7Pv9CryXsTC5t3v5JJnv1FPBbsSa1ah1pOIhd0tXyqZ-e8GLWnbSOMdZPaS0dtE9q7tFLgE3RSUbusIXLAytB4gxyk-JtEDDt2TvAdVhIGMjYj_ymPQDpT0utCc55aFUlEiTeinDfmdgDsFHZNdOj56O93vCoqhMDGvRSBGa8_2YPx9_E0z75Rk2P91qy7BUwFLndKRHK1DRg1VYnCIrxFJ7zPCarUHjytrQb5z721et3Jx0Qj85hbfXPTZwLBoucoNltuDk2Si0ciyFJv5rMHJAz9ah9y-i3IDZwcNAb4KjaUoJ0x4TmnBhuOBESRMLoriP93ZTBVJKK0kLznI72LtkwrZsJZyghJNcwolfhaNxm8cRY8evtXfKSUiK1ZslFDEkqm7MvSoclxMz-fxzb1t_q74P8_Vuu5W0Gp3mNizQXE-s-9oOzA6fnvUu4p2h3MvVzYHr_9bvD279CIc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOL67EFPWmwe3W4PHkRdXF8IuuCtJk0iglvFrqj_yp_oTLfdVVHBg8fQJA2TSfJlMvMNwLqKtTJ48Pu49ZHpRghfx1r6sTPYADGGExScfHpWP2zLo6vwagjeqliYwtu9epLsxTQQS1PW3X4wbvtD4BsjExsnpyoZSb9yqzy2r894act3Wvs4wxucNw8u9w79Mq-An6LCdX0VKhFF5A3inAlTpgl0hET8Xuc2quvYqThsBEKHdWMDqWygJZeRNpxplwapwH6HYVRS9DGuoDbf7e_9TDQaVZJYQiZlmM73Y_58FA7w7Zcn2eKka07BZAlRvd2eTk3DkM1mYOIDcSGWTvtsr_kstC7Inn7jdW5frPELAgr76JWeXx1s4BEyLvOE5VTwiswU1nhEp4n_ynrO6PkctP9FlPMwkt1ndgE8y1POhA2EskwqJ5VkRrtYMSNDvMO7GrBKWkla8pfTYO-SAfMySThBCSeFhJOwBpv9Ng899o5fay9Xk5CUKzlPOOJJVONYBjXYqiZm8Pnn3hb_Vn0Nxs73m8lJ6-x4CcZ5oSbkybYMI93HJ7uC0KerVwtt8-D6v9X7HSHTDLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+mixed-integer+programming+formulations+for+trained+neural+networks&rft.jtitle=Mathematical+programming&rft.au=Anderson%2C+Ross&rft.au=Huchette%2C+Joey&rft.au=Ma%2C+Will&rft.au=Tjandraatmadja%2C+Christian&rft.date=2020-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=183&rft.issue=1-2&rft.spage=3&rft.epage=39&rft_id=info:doi/10.1007%2Fs10107-020-01474-5&rft.externalDocID=10_1007_s10107_020_01474_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |