Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications

In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniq...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 34; no. 2; p. 116
Main Authors Saadi, Hajer, Benzarti, Zohra, Sanguino, Pedro, Pina, João, Abdelmoula, Najmeddine, de Melo, João Sérgio Seixas
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo 2 O 4 was clearly observed for the Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn 0.99 Co 0.01 O to rods shape for Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications.
AbstractList In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo2O4 was clearly observed for the Zn0.97Co0.03O and Zn0.95Co0.05O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn0.99Co0.01O to rods shape for Zn0.97Co0.03O and Zn0.95Co0.05O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications.
In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo 2 O 4 was clearly observed for the Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn 0.99 Co 0.01 O to rods shape for Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications.
ArticleNumber 116
Author de Melo, João Sérgio Seixas
Sanguino, Pedro
Abdelmoula, Najmeddine
Saadi, Hajer
Benzarti, Zohra
Pina, João
Author_xml – sequence: 1
  givenname: Hajer
  orcidid: 0000-0002-6078-3938
  surname: Saadi
  fullname: Saadi, Hajer
  email: hajermosbahsaadi@gmail.com
  organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax
– sequence: 2
  givenname: Zohra
  surname: Benzarti
  fullname: Benzarti, Zohra
  organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax
– sequence: 3
  givenname: Pedro
  surname: Sanguino
  fullname: Sanguino, Pedro
  organization: Department of Mechanical Engineering, Pinhal de Marrocos, CEMMPRE, University of Coimbra, Rua Luis Reis Santos
– sequence: 4
  givenname: João
  surname: Pina
  fullname: Pina, João
  organization: CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga
– sequence: 5
  givenname: Najmeddine
  surname: Abdelmoula
  fullname: Abdelmoula, Najmeddine
  organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax
– sequence: 6
  givenname: João Sérgio Seixas
  surname: de Melo
  fullname: de Melo, João Sérgio Seixas
  organization: CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga
BookMark eNp9kM1q3DAURkVJoZO0L9CVoGunsn4se1mGNCkEsskidCNk6cqj4EqOJBfmKfLK0cykFLLISiB953665xydhRgAoa8tuWwJkd9zS3rBG0JpQwYuSSM-oE0rJGt4Tx_O0IYMQjZcUPoJnef8SAjpOOs36Pkq7HQwPky47ADDDKYkb_SMTQx2NcX_9WWPdbDHd-v_JbADXdYEGUeHf4c7HHSIi07Fm7lell2K67TD24htXA7jwblKYhcThgBp2uNcYtITYL0sc60sPob8GX10es7w5fW8QPc_r-63N83t3fWv7Y_bxrB2KI3mbrSaCTlq24F0djC95SNvLRdSUwB5WH40TIxUtLJjoIkUVvfDAEIM7AJ9O41dUnxaIRf1GNcUaqOisquauoHRmqKnlEkx5wROLcn_0WmvWqIO3tXJu6re1dG7EhXq30DGl-NyJWk_v4-yE5prT5gg_f_VO9QLCHydSA
CitedBy_id crossref_primary_10_1016_j_ssc_2023_115256
crossref_primary_10_3390_ceramics6030103
crossref_primary_10_3390_solids5030031
crossref_primary_10_3390_s23125617
crossref_primary_10_3390_ma16072746
crossref_primary_10_1016_j_optmat_2024_116403
crossref_primary_10_1016_j_optmat_2024_115753
crossref_primary_10_1007_s10948_024_06731_8
crossref_primary_10_1016_j_inoche_2023_111803
crossref_primary_10_3390_molecules28145329
crossref_primary_10_3390_molecules28062838
crossref_primary_10_1016_j_biotno_2023_12_002
crossref_primary_10_3390_j6020016
crossref_primary_10_1016_j_heliyon_2024_e25438
crossref_primary_10_1016_j_ceramint_2024_08_264
crossref_primary_10_1016_j_matpr_2023_11_144
crossref_primary_10_1007_s10854_023_11604_2
crossref_primary_10_1016_j_jpowsour_2024_234688
crossref_primary_10_3390_molecules28217416
crossref_primary_10_1016_j_clema_2024_100268
crossref_primary_10_1016_j_heliyon_2024_e33443
crossref_primary_10_1016_j_ceramint_2023_04_107
crossref_primary_10_1007_s10854_024_14034_w
crossref_primary_10_3390_molecules28247963
crossref_primary_10_1007_s13369_024_08939_1
crossref_primary_10_1007_s12649_024_02485_5
crossref_primary_10_1016_j_matchemphys_2024_129519
crossref_primary_10_1016_j_matchemphys_2023_128307
crossref_primary_10_1016_j_ceramint_2025_02_304
crossref_primary_10_1016_j_molstruc_2024_140389
crossref_primary_10_1016_j_inoche_2024_112872
crossref_primary_10_1002_aesr_202500017
crossref_primary_10_1007_s40996_025_01797_3
crossref_primary_10_1016_j_ijhydene_2024_01_289
crossref_primary_10_1016_j_mseb_2023_116549
crossref_primary_10_3390_molecules29020391
crossref_primary_10_1016_j_physe_2025_116198
crossref_primary_10_1016_j_matchemphys_2024_129545
crossref_primary_10_1007_s00339_023_07126_7
crossref_primary_10_3390_nano14010122
crossref_primary_10_1088_1402_4896_ad0089
crossref_primary_10_1016_j_mseb_2024_117213
crossref_primary_10_1142_S2251237324400276
crossref_primary_10_1016_j_nanoso_2024_101264
crossref_primary_10_1007_s10854_024_12718_x
crossref_primary_10_3390_ma16144925
crossref_primary_10_1149_2162_8777_ada3a2
crossref_primary_10_1134_S1063782624010068
crossref_primary_10_1016_j_physb_2024_416699
crossref_primary_10_1016_j_optmat_2024_114899
crossref_primary_10_1016_j_physb_2024_415968
Cites_doi 10.1007/s00339-016-9655-0
10.1016/j.mssp.2021.106054
10.1088/1367-2630/10/6/065002
10.1149/08801.0369ecst
10.1016/j.apsusc.2009.03.030
10.1007/s10971-019-05059-3
10.1039/C8CP04215B
10.1016/j.jallcom.2015.09.166
10.1016/j.jallcom.2015.07.009
10.1016/j.colcom.2022.100611
10.1016/j.ceramint.2013.11.052
10.1016/j.materresbull.2020.110884
10.1088/0031-8949/89/10/105802
10.1103/PhysRev.83.121
10.1016/j.physb.2015.05.024
10.1039/C7RA08458G
10.1007/s00339-017-1186-9
10.1016/j.jallcom.2010.06.184
10.1016/j.jmmm.2014.08.023
10.1007/s11051-013-2030-6
10.1016/j.jallcom.2021.159875
10.1063/1.362349
10.1139/cjc-2018-0195
10.1088/2053-1591/aac6f1
10.1016/j.ceramint.2013.07.054
10.1063/1.2188031
10.1016/j.cplett.2009.06.049
10.1007/s00339-022-05847-9
10.1016/j.saa.2017.05.065
10.1007/s00604-021-05142-z
10.1016/j.mssp.2014.05.028
10.1016/j.physb.2018.02.025
10.1016/j.jlumin.2015.02.019
10.1021/acsomega.1c05057
10.1016/j.jpcs.2017.02.004
10.1016/j.tsf.2016.05.028
10.1016/j.ssc.2014.07.011
10.1016/j.jallcom.2017.10.057
10.1016/j.jmmm.2015.07.030
10.1016/j.rinp.2018.04.010
10.1016/j.jallcom.2010.05.183
10.1016/j.jallcom.2015.10.079
10.1016/j.jallcom.2013.04.011
10.1039/D2RA01798A
10.1016/j.jallcom.2021.160170
10.1016/j.spmi.2018.07.015
10.1016/j.materresbull.2022.111795
10.1016/j.inoche.2020.108145
10.1063/1.2749481
10.1088/0957-4484/19/45/455702
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-022-09470-5
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
ExternalDocumentID 10_1007_s10854_022_09470_5
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a4fbda357bad6e7fd9c8d4b41d457a2ee71573bc35b251763ea075da899e5593
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Fri Jul 25 10:55:36 EDT 2025
Tue Jul 01 02:35:31 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Fri Feb 21 02:45:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a4fbda357bad6e7fd9c8d4b41d457a2ee71573bc35b251763ea075da899e5593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6078-3938
PQID 2765226932
PQPubID 326250
ParticipantIDs proquest_journals_2765226932
crossref_primary_10_1007_s10854_022_09470_5
crossref_citationtrail_10_1007_s10854_022_09470_5
springer_journals_10_1007_s10854_022_09470_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zamiri, Singh, Belsley, Ferreira (CR56) 2014; 40
Saadi, Benzarti, Rhouma, Sanguino, Guermazi, Khirouni, Vieira (CR22) 2021; 32
Akhtari, Zorriasatein, Farahmandjou, Elahi (CR4) 2018; 5
Wang, Zheng, Liu, Ho, Xu, Ringer (CR7) 2008; 19
Chauhan, Singh, Kumar, Sirohi, Siwatch (CR26) 2019; 91
Ivill, Pearton, Rawal, Leu, Sadik, Das, Hebard, Chisholm, Budai, Norton (CR9) 2008; 10
Rambadey, Kumar, Sati, Sagdeo (CR48) 2021; 6
Ashokkumar, Muthukumaran (CR54) 2015; 374
Mrabet, Kamoun, Boukhachem, Amlouk, Manoubi (CR37) 2015; 648
Ji, Cai, Zhou, Liu (CR10) 2018; 29
He, Tang, T-That, Phillips, Tsuzuki (CR20) 2013; 15
Zulfiqar, Zubair, Khan, Hua, Ilyas, Fashu, Afzal, Safeen (CR50) 2021; 32
Prodromakis, Papavassiliou (CR42) 2009; 255
Jincy, Meena (CR27) 2020; 120
Koops (CR43) 1951; 83
Dhruvashi (CR33) 2016; 612
Shi, Yang, Xu, Li, Zhang, Hu, Dang (CR31) 2013; 576
Omri, Bettaibi, Khirouni, El Mir (CR29) 2018; 537
Kumar, Warshi, Mishra, Saxena, Kumar, Sagdeo (CR35) 2017; 123
Zia, Ahmed, Shah, Anis-ur-Rehman, Khan, Basit (CR11) 2015; 473
Hastir, Kohli, Singh (CR25) 2017; 105
Pekar, Singaevsky, Kolomys, Strelchuk, Lytvyn, Osipyonok, Vasin, Skoryk (CR8) 2021; 135
Karzazi, Sekhar, El Amiri, Hlil, Conde, Levichev, Moreira, Chahboun, Almeida, Gomes (CR17) 2015; 395
Safeen, Safeen, Shafique, Iqbal, Ahmed, Khan, Asghar, Althubeiti, Al Otaibi, Ali, Shah, Khan (CR32) 2022; 12
Elilarassi, Chandrasekaran (CR36) 2017; 186
Zamiri, Singh, Bdikin, Rebelo, Belsley, Ferreira (CR45) 2014; 195
Fan, Xu, Wang, Sun (CR5) 2021; 876
Bera, Basak (CR40) 2009; 476
Li, Cao, Xu, Liu, Wang, Meng, Wang (CR55) 2016; 657
(CR41) 2018; 122
Sajjad, Ullah, Khan, Khan, Khan, Qureshi (CR3) 2018; 9
Yeng, Wu, Qui, Siu, Chu (CR14) 2006; 99
Akgul, Aksoy (CR15) 2022; 48
Chanda, Gupta, Vasundhara, Mutta, Singh (CR24) 2017; 7
Vijayaprasath, Murugan, Asaithambi, AnandhaBabu, Sakthivel, Mahalingam, Hayakawa, Ravi (CR2) 2016; 122
Zia, Shah, Ahmed, Khan (CR23) 2014; 89
Abdelfatah, Salah, EL-Henawey, Oraby, El-Shaer, Ismail (CR12) 2021; 873
Pessoni, Banerjee, Franco (CR53) 2018; 20
Saadi, Benzarti, Sanguino, Hadouch, Mezzane, Khirouni, Abdelmoula, Khemakhem (CR1) 2022; 128
Khan, Muhammad, Tariq, Nishan, Razaq, Saleh, Haija, Ismail, Rahim (CR28) 2022; 189
Saadi, Benzarti, Mourad, Sanguino, Hadouch, Mezzane, Abdelmoula, Khemakhem (CR21) 2022; 33
Tian, Wu, Tian, Xu, Cao, Xu, Feng (CR52) 2022; 33
Singh, Roy (CR19) 2021; 46
Zhao, Tong, Wang (CR49) 2019; 97
Das, Bandyopadhyay, Das, Das, Sutradhar (CR51) 2018; 731
Vanheusden, Warren, Seager, Tallant, Voigt, Gnade (CR39) 1996; 79
Azam, Ahmed, Ansari, Shafeeq, Naqvi (CR47) 2010; 506
Kumar, Kumar Singh, Mehata (CR34) 2022; 150
Zamiri, Kaushal, Rebelo, Ferreira (CR44) 2014; 40
Ghosh, Chattopadhyay (CR13) 2007; 101
Shatnawi, Alsmadi, Bsoul, Salameh, Alna’washi, Al-Dweri, ElAkkad (CR30) 2016; 655
Nishiumi, Sun, Shiroishi, Matsushima, Stadler, Yoshida (CR16) 2018; 88
Wang, Li, Liu, Li, Wei (CR18) 2010; 505
Saadi, Rhouma, Benzarti, Bougrioua, Guermazi, Khirouni (CR6) 2020; 129
Ashokkumar, Muthukumaran (CR38) 2015; 162
Khan, Khan, Khan (CR46) 2014; 26
H Tian (9470_CR52) 2022; 33
S Wang (9470_CR18) 2010; 505
S Das (9470_CR51) 2018; 731
R Zamiri (9470_CR56) 2014; 40
F Akhtari (9470_CR4) 2018; 5
GS Pekar (9470_CR8) 2021; 135
O Karzazi (9470_CR17) 2015; 395
OV Rambadey (9470_CR48) 2021; 6
H Saadi (9470_CR6) 2020; 129
A Safeen (9470_CR32) 2022; 12
MI Khan (9470_CR28) 2022; 189
I Khan (9470_CR46) 2014; 26
N Nishiumi (9470_CR16) 2018; 88
K Omri (9470_CR29) 2018; 537
M Ashokkumar (9470_CR38) 2015; 162
S Shi (9470_CR31) 2013; 576
G Akgul (9470_CR15) 2022; 48
CS Jincy (9470_CR27) 2020; 120
A Chanda (9470_CR24) 2017; 7
R Zamiri (9470_CR44) 2014; 40
CK Ghosh (9470_CR13) 2007; 101
GP Singh (9470_CR19) 2021; 46
M Ivill (9470_CR9) 2008; 10
D Kumar (9470_CR34) 2022; 150
M Zulfiqar (9470_CR50) 2021; 32
M Abdelfatah (9470_CR12) 2021; 873
C Mrabet (9470_CR37) 2015; 648
H Ji (9470_CR10) 2018; 29
tailored visible luminescence for white light emitting diodes (9470_CR41) 2018; 122
A Zia (9470_CR23) 2014; 89
X Li (9470_CR55) 2016; 657
R Elilarassi (9470_CR36) 2017; 186
G Vijayaprasath (9470_CR2) 2016; 122
T Prodromakis (9470_CR42) 2009; 255
X Wang (9470_CR7) 2008; 19
K Vanheusden (9470_CR39) 1996; 79
R He (9470_CR20) 2013; 15
M Shatnawi (9470_CR30) 2016; 655
N Chauhan (9470_CR26) 2019; 91
H Saadi (9470_CR22) 2021; 32
M Ashokkumar (9470_CR54) 2015; 374
CG Koops (9470_CR43) 1951; 83
Y Zhao (9470_CR49) 2019; 97
HVS Pessoni (9470_CR53) 2018; 20
LW Yeng (9470_CR14) 2006; 99
A Azam (9470_CR47) 2010; 506
A Bera (9470_CR40) 2009; 476
A Zia (9470_CR11) 2015; 473
PKS Dhruvashi (9470_CR33) 2016; 612
H Saadi (9470_CR21) 2022; 33
Y Fan (9470_CR5) 2021; 876
R Zamiri (9470_CR45) 2014; 195
A Kumar (9470_CR35) 2017; 123
M Sajjad (9470_CR3) 2018; 9
H Saadi (9470_CR1) 2022; 128
A Hastir (9470_CR25) 2017; 105
References_xml – volume: 33
  start-page: 8065
  year: 2022
  end-page: 8085
  ident: CR21
  article-title: Electrical conductivity improvement of (Fe + Al) codoped ZnO nanoparticles for optoelectronic applications
  publication-title: J Maer Sci: Mater Electron.
– volume: 89
  start-page: 105802
  year: 2014
  end-page: 105810
  ident: CR23
  article-title: The influence of cobalt on the physical properties of ZnO nanostructures
  publication-title: Phys. Scr.
– volume: 255
  start-page: 6989
  year: 2009
  end-page: 6994
  ident: CR42
  article-title: Engineering the Maxwell-Wagner polarization effect
  publication-title: Appl. Surf. Sci.
– volume: 48
  start-page: 100611
  year: 2022
  end-page: 100619
  ident: CR15
  article-title: impact of cobalt doping on structural and magnetic properties of zinc oxide nanocomposites synthesized by mechanical ball-milling method
  publication-title: Colloids. Interface. Sci. Commun.
– volume: 195
  start-page: 74
  year: 2014
  end-page: 79
  ident: CR45
  article-title: Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method
  publication-title: Solid State Commun.
– volume: 648
  start-page: 826
  year: 2015
  end-page: 837
  ident: CR37
  article-title: Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped ZnO
  publication-title: Journal J. Alloys. Compd.
– volume: 19
  start-page: 455702
  year: 2008
  end-page: 455710
  ident: CR7
  article-title: Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases
  publication-title: Nanotechnology
– volume: 162
  start-page: 97
  year: 2015
  end-page: 103
  ident: CR38
  article-title: Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles
  publication-title: J. Lumin.
– volume: 123
  start-page: 576
  year: 2017
  end-page: 583
  ident: CR35
  article-title: Strain control of Urbach energy in Cr-doped PrFeO
  publication-title: Appl. Phys. A.
– volume: 46
  start-page: 5852
  year: 2021
  end-page: 5856
  ident: CR19
  article-title: Structcuraland optical study of high concentrate co-doped nasnotructures
  publication-title: Mater. Today: Proc.
– volume: 506
  start-page: 237
  year: 2010
  end-page: 242
  ident: CR47
  article-title: Study of electrical properties of nickel doped SnO ceramic nanoparticles
  publication-title: J. Alloys. Compd.
– volume: 7
  start-page: 50527
  year: 2017
  end-page: 50536
  ident: CR24
  article-title: Study of structural, optical and magnetic properties of cobalt doped ZnOnanorods
  publication-title: RSC Adv.
– volume: 537
  start-page: 167
  year: 2018
  end-page: 175
  ident: CR29
  article-title: The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles
  publication-title: Phys. B Condens. Matter.
– volume: 15
  start-page: 2030
  year: 2013
  end-page: 2037
  ident: CR20
  article-title: Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation
  publication-title: J. Nanopart. Res.
– volume: 873
  start-page: 159875
  year: 2021
  end-page: 159882
  ident: CR12
  article-title: Insight into Co concentrations effect on the structural, optical, and photoelectrochemical properties of ZnO rod arrays for optoelectronic applications
  publication-title: J. Alloys. Compd.
– volume: 122
  start-page: 122
  year: 2016
  ident: CR2
  article-title: Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles
  publication-title: Appl. Phys. A
– volume: 99
  year: 2006
  ident: CR14
  publication-title: J. Appl. Phys.
– volume: 150
  start-page: 111795
  year: 2022
  end-page: 111804
  ident: CR34
  article-title: Exploration of grown cobalt-doped zinc oxide nanoparticles and photodegradation of industrial dye
  publication-title: Mater. Res. Bull.
– volume: 731
  start-page: 591
  year: 2018
  end-page: 599
  ident: CR51
  article-title: Defect induced room temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb and Co
  publication-title: J. Alloys. Compd.
– volume: 657
  start-page: 90
  year: 2016
  end-page: 94
  ident: CR55
  article-title: High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders
  publication-title: J. Alloys. Compd.
– volume: 101
  year: 2007
  ident: CR13
  publication-title: J. Appl. Phys.
– volume: 186
  start-page: 120
  year: 2017
  end-page: 131
  ident: CR36
  article-title: Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 6
  start-page: 32231
  issue: 47
  year: 2021
  end-page: 32238
  ident: CR48
  article-title: Exploring the Interrelation between Urbach Energy and Dielectric Constant in Hf-Substituted BaTiO
  publication-title: ACS Omega
– volume: 395
  start-page: 28
  year: 2015
  end-page: 33
  ident: CR17
  article-title: Structural, optical and magnetic properties of pulsed laser deposited Co doped ZnO films
  publication-title: J. Magn. Magn. Mater.
– volume: 105
  start-page: 23
  year: 2017
  end-page: 34
  ident: CR25
  article-title: Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor
  publication-title: J. Phys. Chem. Solids.
– volume: 876
  start-page: 160170
  year: 2021
  end-page: 160181
  ident: CR5
  article-title: Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit
  publication-title: J. Alloys. Compd.
– volume: 32
  start-page: 1536
  year: 2021
  end-page: 1556
  ident: CR22
  article-title: Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications
  publication-title: J Mater Sci
– volume: 10
  start-page: 065002
  year: 2008
  end-page: 065023
  ident: CR9
  article-title: Structure and magnetism of cobalt-doped ZnO thin films
  publication-title: New J. Phys.
– volume: 83
  start-page: 121
  year: 1951
  end-page: 124
  ident: CR43
  article-title: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies
  publication-title: Phys. Rev.
– volume: 97
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR49
  article-title: Effect of Co Doping on Microstructures and Dielectric Properties of ZnO
  publication-title: Can. J. Chem.
– volume: 88
  start-page: 369
  year: 2018
  end-page: 380
  ident: CR16
  publication-title: ECS Trans.
– volume: 655
  start-page: 244
  year: 2016
  end-page: 252
  ident: CR30
  article-title: Magnetic and optical properties of Co-doped ZnO nanocrystalline particles
  publication-title: J. Alloy. Compd.
– volume: 476
  start-page: 262
  year: 2009
  end-page: 266
  ident: CR40
  article-title: Correlation between the microstructure and the origin of the green luminescence in ZnO: A case study on the thin films and nanowires
  publication-title: Chem. Phys. Lett.
– volume: 26
  start-page: 516
  year: 2014
  end-page: 526
  ident: CR46
  article-title: Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles
  publication-title: Mater. Sci. Semicond. Process.
– volume: 91
  start-page: 567
  year: 2019
  end-page: 577
  ident: CR26
  article-title: Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity
  publication-title: J. Sol-Gel. Sci. Technol.
– volume: 20
  start-page: 28712
  year: 2018
  ident: CR53
  article-title: Colossal dielectric permittivity in Co-doped ZnO ceramics prepared by a pressure-less sintering method
  publication-title: Phys. Chem. Chem. Phys.
– volume: 120
  start-page: 108145
  year: 2020
  end-page: 108167
  ident: CR27
  article-title: Synthesis, Characterization, and NH3 Gas Sensing Application of Zn doped Cobalt Oxide Nanoparticles
  publication-title: Inorg. Chem. Commun.
– volume: 5
  start-page: 065015
  year: 2018
  end-page: 065024
  ident: CR4
  article-title: Synthesis and optical properties of Co doped ZnO network prepared by new precursors
  publication-title: Mater. Res. Express.
– volume: 122
  start-page: 349
  year: 2018
  end-page: 361
  ident: CR41
  article-title: T. Elkar, N. Mzabi, M. Ben hassine, P. Gemeiner, B. Dkhil, S. Guermazi, H. Guermazi, Structural and optical investigation of (V, Al) doped and co-doped ZnOnanopowders
  publication-title: Superlattices Microstruct.
– volume: 29
  start-page: 12917
  year: 2018
  end-page: 12926
  ident: CR10
  article-title: Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles
  publication-title: J. Mater Sci.
– volume: 129
  start-page: 110884
  year: 2020
  end-page: 110895
  ident: CR6
  article-title: Electrical conductivity improvement of Fe doped ZnO nanopowders
  publication-title: Mater. Res. Bull.
– volume: 40
  start-page: 1635
  year: 2014
  end-page: 1639
  ident: CR44
  article-title: Er doped ZnO nanoplates: synthesis, optical and dielectric properties
  publication-title: Ceram. Int.
– volume: 128
  start-page: 691
  year: 2022
  end-page: 704
  ident: CR1
  article-title: Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe+Al) addition for optoelectronic applications
  publication-title: Appl. Phys. A
– volume: 135
  start-page: 106054
  year: 2021
  end-page: 106065
  ident: CR8
  article-title: Magnetic and optical properties of printed ZnO: Co polycrystalline layers
  publication-title: Mater. Sci. Semicond. Process.
– volume: 612
  start-page: 55
  year: 2016
  end-page: 60
  ident: CR33
  article-title: Effect of cobalt doping on ZnO thin films deposited by sol-gel method
  publication-title: Thin. Solid. Film.
– volume: 9
  start-page: 1301
  year: 2018
  end-page: 1309
  ident: CR3
  article-title: Structural and optical properties of pure and copper doped zinc oxide nanoparticles
  publication-title: Results Phys.
– volume: 189
  start-page: 37
  year: 2022
  end-page: 48
  ident: CR28
  article-title: Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure
  publication-title: Microchim. Acta
– volume: 374
  start-page: 61
  year: 2015
  end-page: 66
  ident: CR54
  article-title: Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu
  publication-title: J. Magn. Mater.
– volume: 576
  start-page: 59
  year: 2013
  end-page: 65
  ident: CR31
  article-title: Structural, optical and magnetic properties of Co-doped ZnO nanorods prepared by hydrothermal method
  publication-title: J. Alloy. Compd.
– volume: 33
  start-page: 22388
  year: 2022
  end-page: 22399
  ident: CR52
  article-title: The effect of ZnO particle size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-Epoxy composites
  publication-title: J Mater Sci: Mater Electron.
– volume: 79
  start-page: 7983
  year: 1996
  end-page: 7991
  ident: CR39
  article-title: Mechanisms behind green photoluminescence in ZnO phosphor powders
  publication-title: J. Appl. Phys.
– volume: 505
  start-page: 362
  year: 2010
  end-page: 366
  ident: CR18
  article-title: The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels
  publication-title: J. Alloy. Compd.
– volume: 40
  start-page: 6031
  year: 2014
  end-page: 6036
  ident: CR56
  article-title: Structural and dielectric properties of Al-doped ZnO nanostructures
  publication-title: Ceram. Int.
– volume: 473
  start-page: 42
  year: 2015
  end-page: 47
  ident: CR11
  article-title: Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures
  publication-title: Phys. B
– volume: 12
  start-page: 11923
  year: 2022
  end-page: 11932
  ident: CR32
  article-title: The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures
  publication-title: RSC Adv.
– volume: 32
  start-page: 9463
  year: 2021
  end-page: 9474
  ident: CR50
  article-title: Khan, Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles
  publication-title: J. Mater Sci: Mater Electron.
– volume: 122
  start-page: 122
  year: 2016
  ident: 9470_CR2
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-016-9655-0
– volume: 135
  start-page: 106054
  year: 2021
  ident: 9470_CR8
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.106054
– volume: 10
  start-page: 065002
  year: 2008
  ident: 9470_CR9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/6/065002
– volume: 88
  start-page: 369
  year: 2018
  ident: 9470_CR16
  publication-title: ECS Trans.
  doi: 10.1149/08801.0369ecst
– volume: 255
  start-page: 6989
  year: 2009
  ident: 9470_CR42
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.03.030
– volume: 91
  start-page: 567
  year: 2019
  ident: 9470_CR26
  publication-title: J. Sol-Gel. Sci. Technol.
  doi: 10.1007/s10971-019-05059-3
– volume: 20
  start-page: 28712
  year: 2018
  ident: 9470_CR53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04215B
– volume: 655
  start-page: 244
  year: 2016
  ident: 9470_CR30
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.09.166
– volume: 648
  start-page: 826
  year: 2015
  ident: 9470_CR37
  publication-title: Journal J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2015.07.009
– volume: 48
  start-page: 100611
  year: 2022
  ident: 9470_CR15
  publication-title: Colloids. Interface. Sci. Commun.
  doi: 10.1016/j.colcom.2022.100611
– volume: 40
  start-page: 6031
  year: 2014
  ident: 9470_CR56
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.11.052
– volume: 129
  start-page: 110884
  year: 2020
  ident: 9470_CR6
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.110884
– volume: 89
  start-page: 105802
  year: 2014
  ident: 9470_CR23
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/89/10/105802
– volume: 83
  start-page: 121
  year: 1951
  ident: 9470_CR43
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.83.121
– volume: 473
  start-page: 42
  year: 2015
  ident: 9470_CR11
  publication-title: Phys. B
  doi: 10.1016/j.physb.2015.05.024
– volume: 7
  start-page: 50527
  year: 2017
  ident: 9470_CR24
  publication-title: RSC Adv.
  doi: 10.1039/C7RA08458G
– volume: 123
  start-page: 576
  year: 2017
  ident: 9470_CR35
  publication-title: Appl. Phys. A.
  doi: 10.1007/s00339-017-1186-9
– volume: 506
  start-page: 237
  year: 2010
  ident: 9470_CR47
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2010.06.184
– volume: 374
  start-page: 61
  year: 2015
  ident: 9470_CR54
  publication-title: J. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.08.023
– volume: 15
  start-page: 2030
  year: 2013
  ident: 9470_CR20
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-013-2030-6
– volume: 873
  start-page: 159875
  year: 2021
  ident: 9470_CR12
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2021.159875
– volume: 79
  start-page: 7983
  year: 1996
  ident: 9470_CR39
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362349
– volume: 97
  start-page: 1
  year: 2019
  ident: 9470_CR49
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2018-0195
– volume: 29
  start-page: 12917
  year: 2018
  ident: 9470_CR10
  publication-title: J. Mater Sci.
– volume: 32
  start-page: 1536
  year: 2021
  ident: 9470_CR22
  publication-title: J Mater Sci
– volume: 5
  start-page: 065015
  year: 2018
  ident: 9470_CR4
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/aac6f1
– volume: 40
  start-page: 1635
  year: 2014
  ident: 9470_CR44
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.07.054
– volume: 99
  year: 2006
  ident: 9470_CR14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2188031
– volume: 476
  start-page: 262
  year: 2009
  ident: 9470_CR40
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.06.049
– volume: 32
  start-page: 9463
  year: 2021
  ident: 9470_CR50
  publication-title: J. Mater Sci: Mater Electron.
– volume: 128
  start-page: 691
  year: 2022
  ident: 9470_CR1
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-05847-9
– volume: 186
  start-page: 120
  year: 2017
  ident: 9470_CR36
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.05.065
– volume: 189
  start-page: 37
  year: 2022
  ident: 9470_CR28
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-021-05142-z
– volume: 26
  start-page: 516
  year: 2014
  ident: 9470_CR46
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2014.05.028
– volume: 537
  start-page: 167
  year: 2018
  ident: 9470_CR29
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2018.02.025
– volume: 162
  start-page: 97
  year: 2015
  ident: 9470_CR38
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.02.019
– volume: 6
  start-page: 32231
  issue: 47
  year: 2021
  ident: 9470_CR48
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c05057
– volume: 105
  start-page: 23
  year: 2017
  ident: 9470_CR25
  publication-title: J. Phys. Chem. Solids.
  doi: 10.1016/j.jpcs.2017.02.004
– volume: 612
  start-page: 55
  year: 2016
  ident: 9470_CR33
  publication-title: Thin. Solid. Film.
  doi: 10.1016/j.tsf.2016.05.028
– volume: 195
  start-page: 74
  year: 2014
  ident: 9470_CR45
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.07.011
– volume: 731
  start-page: 591
  year: 2018
  ident: 9470_CR51
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2017.10.057
– volume: 395
  start-page: 28
  year: 2015
  ident: 9470_CR17
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.07.030
– volume: 9
  start-page: 1301
  year: 2018
  ident: 9470_CR3
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.04.010
– volume: 505
  start-page: 362
  year: 2010
  ident: 9470_CR18
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.05.183
– volume: 657
  start-page: 90
  year: 2016
  ident: 9470_CR55
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2015.10.079
– volume: 33
  start-page: 8065
  year: 2022
  ident: 9470_CR21
  publication-title: J Maer Sci: Mater Electron.
– volume: 576
  start-page: 59
  year: 2013
  ident: 9470_CR31
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.04.011
– volume: 12
  start-page: 11923
  year: 2022
  ident: 9470_CR32
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01798A
– volume: 876
  start-page: 160170
  year: 2021
  ident: 9470_CR5
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2021.160170
– volume: 122
  start-page: 349
  year: 2018
  ident: 9470_CR41
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.07.015
– volume: 150
  start-page: 111795
  year: 2022
  ident: 9470_CR34
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2022.111795
– volume: 120
  start-page: 108145
  year: 2020
  ident: 9470_CR27
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.108145
– volume: 101
  year: 2007
  ident: 9470_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2749481
– volume: 19
  start-page: 455702
  year: 2008
  ident: 9470_CR7
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/45/455702
– volume: 33
  start-page: 22388
  year: 2022
  ident: 9470_CR52
  publication-title: J Mater Sci: Mater Electron.
– volume: 46
  start-page: 5852
  year: 2021
  ident: 9470_CR19
  publication-title: Mater. Today: Proc.
SSID ssj0006438
Score 2.5422626
Snippet In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116
SubjectTerms Characterization and Evaluation of Materials
Chemical precipitation
Chemical synthesis
Chemistry and Materials Science
Cobalt
Composition
Crystal structure
Crystallites
Dielectric properties
Doping
Electrical resistivity
Energy storage
Materials Science
Morphology
Nanoparticles
Optical and Electronic Materials
Optical properties
Structural analysis
Thermal analysis
Wurtzite
Zinc oxide
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aL3oQP7FaZQ7eNLDNJpvtsRSlCOqlheJlydeqIKnY-jv8y06yu20VFTxnNoe8TeZNMvOGkPNeYrnOrKXW6pxyoXDPlUlJecmcFkZoqUKB8-1dNhzzm4mY1EVhsybbvXmSjCf1SrFbLjgN2ecYksiEinWyITB2D4lcY9ZfnL_oY_NKYS8oejNWl8r8PMdXd7TkmN-eRaO3ud4h2zVNhH6F6y5Zc36PbK2IB-6Tjyv_FMQy_CMgiYOqn01YcsAQN6i4xrYQoLyN4_a5sYDSRTXPGUxLePD34JXH0LnOkIO6cw8MpmBjNRVUOR-A9BZcLBWEkFKJBxGsPn8fkNH11WgwpHV7BWpw382p4qW2KhVSK5s5WdqeyRE43rVcSMWck10hU21SoYOuWZY6hfzCKozQHMYh6SFp-al3RwRUaZSSQcos19z0bC4UT1KmdGIMZ8q0SbdZ5MLU0uOhA8ZLsRRNDsAUCEwRgSlEm1wsvnmthDf-tO402BX1JpwVTGaBXSJDbZPLBs_l8O-zHf_P_IRshib01cVMh7Tmb-_uFKnKXJ_FP_MTILLjIg
  priority: 102
  providerName: Springer Nature
Title Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications
URI https://link.springer.com/article/10.1007/s10854-022-09470-5
https://www.proquest.com/docview/2765226932
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2V5FIOVSlUpKXRHHorFptde-2cqhQloFYFhECivaz8tVCpcgJJf0f_cse7XgJI5br2-uCxx2_smfcAPo4zx03pHHPOKMaFpj1XZzXjde6NsMJIHQucv5-Ux5f865W4Shduy5RW2fnExlG7uY135Ae5LCNUILjxeXHLompUfF1NEhob0CcXrFQP-l-mJ2fn976YzlvVsu1Fdu88T2UzqXhOCc5iNjuFODJj4vHRtMabT55Im5Nn9hpeJciIk9bGW_DChzew-YBIcBv-TsNNJM4I10iADlttmzj9SOFuZHRtJCJQB9e0u19dD6x9w-y5xHmNP8MpBh0ojE7ZcphUfPBwjq6prMI2_wMJ6qJvygYxpleSU8KHT-E7cDGbXhwesyS1wCztwRXTvDZOF0Ia7Uovaze2iozIR44LqXPv5UjIwthCmMhxVhZeE9ZwmqI1TzFJ8RZ6YR78LqCurdYy0popw-3YKaF5VuTaZNbyXNsBjLpJrmyiIY9qGL-rNYFyNExFhqkaw1RiAJ_u_1m0JBzP9t7rbFelDbms1stnAPudPdfN_x_t3fOjvYeXUYC-vZTZg97q7o__QDBlZYawoWZHQ-hPjn58mw7TyqSvl_nkH2ZH6wA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUMtDXSh0DnACi6xjx9kDQqjtdksfXBap4mL5FUBC3sIuQvwKfgn_kbGTdEul9tazHSvKN_Z8E898A_B8VHhhK--Z97ZmQhrac03RMNHwYKWTVplU4Hx8Uk0-iven8nQF_va1MCmtsj8T80HtZy79I3_NVZWoAtGNt2ffWeoalW5X-xYarVkcht-_KGSbvznYJXxfcD7em-5MWNdVgDkytwUzorHelFJZ46ugGj9yNb2vGHohleEhqKFUpXWltEnOqyqDIbfqDQUmgeh3ScvegjVRkiNPhenj_fODn5x73Ur7JSlxzrsana5Sr5aCpdR5iqdUweT_fnBJbi_dx2Y3N16Hex0_xXetQW3ASoj34e4F1cIH8GcvfkkqHfEzEnvEtpFOwhoptk7ysbkfBZro87j_2s_AJmQZ0TnOGvwUP2A0kWL2LjUPu5ZBuDNDn8u4sE02QeLVGHKNIqZcTjoB8eK9-0OY3gQCj2A1zmLYBDSNM0YlDbXaCjfytTSiKLmxhXOCGzeAYf-Rtes0z1PrjW96qdacgNEEjM7AaDmAl-fPnLWKH9fO3uqx093un-ulrQ7gVY_ncvjq1R5fv9o23J5Mj4_00cHJ4RO4w4lvtX-DtmB18eNneEr8aGGfZatE0De8C_4BCIkjZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPhUtxSYA5wgatax4-wBIWh31VJYKlSkiovlT0CqvIVdhPgV_B7-HePE6RYkeuvZjhXljT1v4pk3AI_HpeOmdq5wzjQFF5r2XChDwQPzRlhhpE4Fzm9n9d4H_vpYHK_B774WJqVV9mdie1C7uU3_yLeZrBNVILqxHXJaxOHu9MXp1yJ1kEo3rX07jc5EDvzPHxS-LZ7v7xLWTxibTo529orcYaCwZHrLQvNgnK6ENNrVXgY3tg29Ox85LqRm3suRkJWxlTBJ2quuvCYX6zQFKZ6oeEXLXoF1mYKiAay_mswO35-5AXL1TSf0l4TFGcsVO7lurxG8SIn0FF3JshB_e8UV1f3ndrZ1etObcCOzVXzZmdctWPPxNlw_p2F4B35N4uek2RE_IXFJ7NrqJOSRIu0kJtt2p0AdXTvuvvQzMPhWVHSB84Af4zuMOlIEnxP1MDcQwp05uraoC7vUEySWjb6tWMSU2UnnIZ6_hb8LR5eBwT0YxHn0G4A6WK1lUlRrDLdj1wjNy4ppU1rLmbZDGPUfWdmsgJ4acZyolXZzAkYRMKoFRokhPD175rTT_7hw9laPncpnwUKtLHcIz3o8V8P_X23z4tUewVXaAerN_uzgPlxjRL66X0NbMFh---4fEFlamofZLBHUJW-EP1fDKPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+electrical+conductivity+and+the+dielectric+features+of+ZnO+nanoparticles+through+Co+doping+effect+for+energy+storage+applications&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Saadi%2C+Hajer&rft.au=Benzarti%2C+Zohra&rft.au=Sanguino%2C+Pedro&rft.au=Pina%2C+Jo%C3%A3o&rft.date=2023-01-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1007%2Fs10854-022-09470-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_022_09470_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon