Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications
In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniq...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 34; no. 2; p. 116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo
2
O
4
was clearly observed for the Zn
0.97
Co
0.03
O and Zn
0.95
Co
0.05
O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn
0.99
Co
0.01
O to rods shape for Zn
0.97
Co
0.03
O and Zn
0.95
Co
0.05
O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications. |
---|---|
AbstractList | In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo2O4 was clearly observed for the Zn0.97Co0.03O and Zn0.95Co0.05O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn0.99Co0.01O to rods shape for Zn0.97Co0.03O and Zn0.95Co0.05O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications. In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure, morphological, vibrational, optical and dielectric properties of the as-elaborated samples were characterized by various experimental techniques. This study investigates the impact of cobalt doping on the different characteristics of ZnO nanopowders. Besides, the structural analysis revealed the formation of the hexagonal wurtzite structure for all the compositions. A notable secondary phase corresponding to ZnCo 2 O 4 was clearly observed for the Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O nanopowdered samples. The average crystallite size was found to increase with increasing Co doping concentration. Furthermore, the optical properties demonstrated the narrowing of the optical bandgap energy under Co doping effect. Concerning the morphological properties, the morphology of ZnO nanoparticles was highly influenced by Co doping concentration. A noted change was obtained from spherical shape for undoped ZnO and Zn 0.99 Co 0.01 O to rods shape for Zn 0.97 Co 0.03 O and Zn 0.95 Co 0.05 O compositions. The dielectric analysis showed that both dielectric constant and electrical conductivity increase with the addition of Co doping element into ZnO host lattice. The improvement of structural, optical and dielectric characteristics of Co-doped ZnO nanopowders enhances the performance of these compositions for energy storage applications. |
ArticleNumber | 116 |
Author | de Melo, João Sérgio Seixas Sanguino, Pedro Abdelmoula, Najmeddine Saadi, Hajer Benzarti, Zohra Pina, João |
Author_xml | – sequence: 1 givenname: Hajer orcidid: 0000-0002-6078-3938 surname: Saadi fullname: Saadi, Hajer email: hajermosbahsaadi@gmail.com organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax – sequence: 2 givenname: Zohra surname: Benzarti fullname: Benzarti, Zohra organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax – sequence: 3 givenname: Pedro surname: Sanguino fullname: Sanguino, Pedro organization: Department of Mechanical Engineering, Pinhal de Marrocos, CEMMPRE, University of Coimbra, Rua Luis Reis Santos – sequence: 4 givenname: João surname: Pina fullname: Pina, João organization: CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga – sequence: 5 givenname: Najmeddine surname: Abdelmoula fullname: Abdelmoula, Najmeddine organization: Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax – sequence: 6 givenname: João Sérgio Seixas surname: de Melo fullname: de Melo, João Sérgio Seixas organization: CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga |
BookMark | eNp9kM1q3DAURkVJoZO0L9CVoGunsn4se1mGNCkEsskidCNk6cqj4EqOJBfmKfLK0cykFLLISiB953665xydhRgAoa8tuWwJkd9zS3rBG0JpQwYuSSM-oE0rJGt4Tx_O0IYMQjZcUPoJnef8SAjpOOs36Pkq7HQwPky47ADDDKYkb_SMTQx2NcX_9WWPdbDHd-v_JbADXdYEGUeHf4c7HHSIi07Fm7lell2K67TD24htXA7jwblKYhcThgBp2uNcYtITYL0sc60sPob8GX10es7w5fW8QPc_r-63N83t3fWv7Y_bxrB2KI3mbrSaCTlq24F0djC95SNvLRdSUwB5WH40TIxUtLJjoIkUVvfDAEIM7AJ9O41dUnxaIRf1GNcUaqOisquauoHRmqKnlEkx5wROLcn_0WmvWqIO3tXJu6re1dG7EhXq30DGl-NyJWk_v4-yE5prT5gg_f_VO9QLCHydSA |
CitedBy_id | crossref_primary_10_1016_j_ssc_2023_115256 crossref_primary_10_3390_ceramics6030103 crossref_primary_10_3390_solids5030031 crossref_primary_10_3390_s23125617 crossref_primary_10_3390_ma16072746 crossref_primary_10_1016_j_optmat_2024_116403 crossref_primary_10_1016_j_optmat_2024_115753 crossref_primary_10_1007_s10948_024_06731_8 crossref_primary_10_1016_j_inoche_2023_111803 crossref_primary_10_3390_molecules28145329 crossref_primary_10_3390_molecules28062838 crossref_primary_10_1016_j_biotno_2023_12_002 crossref_primary_10_3390_j6020016 crossref_primary_10_1016_j_heliyon_2024_e25438 crossref_primary_10_1016_j_ceramint_2024_08_264 crossref_primary_10_1016_j_matpr_2023_11_144 crossref_primary_10_1007_s10854_023_11604_2 crossref_primary_10_1016_j_jpowsour_2024_234688 crossref_primary_10_3390_molecules28217416 crossref_primary_10_1016_j_clema_2024_100268 crossref_primary_10_1016_j_heliyon_2024_e33443 crossref_primary_10_1016_j_ceramint_2023_04_107 crossref_primary_10_1007_s10854_024_14034_w crossref_primary_10_3390_molecules28247963 crossref_primary_10_1007_s13369_024_08939_1 crossref_primary_10_1007_s12649_024_02485_5 crossref_primary_10_1016_j_matchemphys_2024_129519 crossref_primary_10_1016_j_matchemphys_2023_128307 crossref_primary_10_1016_j_ceramint_2025_02_304 crossref_primary_10_1016_j_molstruc_2024_140389 crossref_primary_10_1016_j_inoche_2024_112872 crossref_primary_10_1002_aesr_202500017 crossref_primary_10_1007_s40996_025_01797_3 crossref_primary_10_1016_j_ijhydene_2024_01_289 crossref_primary_10_1016_j_mseb_2023_116549 crossref_primary_10_3390_molecules29020391 crossref_primary_10_1016_j_physe_2025_116198 crossref_primary_10_1016_j_matchemphys_2024_129545 crossref_primary_10_1007_s00339_023_07126_7 crossref_primary_10_3390_nano14010122 crossref_primary_10_1088_1402_4896_ad0089 crossref_primary_10_1016_j_mseb_2024_117213 crossref_primary_10_1142_S2251237324400276 crossref_primary_10_1016_j_nanoso_2024_101264 crossref_primary_10_1007_s10854_024_12718_x crossref_primary_10_3390_ma16144925 crossref_primary_10_1149_2162_8777_ada3a2 crossref_primary_10_1134_S1063782624010068 crossref_primary_10_1016_j_physb_2024_416699 crossref_primary_10_1016_j_optmat_2024_114899 crossref_primary_10_1016_j_physb_2024_415968 |
Cites_doi | 10.1007/s00339-016-9655-0 10.1016/j.mssp.2021.106054 10.1088/1367-2630/10/6/065002 10.1149/08801.0369ecst 10.1016/j.apsusc.2009.03.030 10.1007/s10971-019-05059-3 10.1039/C8CP04215B 10.1016/j.jallcom.2015.09.166 10.1016/j.jallcom.2015.07.009 10.1016/j.colcom.2022.100611 10.1016/j.ceramint.2013.11.052 10.1016/j.materresbull.2020.110884 10.1088/0031-8949/89/10/105802 10.1103/PhysRev.83.121 10.1016/j.physb.2015.05.024 10.1039/C7RA08458G 10.1007/s00339-017-1186-9 10.1016/j.jallcom.2010.06.184 10.1016/j.jmmm.2014.08.023 10.1007/s11051-013-2030-6 10.1016/j.jallcom.2021.159875 10.1063/1.362349 10.1139/cjc-2018-0195 10.1088/2053-1591/aac6f1 10.1016/j.ceramint.2013.07.054 10.1063/1.2188031 10.1016/j.cplett.2009.06.049 10.1007/s00339-022-05847-9 10.1016/j.saa.2017.05.065 10.1007/s00604-021-05142-z 10.1016/j.mssp.2014.05.028 10.1016/j.physb.2018.02.025 10.1016/j.jlumin.2015.02.019 10.1021/acsomega.1c05057 10.1016/j.jpcs.2017.02.004 10.1016/j.tsf.2016.05.028 10.1016/j.ssc.2014.07.011 10.1016/j.jallcom.2017.10.057 10.1016/j.jmmm.2015.07.030 10.1016/j.rinp.2018.04.010 10.1016/j.jallcom.2010.05.183 10.1016/j.jallcom.2015.10.079 10.1016/j.jallcom.2013.04.011 10.1039/D2RA01798A 10.1016/j.jallcom.2021.160170 10.1016/j.spmi.2018.07.015 10.1016/j.materresbull.2022.111795 10.1016/j.inoche.2020.108145 10.1063/1.2749481 10.1088/0957-4484/19/45/455702 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-022-09470-5 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
ExternalDocumentID | 10_1007_s10854_022_09470_5 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-a4fbda357bad6e7fd9c8d4b41d457a2ee71573bc35b251763ea075da899e5593 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 10:55:36 EDT 2025 Tue Jul 01 02:35:31 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Fri Feb 21 02:45:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a4fbda357bad6e7fd9c8d4b41d457a2ee71573bc35b251763ea075da899e5593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6078-3938 |
PQID | 2765226932 |
PQPubID | 326250 |
ParticipantIDs | proquest_journals_2765226932 crossref_primary_10_1007_s10854_022_09470_5 crossref_citationtrail_10_1007_s10854_022_09470_5 springer_journals_10_1007_s10854_022_09470_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Zamiri, Singh, Belsley, Ferreira (CR56) 2014; 40 Saadi, Benzarti, Rhouma, Sanguino, Guermazi, Khirouni, Vieira (CR22) 2021; 32 Akhtari, Zorriasatein, Farahmandjou, Elahi (CR4) 2018; 5 Wang, Zheng, Liu, Ho, Xu, Ringer (CR7) 2008; 19 Chauhan, Singh, Kumar, Sirohi, Siwatch (CR26) 2019; 91 Ivill, Pearton, Rawal, Leu, Sadik, Das, Hebard, Chisholm, Budai, Norton (CR9) 2008; 10 Rambadey, Kumar, Sati, Sagdeo (CR48) 2021; 6 Ashokkumar, Muthukumaran (CR54) 2015; 374 Mrabet, Kamoun, Boukhachem, Amlouk, Manoubi (CR37) 2015; 648 Ji, Cai, Zhou, Liu (CR10) 2018; 29 He, Tang, T-That, Phillips, Tsuzuki (CR20) 2013; 15 Zulfiqar, Zubair, Khan, Hua, Ilyas, Fashu, Afzal, Safeen (CR50) 2021; 32 Prodromakis, Papavassiliou (CR42) 2009; 255 Jincy, Meena (CR27) 2020; 120 Koops (CR43) 1951; 83 Dhruvashi (CR33) 2016; 612 Shi, Yang, Xu, Li, Zhang, Hu, Dang (CR31) 2013; 576 Omri, Bettaibi, Khirouni, El Mir (CR29) 2018; 537 Kumar, Warshi, Mishra, Saxena, Kumar, Sagdeo (CR35) 2017; 123 Zia, Ahmed, Shah, Anis-ur-Rehman, Khan, Basit (CR11) 2015; 473 Hastir, Kohli, Singh (CR25) 2017; 105 Pekar, Singaevsky, Kolomys, Strelchuk, Lytvyn, Osipyonok, Vasin, Skoryk (CR8) 2021; 135 Karzazi, Sekhar, El Amiri, Hlil, Conde, Levichev, Moreira, Chahboun, Almeida, Gomes (CR17) 2015; 395 Safeen, Safeen, Shafique, Iqbal, Ahmed, Khan, Asghar, Althubeiti, Al Otaibi, Ali, Shah, Khan (CR32) 2022; 12 Elilarassi, Chandrasekaran (CR36) 2017; 186 Zamiri, Singh, Bdikin, Rebelo, Belsley, Ferreira (CR45) 2014; 195 Fan, Xu, Wang, Sun (CR5) 2021; 876 Bera, Basak (CR40) 2009; 476 Li, Cao, Xu, Liu, Wang, Meng, Wang (CR55) 2016; 657 (CR41) 2018; 122 Sajjad, Ullah, Khan, Khan, Khan, Qureshi (CR3) 2018; 9 Yeng, Wu, Qui, Siu, Chu (CR14) 2006; 99 Akgul, Aksoy (CR15) 2022; 48 Chanda, Gupta, Vasundhara, Mutta, Singh (CR24) 2017; 7 Vijayaprasath, Murugan, Asaithambi, AnandhaBabu, Sakthivel, Mahalingam, Hayakawa, Ravi (CR2) 2016; 122 Zia, Shah, Ahmed, Khan (CR23) 2014; 89 Abdelfatah, Salah, EL-Henawey, Oraby, El-Shaer, Ismail (CR12) 2021; 873 Pessoni, Banerjee, Franco (CR53) 2018; 20 Saadi, Benzarti, Sanguino, Hadouch, Mezzane, Khirouni, Abdelmoula, Khemakhem (CR1) 2022; 128 Khan, Muhammad, Tariq, Nishan, Razaq, Saleh, Haija, Ismail, Rahim (CR28) 2022; 189 Saadi, Benzarti, Mourad, Sanguino, Hadouch, Mezzane, Abdelmoula, Khemakhem (CR21) 2022; 33 Tian, Wu, Tian, Xu, Cao, Xu, Feng (CR52) 2022; 33 Singh, Roy (CR19) 2021; 46 Zhao, Tong, Wang (CR49) 2019; 97 Das, Bandyopadhyay, Das, Das, Sutradhar (CR51) 2018; 731 Vanheusden, Warren, Seager, Tallant, Voigt, Gnade (CR39) 1996; 79 Azam, Ahmed, Ansari, Shafeeq, Naqvi (CR47) 2010; 506 Kumar, Kumar Singh, Mehata (CR34) 2022; 150 Zamiri, Kaushal, Rebelo, Ferreira (CR44) 2014; 40 Ghosh, Chattopadhyay (CR13) 2007; 101 Shatnawi, Alsmadi, Bsoul, Salameh, Alna’washi, Al-Dweri, ElAkkad (CR30) 2016; 655 Nishiumi, Sun, Shiroishi, Matsushima, Stadler, Yoshida (CR16) 2018; 88 Wang, Li, Liu, Li, Wei (CR18) 2010; 505 Saadi, Rhouma, Benzarti, Bougrioua, Guermazi, Khirouni (CR6) 2020; 129 Ashokkumar, Muthukumaran (CR38) 2015; 162 Khan, Khan, Khan (CR46) 2014; 26 H Tian (9470_CR52) 2022; 33 S Wang (9470_CR18) 2010; 505 S Das (9470_CR51) 2018; 731 R Zamiri (9470_CR56) 2014; 40 F Akhtari (9470_CR4) 2018; 5 GS Pekar (9470_CR8) 2021; 135 O Karzazi (9470_CR17) 2015; 395 OV Rambadey (9470_CR48) 2021; 6 H Saadi (9470_CR6) 2020; 129 A Safeen (9470_CR32) 2022; 12 MI Khan (9470_CR28) 2022; 189 I Khan (9470_CR46) 2014; 26 N Nishiumi (9470_CR16) 2018; 88 K Omri (9470_CR29) 2018; 537 M Ashokkumar (9470_CR38) 2015; 162 S Shi (9470_CR31) 2013; 576 G Akgul (9470_CR15) 2022; 48 CS Jincy (9470_CR27) 2020; 120 A Chanda (9470_CR24) 2017; 7 R Zamiri (9470_CR44) 2014; 40 CK Ghosh (9470_CR13) 2007; 101 GP Singh (9470_CR19) 2021; 46 M Ivill (9470_CR9) 2008; 10 D Kumar (9470_CR34) 2022; 150 M Zulfiqar (9470_CR50) 2021; 32 M Abdelfatah (9470_CR12) 2021; 873 C Mrabet (9470_CR37) 2015; 648 H Ji (9470_CR10) 2018; 29 tailored visible luminescence for white light emitting diodes (9470_CR41) 2018; 122 A Zia (9470_CR23) 2014; 89 X Li (9470_CR55) 2016; 657 R Elilarassi (9470_CR36) 2017; 186 G Vijayaprasath (9470_CR2) 2016; 122 T Prodromakis (9470_CR42) 2009; 255 X Wang (9470_CR7) 2008; 19 K Vanheusden (9470_CR39) 1996; 79 R He (9470_CR20) 2013; 15 M Shatnawi (9470_CR30) 2016; 655 N Chauhan (9470_CR26) 2019; 91 H Saadi (9470_CR22) 2021; 32 M Ashokkumar (9470_CR54) 2015; 374 CG Koops (9470_CR43) 1951; 83 Y Zhao (9470_CR49) 2019; 97 HVS Pessoni (9470_CR53) 2018; 20 LW Yeng (9470_CR14) 2006; 99 A Azam (9470_CR47) 2010; 506 A Bera (9470_CR40) 2009; 476 A Zia (9470_CR11) 2015; 473 PKS Dhruvashi (9470_CR33) 2016; 612 H Saadi (9470_CR21) 2022; 33 Y Fan (9470_CR5) 2021; 876 R Zamiri (9470_CR45) 2014; 195 A Kumar (9470_CR35) 2017; 123 M Sajjad (9470_CR3) 2018; 9 H Saadi (9470_CR1) 2022; 128 A Hastir (9470_CR25) 2017; 105 |
References_xml | – volume: 33 start-page: 8065 year: 2022 end-page: 8085 ident: CR21 article-title: Electrical conductivity improvement of (Fe + Al) codoped ZnO nanoparticles for optoelectronic applications publication-title: J Maer Sci: Mater Electron. – volume: 89 start-page: 105802 year: 2014 end-page: 105810 ident: CR23 article-title: The influence of cobalt on the physical properties of ZnO nanostructures publication-title: Phys. Scr. – volume: 255 start-page: 6989 year: 2009 end-page: 6994 ident: CR42 article-title: Engineering the Maxwell-Wagner polarization effect publication-title: Appl. Surf. Sci. – volume: 48 start-page: 100611 year: 2022 end-page: 100619 ident: CR15 article-title: impact of cobalt doping on structural and magnetic properties of zinc oxide nanocomposites synthesized by mechanical ball-milling method publication-title: Colloids. Interface. Sci. Commun. – volume: 195 start-page: 74 year: 2014 end-page: 79 ident: CR45 article-title: Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method publication-title: Solid State Commun. – volume: 648 start-page: 826 year: 2015 end-page: 837 ident: CR37 article-title: Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped ZnO publication-title: Journal J. Alloys. Compd. – volume: 19 start-page: 455702 year: 2008 end-page: 455710 ident: CR7 article-title: Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases publication-title: Nanotechnology – volume: 162 start-page: 97 year: 2015 end-page: 103 ident: CR38 article-title: Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles publication-title: J. Lumin. – volume: 123 start-page: 576 year: 2017 end-page: 583 ident: CR35 article-title: Strain control of Urbach energy in Cr-doped PrFeO publication-title: Appl. Phys. A. – volume: 46 start-page: 5852 year: 2021 end-page: 5856 ident: CR19 article-title: Structcuraland optical study of high concentrate co-doped nasnotructures publication-title: Mater. Today: Proc. – volume: 506 start-page: 237 year: 2010 end-page: 242 ident: CR47 article-title: Study of electrical properties of nickel doped SnO ceramic nanoparticles publication-title: J. Alloys. Compd. – volume: 7 start-page: 50527 year: 2017 end-page: 50536 ident: CR24 article-title: Study of structural, optical and magnetic properties of cobalt doped ZnOnanorods publication-title: RSC Adv. – volume: 537 start-page: 167 year: 2018 end-page: 175 ident: CR29 article-title: The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles publication-title: Phys. B Condens. Matter. – volume: 15 start-page: 2030 year: 2013 end-page: 2037 ident: CR20 article-title: Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation publication-title: J. Nanopart. Res. – volume: 873 start-page: 159875 year: 2021 end-page: 159882 ident: CR12 article-title: Insight into Co concentrations effect on the structural, optical, and photoelectrochemical properties of ZnO rod arrays for optoelectronic applications publication-title: J. Alloys. Compd. – volume: 122 start-page: 122 year: 2016 ident: CR2 article-title: Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles publication-title: Appl. Phys. A – volume: 99 year: 2006 ident: CR14 publication-title: J. Appl. Phys. – volume: 150 start-page: 111795 year: 2022 end-page: 111804 ident: CR34 article-title: Exploration of grown cobalt-doped zinc oxide nanoparticles and photodegradation of industrial dye publication-title: Mater. Res. Bull. – volume: 731 start-page: 591 year: 2018 end-page: 599 ident: CR51 article-title: Defect induced room temperature ferromagnetism and enhanced dielectric property in nanocrystalline ZnO co-doped with Tb and Co publication-title: J. Alloys. Compd. – volume: 657 start-page: 90 year: 2016 end-page: 94 ident: CR55 article-title: High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders publication-title: J. Alloys. Compd. – volume: 101 year: 2007 ident: CR13 publication-title: J. Appl. Phys. – volume: 186 start-page: 120 year: 2017 end-page: 131 ident: CR36 article-title: Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 6 start-page: 32231 issue: 47 year: 2021 end-page: 32238 ident: CR48 article-title: Exploring the Interrelation between Urbach Energy and Dielectric Constant in Hf-Substituted BaTiO publication-title: ACS Omega – volume: 395 start-page: 28 year: 2015 end-page: 33 ident: CR17 article-title: Structural, optical and magnetic properties of pulsed laser deposited Co doped ZnO films publication-title: J. Magn. Magn. Mater. – volume: 105 start-page: 23 year: 2017 end-page: 34 ident: CR25 article-title: Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor publication-title: J. Phys. Chem. Solids. – volume: 876 start-page: 160170 year: 2021 end-page: 160181 ident: CR5 article-title: Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit publication-title: J. Alloys. Compd. – volume: 32 start-page: 1536 year: 2021 end-page: 1556 ident: CR22 article-title: Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications publication-title: J Mater Sci – volume: 10 start-page: 065002 year: 2008 end-page: 065023 ident: CR9 article-title: Structure and magnetism of cobalt-doped ZnO thin films publication-title: New J. Phys. – volume: 83 start-page: 121 year: 1951 end-page: 124 ident: CR43 article-title: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies publication-title: Phys. Rev. – volume: 97 start-page: 1 year: 2019 end-page: 16 ident: CR49 article-title: Effect of Co Doping on Microstructures and Dielectric Properties of ZnO publication-title: Can. J. Chem. – volume: 88 start-page: 369 year: 2018 end-page: 380 ident: CR16 publication-title: ECS Trans. – volume: 655 start-page: 244 year: 2016 end-page: 252 ident: CR30 article-title: Magnetic and optical properties of Co-doped ZnO nanocrystalline particles publication-title: J. Alloy. Compd. – volume: 476 start-page: 262 year: 2009 end-page: 266 ident: CR40 article-title: Correlation between the microstructure and the origin of the green luminescence in ZnO: A case study on the thin films and nanowires publication-title: Chem. Phys. Lett. – volume: 26 start-page: 516 year: 2014 end-page: 526 ident: CR46 article-title: Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles publication-title: Mater. Sci. Semicond. Process. – volume: 91 start-page: 567 year: 2019 end-page: 577 ident: CR26 article-title: Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity publication-title: J. Sol-Gel. Sci. Technol. – volume: 20 start-page: 28712 year: 2018 ident: CR53 article-title: Colossal dielectric permittivity in Co-doped ZnO ceramics prepared by a pressure-less sintering method publication-title: Phys. Chem. Chem. Phys. – volume: 120 start-page: 108145 year: 2020 end-page: 108167 ident: CR27 article-title: Synthesis, Characterization, and NH3 Gas Sensing Application of Zn doped Cobalt Oxide Nanoparticles publication-title: Inorg. Chem. Commun. – volume: 5 start-page: 065015 year: 2018 end-page: 065024 ident: CR4 article-title: Synthesis and optical properties of Co doped ZnO network prepared by new precursors publication-title: Mater. Res. Express. – volume: 122 start-page: 349 year: 2018 end-page: 361 ident: CR41 article-title: T. Elkar, N. Mzabi, M. Ben hassine, P. Gemeiner, B. Dkhil, S. Guermazi, H. Guermazi, Structural and optical investigation of (V, Al) doped and co-doped ZnOnanopowders publication-title: Superlattices Microstruct. – volume: 29 start-page: 12917 year: 2018 end-page: 12926 ident: CR10 article-title: Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles publication-title: J. Mater Sci. – volume: 129 start-page: 110884 year: 2020 end-page: 110895 ident: CR6 article-title: Electrical conductivity improvement of Fe doped ZnO nanopowders publication-title: Mater. Res. Bull. – volume: 40 start-page: 1635 year: 2014 end-page: 1639 ident: CR44 article-title: Er doped ZnO nanoplates: synthesis, optical and dielectric properties publication-title: Ceram. Int. – volume: 128 start-page: 691 year: 2022 end-page: 704 ident: CR1 article-title: Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe+Al) addition for optoelectronic applications publication-title: Appl. Phys. A – volume: 135 start-page: 106054 year: 2021 end-page: 106065 ident: CR8 article-title: Magnetic and optical properties of printed ZnO: Co polycrystalline layers publication-title: Mater. Sci. Semicond. Process. – volume: 612 start-page: 55 year: 2016 end-page: 60 ident: CR33 article-title: Effect of cobalt doping on ZnO thin films deposited by sol-gel method publication-title: Thin. Solid. Film. – volume: 9 start-page: 1301 year: 2018 end-page: 1309 ident: CR3 article-title: Structural and optical properties of pure and copper doped zinc oxide nanoparticles publication-title: Results Phys. – volume: 189 start-page: 37 year: 2022 end-page: 48 ident: CR28 article-title: Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure publication-title: Microchim. Acta – volume: 374 start-page: 61 year: 2015 end-page: 66 ident: CR54 article-title: Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu publication-title: J. Magn. Mater. – volume: 576 start-page: 59 year: 2013 end-page: 65 ident: CR31 article-title: Structural, optical and magnetic properties of Co-doped ZnO nanorods prepared by hydrothermal method publication-title: J. Alloy. Compd. – volume: 33 start-page: 22388 year: 2022 end-page: 22399 ident: CR52 article-title: The effect of ZnO particle size on the dynamic mechanical, thermal, and dielectric properties of ZnO varistor-Epoxy composites publication-title: J Mater Sci: Mater Electron. – volume: 79 start-page: 7983 year: 1996 end-page: 7991 ident: CR39 article-title: Mechanisms behind green photoluminescence in ZnO phosphor powders publication-title: J. Appl. Phys. – volume: 505 start-page: 362 year: 2010 end-page: 366 ident: CR18 article-title: The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels publication-title: J. Alloy. Compd. – volume: 40 start-page: 6031 year: 2014 end-page: 6036 ident: CR56 article-title: Structural and dielectric properties of Al-doped ZnO nanostructures publication-title: Ceram. Int. – volume: 473 start-page: 42 year: 2015 end-page: 47 ident: CR11 article-title: Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures publication-title: Phys. B – volume: 12 start-page: 11923 year: 2022 end-page: 11932 ident: CR32 article-title: The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures publication-title: RSC Adv. – volume: 32 start-page: 9463 year: 2021 end-page: 9474 ident: CR50 article-title: Khan, Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles publication-title: J. Mater Sci: Mater Electron. – volume: 122 start-page: 122 year: 2016 ident: 9470_CR2 publication-title: Appl. Phys. A doi: 10.1007/s00339-016-9655-0 – volume: 135 start-page: 106054 year: 2021 ident: 9470_CR8 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.106054 – volume: 10 start-page: 065002 year: 2008 ident: 9470_CR9 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/6/065002 – volume: 88 start-page: 369 year: 2018 ident: 9470_CR16 publication-title: ECS Trans. doi: 10.1149/08801.0369ecst – volume: 255 start-page: 6989 year: 2009 ident: 9470_CR42 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.03.030 – volume: 91 start-page: 567 year: 2019 ident: 9470_CR26 publication-title: J. Sol-Gel. Sci. Technol. doi: 10.1007/s10971-019-05059-3 – volume: 20 start-page: 28712 year: 2018 ident: 9470_CR53 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04215B – volume: 655 start-page: 244 year: 2016 ident: 9470_CR30 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.09.166 – volume: 648 start-page: 826 year: 2015 ident: 9470_CR37 publication-title: Journal J. Alloys. Compd. doi: 10.1016/j.jallcom.2015.07.009 – volume: 48 start-page: 100611 year: 2022 ident: 9470_CR15 publication-title: Colloids. Interface. Sci. Commun. doi: 10.1016/j.colcom.2022.100611 – volume: 40 start-page: 6031 year: 2014 ident: 9470_CR56 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.11.052 – volume: 129 start-page: 110884 year: 2020 ident: 9470_CR6 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.110884 – volume: 89 start-page: 105802 year: 2014 ident: 9470_CR23 publication-title: Phys. Scr. doi: 10.1088/0031-8949/89/10/105802 – volume: 83 start-page: 121 year: 1951 ident: 9470_CR43 publication-title: Phys. Rev. doi: 10.1103/PhysRev.83.121 – volume: 473 start-page: 42 year: 2015 ident: 9470_CR11 publication-title: Phys. B doi: 10.1016/j.physb.2015.05.024 – volume: 7 start-page: 50527 year: 2017 ident: 9470_CR24 publication-title: RSC Adv. doi: 10.1039/C7RA08458G – volume: 123 start-page: 576 year: 2017 ident: 9470_CR35 publication-title: Appl. Phys. A. doi: 10.1007/s00339-017-1186-9 – volume: 506 start-page: 237 year: 2010 ident: 9470_CR47 publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2010.06.184 – volume: 374 start-page: 61 year: 2015 ident: 9470_CR54 publication-title: J. Magn. Mater. doi: 10.1016/j.jmmm.2014.08.023 – volume: 15 start-page: 2030 year: 2013 ident: 9470_CR20 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-013-2030-6 – volume: 873 start-page: 159875 year: 2021 ident: 9470_CR12 publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2021.159875 – volume: 79 start-page: 7983 year: 1996 ident: 9470_CR39 publication-title: J. Appl. Phys. doi: 10.1063/1.362349 – volume: 97 start-page: 1 year: 2019 ident: 9470_CR49 publication-title: Can. J. Chem. doi: 10.1139/cjc-2018-0195 – volume: 29 start-page: 12917 year: 2018 ident: 9470_CR10 publication-title: J. Mater Sci. – volume: 32 start-page: 1536 year: 2021 ident: 9470_CR22 publication-title: J Mater Sci – volume: 5 start-page: 065015 year: 2018 ident: 9470_CR4 publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/aac6f1 – volume: 40 start-page: 1635 year: 2014 ident: 9470_CR44 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.07.054 – volume: 99 year: 2006 ident: 9470_CR14 publication-title: J. Appl. Phys. doi: 10.1063/1.2188031 – volume: 476 start-page: 262 year: 2009 ident: 9470_CR40 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.06.049 – volume: 32 start-page: 9463 year: 2021 ident: 9470_CR50 publication-title: J. Mater Sci: Mater Electron. – volume: 128 start-page: 691 year: 2022 ident: 9470_CR1 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05847-9 – volume: 186 start-page: 120 year: 2017 ident: 9470_CR36 publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.05.065 – volume: 189 start-page: 37 year: 2022 ident: 9470_CR28 publication-title: Microchim. Acta doi: 10.1007/s00604-021-05142-z – volume: 26 start-page: 516 year: 2014 ident: 9470_CR46 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2014.05.028 – volume: 537 start-page: 167 year: 2018 ident: 9470_CR29 publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2018.02.025 – volume: 162 start-page: 97 year: 2015 ident: 9470_CR38 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2015.02.019 – volume: 6 start-page: 32231 issue: 47 year: 2021 ident: 9470_CR48 publication-title: ACS Omega doi: 10.1021/acsomega.1c05057 – volume: 105 start-page: 23 year: 2017 ident: 9470_CR25 publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2017.02.004 – volume: 612 start-page: 55 year: 2016 ident: 9470_CR33 publication-title: Thin. Solid. Film. doi: 10.1016/j.tsf.2016.05.028 – volume: 195 start-page: 74 year: 2014 ident: 9470_CR45 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.07.011 – volume: 731 start-page: 591 year: 2018 ident: 9470_CR51 publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2017.10.057 – volume: 395 start-page: 28 year: 2015 ident: 9470_CR17 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.07.030 – volume: 9 start-page: 1301 year: 2018 ident: 9470_CR3 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.04.010 – volume: 505 start-page: 362 year: 2010 ident: 9470_CR18 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.05.183 – volume: 657 start-page: 90 year: 2016 ident: 9470_CR55 publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2015.10.079 – volume: 33 start-page: 8065 year: 2022 ident: 9470_CR21 publication-title: J Maer Sci: Mater Electron. – volume: 576 start-page: 59 year: 2013 ident: 9470_CR31 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.04.011 – volume: 12 start-page: 11923 year: 2022 ident: 9470_CR32 publication-title: RSC Adv. doi: 10.1039/D2RA01798A – volume: 876 start-page: 160170 year: 2021 ident: 9470_CR5 publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2021.160170 – volume: 122 start-page: 349 year: 2018 ident: 9470_CR41 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.07.015 – volume: 150 start-page: 111795 year: 2022 ident: 9470_CR34 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2022.111795 – volume: 120 start-page: 108145 year: 2020 ident: 9470_CR27 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2020.108145 – volume: 101 year: 2007 ident: 9470_CR13 publication-title: J. Appl. Phys. doi: 10.1063/1.2749481 – volume: 19 start-page: 455702 year: 2008 ident: 9470_CR7 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/45/455702 – volume: 33 start-page: 22388 year: 2022 ident: 9470_CR52 publication-title: J Mater Sci: Mater Electron. – volume: 46 start-page: 5852 year: 2021 ident: 9470_CR19 publication-title: Mater. Today: Proc. |
SSID | ssj0006438 |
Score | 2.5422626 |
Snippet | In this research paper, the undoped and Co-doped ZnO nanopowders were effectively synthesized by the chemical co-precipitation process. The crystal structure,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116 |
SubjectTerms | Characterization and Evaluation of Materials Chemical precipitation Chemical synthesis Chemistry and Materials Science Cobalt Composition Crystal structure Crystallites Dielectric properties Doping Electrical resistivity Energy storage Materials Science Morphology Nanoparticles Optical and Electronic Materials Optical properties Structural analysis Thermal analysis Wurtzite Zinc oxide |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aL3oQP7FaZQ7eNLDNJpvtsRSlCOqlheJlydeqIKnY-jv8y06yu20VFTxnNoe8TeZNMvOGkPNeYrnOrKXW6pxyoXDPlUlJecmcFkZoqUKB8-1dNhzzm4mY1EVhsybbvXmSjCf1SrFbLjgN2ecYksiEinWyITB2D4lcY9ZfnL_oY_NKYS8oejNWl8r8PMdXd7TkmN-eRaO3ud4h2zVNhH6F6y5Zc36PbK2IB-6Tjyv_FMQy_CMgiYOqn01YcsAQN6i4xrYQoLyN4_a5sYDSRTXPGUxLePD34JXH0LnOkIO6cw8MpmBjNRVUOR-A9BZcLBWEkFKJBxGsPn8fkNH11WgwpHV7BWpw382p4qW2KhVSK5s5WdqeyRE43rVcSMWck10hU21SoYOuWZY6hfzCKozQHMYh6SFp-al3RwRUaZSSQcos19z0bC4UT1KmdGIMZ8q0SbdZ5MLU0uOhA8ZLsRRNDsAUCEwRgSlEm1wsvnmthDf-tO402BX1JpwVTGaBXSJDbZPLBs_l8O-zHf_P_IRshib01cVMh7Tmb-_uFKnKXJ_FP_MTILLjIg priority: 102 providerName: Springer Nature |
Title | Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications |
URI | https://link.springer.com/article/10.1007/s10854-022-09470-5 https://www.proquest.com/docview/2765226932 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2V5FIOVSlUpKXRHHorFptde-2cqhQloFYFhECivaz8tVCpcgJJf0f_cse7XgJI5br2-uCxx2_smfcAPo4zx03pHHPOKMaFpj1XZzXjde6NsMJIHQucv5-Ux5f865W4Shduy5RW2fnExlG7uY135Ae5LCNUILjxeXHLompUfF1NEhob0CcXrFQP-l-mJ2fn976YzlvVsu1Fdu88T2UzqXhOCc5iNjuFODJj4vHRtMabT55Im5Nn9hpeJciIk9bGW_DChzew-YBIcBv-TsNNJM4I10iADlttmzj9SOFuZHRtJCJQB9e0u19dD6x9w-y5xHmNP8MpBh0ojE7ZcphUfPBwjq6prMI2_wMJ6qJvygYxpleSU8KHT-E7cDGbXhwesyS1wCztwRXTvDZOF0Ia7Uovaze2iozIR44LqXPv5UjIwthCmMhxVhZeE9ZwmqI1TzFJ8RZ6YR78LqCurdYy0popw-3YKaF5VuTaZNbyXNsBjLpJrmyiIY9qGL-rNYFyNExFhqkaw1RiAJ_u_1m0JBzP9t7rbFelDbms1stnAPudPdfN_x_t3fOjvYeXUYC-vZTZg97q7o__QDBlZYawoWZHQ-hPjn58mw7TyqSvl_nkH2ZH6wA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcUMtDXSh0DnACi6xjx9kDQqjtdksfXBap4mL5FUBC3sIuQvwKfgn_kbGTdEul9tazHSvKN_Z8E898A_B8VHhhK--Z97ZmQhrac03RMNHwYKWTVplU4Hx8Uk0-iven8nQF_va1MCmtsj8T80HtZy79I3_NVZWoAtGNt2ffWeoalW5X-xYarVkcht-_KGSbvznYJXxfcD7em-5MWNdVgDkytwUzorHelFJZ46ugGj9yNb2vGHohleEhqKFUpXWltEnOqyqDIbfqDQUmgeh3ScvegjVRkiNPhenj_fODn5x73Ur7JSlxzrsana5Sr5aCpdR5iqdUweT_fnBJbi_dx2Y3N16Hex0_xXetQW3ASoj34e4F1cIH8GcvfkkqHfEzEnvEtpFOwhoptk7ysbkfBZro87j_2s_AJmQZ0TnOGvwUP2A0kWL2LjUPu5ZBuDNDn8u4sE02QeLVGHKNIqZcTjoB8eK9-0OY3gQCj2A1zmLYBDSNM0YlDbXaCjfytTSiKLmxhXOCGzeAYf-Rtes0z1PrjW96qdacgNEEjM7AaDmAl-fPnLWKH9fO3uqx093un-ulrQ7gVY_ncvjq1R5fv9o23J5Mj4_00cHJ4RO4w4lvtX-DtmB18eNneEr8aGGfZatE0De8C_4BCIkjZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPhUtxSYA5wgatax4-wBIWh31VJYKlSkiovlT0CqvIVdhPgV_B7-HePE6RYkeuvZjhXljT1v4pk3AI_HpeOmdq5wzjQFF5r2XChDwQPzRlhhpE4Fzm9n9d4H_vpYHK_B774WJqVV9mdie1C7uU3_yLeZrBNVILqxHXJaxOHu9MXp1yJ1kEo3rX07jc5EDvzPHxS-LZ7v7xLWTxibTo529orcYaCwZHrLQvNgnK6ENNrVXgY3tg29Ox85LqRm3suRkJWxlTBJ2quuvCYX6zQFKZ6oeEXLXoF1mYKiAay_mswO35-5AXL1TSf0l4TFGcsVO7lurxG8SIn0FF3JshB_e8UV1f3ndrZ1etObcCOzVXzZmdctWPPxNlw_p2F4B35N4uek2RE_IXFJ7NrqJOSRIu0kJtt2p0AdXTvuvvQzMPhWVHSB84Af4zuMOlIEnxP1MDcQwp05uraoC7vUEySWjb6tWMSU2UnnIZ6_hb8LR5eBwT0YxHn0G4A6WK1lUlRrDLdj1wjNy4ppU1rLmbZDGPUfWdmsgJ4acZyolXZzAkYRMKoFRokhPD175rTT_7hw9laPncpnwUKtLHcIz3o8V8P_X23z4tUewVXaAerN_uzgPlxjRL66X0NbMFh---4fEFlamofZLBHUJW-EP1fDKPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+electrical+conductivity+and+the+dielectric+features+of+ZnO+nanoparticles+through+Co+doping+effect+for+energy+storage+applications&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Saadi%2C+Hajer&rft.au=Benzarti%2C+Zohra&rft.au=Sanguino%2C+Pedro&rft.au=Pina%2C+Jo%C3%A3o&rft.date=2023-01-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1007%2Fs10854-022-09470-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_022_09470_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |