OpenFOAM simulation of turbulent flow in a complex dam structure

The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities d...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of physics Vol. 98; no. 9; pp. 3277 - 3286
Main Authors Bai, Di, Muhammad, Noor, Shah, Nehad Ali, Ali, Bagh, Raju, C. S. K., Wakif, Abderrahim, Ramesh, G. K., Ahmed, Shams Forruque, Madhukesh, J. K., Madhu, J., Prasannakumara, B. C., Sarris, I.
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0973-1458
0974-9845
DOI10.1007/s12648-024-03085-8

Cover

Loading…
Abstract The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities develop during floods and change over time, affecting the dam-break pulse and the shape of hydrographs. Three-dimensional simulators are commonly used to detect incremental variations in dam-break flow. However, physical obstructions or quick changes in the bed channel’s characteristics can significantly alter flood propagation and scenarios. To reduce damage to the spillway, flow speed is analyzed, and obstructions in the spillway bed are taken into account. Large eddy simulation is used to explain turbulent flow behavior on the dam spillway. The kinetic energy in a turbulent flow is determined at the input, obstructions, and exit. Using C++ programming and OpenFOAM simulation, velocity and turbulent kinetic energy calculations are shown graphically. The results of the study demonstrate a remarkable alignment with the previously documented findings, which adds to the credibility and validity of our research.
AbstractList The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities develop during floods and change over time, affecting the dam-break pulse and the shape of hydrographs. Three-dimensional simulators are commonly used to detect incremental variations in dam-break flow. However, physical obstructions or quick changes in the bed channel’s characteristics can significantly alter flood propagation and scenarios. To reduce damage to the spillway, flow speed is analyzed, and obstructions in the spillway bed are taken into account. Large eddy simulation is used to explain turbulent flow behavior on the dam spillway. The kinetic energy in a turbulent flow is determined at the input, obstructions, and exit. Using C++ programming and OpenFOAM simulation, velocity and turbulent kinetic energy calculations are shown graphically. The results of the study demonstrate a remarkable alignment with the previously documented findings, which adds to the credibility and validity of our research.
Author Raju, C. S. K.
Wakif, Abderrahim
Madhukesh, J. K.
Sarris, I.
Prasannakumara, B. C.
Madhu, J.
Ali, Bagh
Shah, Nehad Ali
Ramesh, G. K.
Muhammad, Noor
Bai, Di
Ahmed, Shams Forruque
Author_xml – sequence: 1
  givenname: Di
  surname: Bai
  fullname: Bai, Di
  organization: School of Mathematics and Statistics, Shandong University
– sequence: 2
  givenname: Noor
  surname: Muhammad
  fullname: Muhammad, Noor
  email: noor@sms.edu.pk
  organization: Abdus Salam School of Mathematical Sciences, Government College University
– sequence: 3
  givenname: Nehad Ali
  surname: Shah
  fullname: Shah, Nehad Ali
  email: nehadali199@yahoo.com
  organization: Department of Mechanical Engineering, Sejong University
– sequence: 4
  givenname: Bagh
  surname: Ali
  fullname: Ali, Bagh
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology
– sequence: 5
  givenname: C. S. K.
  surname: Raju
  fullname: Raju, C. S. K.
  organization: Department of Mathematics, GITAM School of Science, GITAM Deemed to be University
– sequence: 6
  givenname: Abderrahim
  surname: Wakif
  fullname: Wakif, Abderrahim
  organization: Laboratory of Mechanics, Faculty of Sciences Ain Chock, University Hassan II of Casablanca
– sequence: 7
  givenname: G. K.
  surname: Ramesh
  fullname: Ramesh, G. K.
  organization: Department of Mathematics, K.L.E. Society’s J.T. College
– sequence: 8
  givenname: Shams Forruque
  surname: Ahmed
  fullname: Ahmed, Shams Forruque
  organization: Science and Math Program, Asian University for Women
– sequence: 9
  givenname: J. K.
  surname: Madhukesh
  fullname: Madhukesh, J. K.
  organization: Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham
– sequence: 10
  givenname: J.
  surname: Madhu
  fullname: Madhu, J.
  organization: Department of Studied in Mathematics, Davangere University
– sequence: 11
  givenname: B. C.
  surname: Prasannakumara
  fullname: Prasannakumara, B. C.
  organization: Department of Studied in Mathematics, Davangere University
– sequence: 12
  givenname: I.
  surname: Sarris
  fullname: Sarris, I.
  organization: Department of Mechanical Engineering, University of West Attica
BookMark eNp9kE9LwzAYh4NMcJt-AU8Bz9GkSZvk5hhOBWUXPYe0fSsdbTKTFPXbW1dB8DByeHP4Pe-fZ4FmzjtA6JLRa0apvIksK4QiNBOEcqpyok7QnGopiFYinx3-nDCRqzO0iHFHaaGZzOfodrsHt9munnFs-6GzqfUO-wanIZRDBy7hpvMfuHXY4sr3-w4-cW17HFMYqjEE5-i0sV2Ei9-6RK-bu5f1A3na3j-uV0-k4kwnYoXOSlHzLKvyura2kaKQeSEZSJtVvATOQDEQDYAYiWJ8UDYamBYl1YXlS3Q19d0H_z5ATGbnh-DGkYZTqQqeZ5KOKTWlquBjDNCYqk2Ho1KwbWcYNT--zOTLjL7MwZdRI5r9Q_eh7W34Og7xCYpj2L1B-NvqCPUNL19-9w
CitedBy_id crossref_primary_10_1515_arh_2024_0012
crossref_primary_10_1186_s40712_024_00144_0
crossref_primary_10_1515_ntrev_2024_0083
crossref_primary_10_1080_01430750_2024_2404536
crossref_primary_10_1016_j_ijft_2024_100731
Cites_doi 10.1007/s40065-017-0187-z
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1016/j.physa.2019.122738
10.1063/1.5145051
10.4236/ojfd.2020.102009
10.1006/jcph.1996.5597
10.1146/annurev.fluid.32.1.1
10.1016/j.ijheatmasstransfer.2019.119143
10.2514/1.T6143
10.3390/mi14051072
10.1146/annurev.fl.28.010196.000401
10.3390/fluids5040217
10.1016/j.fuel.2020.119402
10.1016/0021-9991(75)90093-5
10.1007/s00521-016-2741-6
10.5194/hess-14-705-2010
10.3390/fluids5040250
10.1140/epjp/s13360-020-01001-7
10.1016/j.oceaneng.2020.108007
10.1016/j.cpc.2019.107047
10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
10.1038/srep40147
10.1017/S0022112000008776
10.1146/annurev.fluid.34.082901.144919
10.1017/jfm.2012.150
ContentType Journal Article
Copyright Indian Association for the Cultivation of Science 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Indian Association for the Cultivation of Science 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1007/s12648-024-03085-8
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9845
EndPage 3286
ExternalDocumentID 10_1007_s12648_024_03085_8
GroupedDBID -EM
04Q
04W
06D
0R~
0VY
203
29I
29~
2JN
2KG
2VQ
30V
3V.
406
408
5GY
5VS
67Z
8FE
8FG
8G5
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
C~6
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M2O
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9T
PQQKQ
PROAC
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
Z7X
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7U5
8FD
ABRTQ
H8D
L7M
ID FETCH-LOGICAL-c319t-a492b4d322c5ddaaf74675671e7a2c3be31e81e4fee4c316161ebf9e194b096a3
IEDL.DBID U2A
ISSN 0973-1458
IngestDate Sat Jul 26 03:23:27 EDT 2025
Tue Jul 01 03:02:40 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Fri Feb 21 02:39:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords OpenFOAM
Turbulence
Large eddy simulation
Dam break
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a492b4d322c5ddaaf74675671e7a2c3be31e81e4fee4c316161ebf9e194b096a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3078635270
PQPubID 2034531
PageCount 10
ParticipantIDs proquest_journals_3078635270
crossref_citationtrail_10_1007_s12648_024_03085_8
crossref_primary_10_1007_s12648_024_03085_8
springer_journals_10_1007_s12648_024_03085_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: West Bengal
PublicationTitle Indian journal of physics
PublicationTitleAbbrev Indian J Phys
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References PeltonenPKanninenPLaurilaEVuorinenVOcean Eng.202021610.1016/j.oceaneng.2020.108007
DeardorffJWJ. Atmos. Sci.1972299110.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
MuhammadNUllahNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7
SmagorinskyJMon. Weather Rev.1963919910.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
MeneveauCKatzJAnnu. Rev. Fluid Mech.200032110.1146/annurev.fluid.32.1.1
ShahNAZafarAAAkhtarSArab. J. Math.201874910.1007/s40065-017-0187-z
FadigaECasariNSumanAPinelliMComput. Phys. Commun.202025010.1016/j.cpc.2019.107047
R. Becker, M. Braack, R. Rannacher, and T. Richter, Diffus. Transp. 47 (2007)
TahirHKhanUDinAChuYMMuhammadNJ. Thermophys. Heat Transf.20213540210.2514/1.T6143
BouselsalMMebarek-OudinaFBiswasNIsmailAAIMicromachines202314107210.3390/mi14051072
NguyenVBDoQVPhamVSPhys. Fluids20203210.1063/1.5145051
BiscariniCFrancescoSDManciolaPEarth Syst. Sci.20101470510.5194/hess-14-705-2010
F. Porte´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}-Agel, C. Meneveau, and M.B. Parlange, J. Fluid Mech., 415 261 (2000)
MuhammadNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7
PiomelliUBalarasEAnnu. Rev. Fluid Mech.20023434910.1146/annurev.fluid.34.082901.144919
KravchenkoAGMoinPJ. Comput. Phys.199713131010.1006/jcph.1996.5597
HigginsEPittJPatersonEFluids2020525010.3390/fluids5040250
HuangZZhaoMXuYLiGZhangHFuel202028610.1016/j.fuel.2020.119402
KhanIShahINADennisLCCSci. Rep.201774014710.1038/srep40147
LesieurMMetaisOAnnu. Rev. Fluid Mech.1996284510.1146/annurev.fl.28.010196.000401
ChenSXiaZPeiSWangJYangYXiaoZShiYJ. Fluid Mech.20127031294990110.1017/jfm.2012.150
MuhammadNNadeemSIssakhovAPhys. A: Stat. Mech. Appl.202053710.1016/j.physa.2019.122738
NakhchiMEEsfahaniJAKimKCInt. J. Heat Mass Transf.202014810.1016/j.ijheatmasstransfer.2019.119143
D.K. Lilly, Proc. IBM Scientific Computing Symp. Environ. Sci. 195 (1967)
WestermaierSKowalczykWOpen J. Fluid Dyn.20201013510.4236/ojfd.2020.102009
RojasJPOchoaGVForeroJDInt. Rev. Model. Simul.2020138
ImranMAShahNAKhanIAleemMNeural Comput. Appl.201830158910.1007/s00521-016-2741-6
JacobsCTFluids2020521710.3390/fluids5040217
SchumannUJ. Comput. Phys.19741837610.1016/0021-9991(75)90093-5
E Fadiga (3085_CR9) 2020; 250
N Muhammad (3085_CR26) 2021; 136
C Biscarini (3085_CR25) 2010; 14
H Tahir (3085_CR3) 2021; 35
AG Kravchenko (3085_CR20) 1997; 131
U Schumann (3085_CR22) 1974; 18
JP Rojas (3085_CR13) 2020; 13
JW Deardorff (3085_CR21) 1972; 29
C Meneveau (3085_CR18) 2000; 32
N Muhammad (3085_CR7) 2020; 537
P Peltonen (3085_CR8) 2020; 216
3085_CR16
M Bouselsal (3085_CR28) 2023; 14
S Chen (3085_CR24) 2012; 703
MA Imran (3085_CR2) 2018; 30
NA Shah (3085_CR6) 2018; 7
VB Nguyen (3085_CR4) 2020; 32
Z Huang (3085_CR12) 2020; 286
U Piomelli (3085_CR19) 2002; 34
CT Jacobs (3085_CR10) 2020; 5
E Higgins (3085_CR11) 2020; 5
S Westermaier (3085_CR1) 2020; 10
N Muhammad (3085_CR5) 2021; 136
J Smagorinsky (3085_CR15) 1963; 91
3085_CR23
3085_CR29
I Khan (3085_CR14) 2017; 7
M Lesieur (3085_CR17) 1996; 28
ME Nakhchi (3085_CR27) 2020; 148
References_xml – reference: PeltonenPKanninenPLaurilaEVuorinenVOcean Eng.202021610.1016/j.oceaneng.2020.108007
– reference: KhanIShahINADennisLCCSci. Rep.201774014710.1038/srep40147
– reference: F. Porte´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}-Agel, C. Meneveau, and M.B. Parlange, J. Fluid Mech., 415 261 (2000)
– reference: KravchenkoAGMoinPJ. Comput. Phys.199713131010.1006/jcph.1996.5597
– reference: SchumannUJ. Comput. Phys.19741837610.1016/0021-9991(75)90093-5
– reference: PiomelliUBalarasEAnnu. Rev. Fluid Mech.20023434910.1146/annurev.fluid.34.082901.144919
– reference: NakhchiMEEsfahaniJAKimKCInt. J. Heat Mass Transf.202014810.1016/j.ijheatmasstransfer.2019.119143
– reference: MeneveauCKatzJAnnu. Rev. Fluid Mech.200032110.1146/annurev.fluid.32.1.1
– reference: SmagorinskyJMon. Weather Rev.1963919910.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– reference: LesieurMMetaisOAnnu. Rev. Fluid Mech.1996284510.1146/annurev.fl.28.010196.000401
– reference: MuhammadNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7
– reference: ShahNAZafarAAAkhtarSArab. J. Math.201874910.1007/s40065-017-0187-z
– reference: HuangZZhaoMXuYLiGZhangHFuel202028610.1016/j.fuel.2020.119402
– reference: TahirHKhanUDinAChuYMMuhammadNJ. Thermophys. Heat Transf.20213540210.2514/1.T6143
– reference: BouselsalMMebarek-OudinaFBiswasNIsmailAAIMicromachines202314107210.3390/mi14051072
– reference: NguyenVBDoQVPhamVSPhys. Fluids20203210.1063/1.5145051
– reference: JacobsCTFluids2020521710.3390/fluids5040217
– reference: RojasJPOchoaGVForeroJDInt. Rev. Model. Simul.2020138
– reference: DeardorffJWJ. Atmos. Sci.1972299110.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
– reference: HigginsEPittJPatersonEFluids2020525010.3390/fluids5040250
– reference: ChenSXiaZPeiSWangJYangYXiaoZShiYJ. Fluid Mech.20127031294990110.1017/jfm.2012.150
– reference: ImranMAShahNAKhanIAleemMNeural Comput. Appl.201830158910.1007/s00521-016-2741-6
– reference: FadigaECasariNSumanAPinelliMComput. Phys. Commun.202025010.1016/j.cpc.2019.107047
– reference: R. Becker, M. Braack, R. Rannacher, and T. Richter, Diffus. Transp. 47 (2007)
– reference: BiscariniCFrancescoSDManciolaPEarth Syst. Sci.20101470510.5194/hess-14-705-2010
– reference: MuhammadNUllahNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7
– reference: MuhammadNNadeemSIssakhovAPhys. A: Stat. Mech. Appl.202053710.1016/j.physa.2019.122738
– reference: D.K. Lilly, Proc. IBM Scientific Computing Symp. Environ. Sci. 195 (1967)
– reference: WestermaierSKowalczykWOpen J. Fluid Dyn.20201013510.4236/ojfd.2020.102009
– volume: 7
  start-page: 49
  year: 2018
  ident: 3085_CR6
  publication-title: Arab. J. Math.
  doi: 10.1007/s40065-017-0187-z
– ident: 3085_CR29
– volume: 91
  start-page: 99
  year: 1963
  ident: 3085_CR15
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 537
  year: 2020
  ident: 3085_CR7
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.122738
– volume: 32
  year: 2020
  ident: 3085_CR4
  publication-title: Phys. Fluids
  doi: 10.1063/1.5145051
– volume: 10
  start-page: 135
  year: 2020
  ident: 3085_CR1
  publication-title: Open J. Fluid Dyn.
  doi: 10.4236/ojfd.2020.102009
– volume: 13
  start-page: 8
  year: 2020
  ident: 3085_CR13
  publication-title: Int. Rev. Model. Simul.
– volume: 131
  start-page: 310
  year: 1997
  ident: 3085_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.5597
– volume: 32
  start-page: 1
  year: 2000
  ident: 3085_CR18
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.32.1.1
– volume: 148
  year: 2020
  ident: 3085_CR27
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119143
– volume: 35
  start-page: 402
  year: 2021
  ident: 3085_CR3
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T6143
– volume: 14
  start-page: 1072
  year: 2023
  ident: 3085_CR28
  publication-title: Micromachines
  doi: 10.3390/mi14051072
– volume: 28
  start-page: 45
  year: 1996
  ident: 3085_CR17
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.28.010196.000401
– volume: 5
  start-page: 217
  year: 2020
  ident: 3085_CR10
  publication-title: Fluids
  doi: 10.3390/fluids5040217
– volume: 286
  year: 2020
  ident: 3085_CR12
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119402
– volume: 18
  start-page: 376
  year: 1974
  ident: 3085_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(75)90093-5
– volume: 30
  start-page: 1589
  year: 2018
  ident: 3085_CR2
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2741-6
– volume: 14
  start-page: 705
  year: 2010
  ident: 3085_CR25
  publication-title: Earth Syst. Sci.
  doi: 10.5194/hess-14-705-2010
– volume: 5
  start-page: 250
  year: 2020
  ident: 3085_CR11
  publication-title: Fluids
  doi: 10.3390/fluids5040250
– volume: 136
  start-page: 1
  year: 2021
  ident: 3085_CR5
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-01001-7
– volume: 216
  year: 2020
  ident: 3085_CR8
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108007
– ident: 3085_CR16
– volume: 250
  year: 2020
  ident: 3085_CR9
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.107047
– volume: 29
  start-page: 91
  year: 1972
  ident: 3085_CR21
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
– volume: 7
  start-page: 40147
  year: 2017
  ident: 3085_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/srep40147
– ident: 3085_CR23
  doi: 10.1017/S0022112000008776
– volume: 34
  start-page: 349
  year: 2002
  ident: 3085_CR19
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.082901.144919
– volume: 703
  start-page: 1
  year: 2012
  ident: 3085_CR24
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.150
– volume: 136
  start-page: 1
  year: 2021
  ident: 3085_CR26
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-01001-7
SSID ssj0069175
Score 2.370141
Snippet The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3277
SubjectTerms Astrophysics and Astroparticles
Dam failure
Fluid dynamics
Fluid flow
Kinetic energy
Large eddy simulation
Obstructions
Original Paper
Physics
Physics and Astronomy
River beds
Simulation
Simulators
Spillways
Three dimensional flow
Turbulent flow
Title OpenFOAM simulation of turbulent flow in a complex dam structure
URI https://link.springer.com/article/10.1007/s12648-024-03085-8
https://www.proquest.com/docview/3078635270
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20RfAifmK1lj1404Um2SSbm620FqX1YqGewn5MoNCmYlr05zu7TSyKCpJDDtndw8vOzFv2zQwhl1pz0U5Um2kjfcalAfSDbcUiHUIcGBmAKyk0HEWDMb-fhJMyKayo1O7VlaTz1JtkNyvGYhhTmK2xEjKxTeqhPbvjLh77ncr_RngAccLFJA6Yx0NRpsr8vMbXcLThmN-uRV206e-TvZIm0s76vx6QLcgPyY6Ta-riiNxYHUj_sTOkxXReNuCii4xi_FArG0doNlu80WlOJXWicXinRs7pulrs6hWOybjfe7odsLIXAtNoJEsmeeIrbtD8dGiMlJltExJGsQex9HWgIPBAeMAzAI4zInxAZQl4CVd4SpHBCanlixxOCUVKJsGOiSLFfSORkMRCSqEVcoVIxA3iVZCkuiwUbvtVzNJNiWMLY4owpg7GVDTI1eecl3WZjD9HNyuk09JkihSdjUD248ftBrmu0N98_n21s_8NPye7vtsAVsTXJDUEHi6QWCxVi9Q7_W53ZN93zw-9lttXH7cKxTs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEb2In1itmoM3DexHdjd7s4ilalsvLfQWkuwsFOxW3Bb9-U7SXYuiguxxkxxeMjMv5M0MIZfGcOGl2mMmUwHjKgP0g55msYkgCTMVgisp1B_E3RF_GEfjKimsrNXu9ZOk89SrZDcrxmIYU5itsRIxsU42kAwIK-QaBe3a_8Z4AXHCxTQJmc8jUaXK_LzG13C04pjfnkVdtOnskp2KJtL2cl_3yBoU-2TTyTVNeUBurA6k89Tu03IyrRpw0VlOMX7ohY0jNH-evdFJQRV1onF4p5ma0mW12MUrHJJR525422VVLwRm0EjmTPE00DxD8zNRlimV2zYhUZz4kKjAhBpCH4QPPAfgOCPGD3Segp9yjbcUFR6RRjEr4JhQpGQK7Jg41jzIFBKSRCgljEauEIukSfwaEmmqQuG2X8WzXJU4tjBKhFE6GKVokqvPOS_LMhl_jm7VSMvKZEqJzkYg-wkSr0mua_RXv39f7eR_wy_IVnfY78ne_eDxlGwH7jBYQV-LNHAT4AxJxlyfuzP1AcsaxR4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aUbyIT6xWzcGbhnZ3s7vZm0Utvlo9WOhtyWMWCu222Bb9-U7SXauiguwxD9hJMvOFfPMNIadac9FIVINpI33GpQH0gw3FIh1CHBgZgJMUaneimy6_64W9T1n8ju1ePknOcxqsSlM-rY9NVl8kvlliFsP4wqzeSsjEMllBd-zZfd31m6UvjvAy4kiMSRwwj4eiSJv5eY6voWmBN789kbrI09okGwVkpM35Gm-RJci3yaqjburJDrmwnJDWY7NNJ_1hUYyLjjKKsUTNbEyh2WD0Svs5ldQRyOGNGjmkc-XY2Qvskm7r-vnyhhV1EZjGP5wyyRNfcYNHUYfGSJnZkiFhFHsQS18HCgIPhAc8A-A4IsIPVJaAl3CFNxYZ7JFKPsphn1CEZxJsnyhS3DcSwUkspBRaIW6IRFwlXmmSVBei4bZ2xSBdyB1bM6ZoxtSZMRVVcvYxZjyXzPizd620dFocn0mKjkcgEvLjRpWcl9ZfNP8-28H_up-QtaerVvpw27k_JOu-2wuW21cjFVwDOEK8MVXHbku9A5rkyVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenFOAM+simulation+of+turbulent+flow+in+a+complex+dam+structure&rft.jtitle=Indian+journal+of+physics&rft.au=Bai%2C+Di&rft.au=Noor%2C+Muhammad&rft.au=Shah%2C+Nehad+Ali&rft.au=Bagh%2C+Ali&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=9&rft.spage=3277&rft.epage=3286&rft_id=info:doi/10.1007%2Fs12648-024-03085-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon