OpenFOAM simulation of turbulent flow in a complex dam structure
The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities d...
Saved in:
Published in | Indian journal of physics Vol. 98; no. 9; pp. 3277 - 3286 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0973-1458 0974-9845 |
DOI | 10.1007/s12648-024-03085-8 |
Cover
Loading…
Abstract | The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities develop during floods and change over time, affecting the dam-break pulse and the shape of hydrographs. Three-dimensional simulators are commonly used to detect incremental variations in dam-break flow. However, physical obstructions or quick changes in the bed channel’s characteristics can significantly alter flood propagation and scenarios. To reduce damage to the spillway, flow speed is analyzed, and obstructions in the spillway bed are taken into account. Large eddy simulation is used to explain turbulent flow behavior on the dam spillway. The kinetic energy in a turbulent flow is determined at the input, obstructions, and exit. Using C++ programming and OpenFOAM simulation, velocity and turbulent kinetic energy calculations are shown graphically. The results of the study demonstrate a remarkable alignment with the previously documented findings, which adds to the credibility and validity of our research. |
---|---|
AbstractList | The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The potential consequences of a hypothetical dam failure depend mainly on the kind of collapse and the reservoir’s capacity. Riverbed singularities develop during floods and change over time, affecting the dam-break pulse and the shape of hydrographs. Three-dimensional simulators are commonly used to detect incremental variations in dam-break flow. However, physical obstructions or quick changes in the bed channel’s characteristics can significantly alter flood propagation and scenarios. To reduce damage to the spillway, flow speed is analyzed, and obstructions in the spillway bed are taken into account. Large eddy simulation is used to explain turbulent flow behavior on the dam spillway. The kinetic energy in a turbulent flow is determined at the input, obstructions, and exit. Using C++ programming and OpenFOAM simulation, velocity and turbulent kinetic energy calculations are shown graphically. The results of the study demonstrate a remarkable alignment with the previously documented findings, which adds to the credibility and validity of our research. |
Author | Raju, C. S. K. Wakif, Abderrahim Madhukesh, J. K. Sarris, I. Prasannakumara, B. C. Madhu, J. Ali, Bagh Shah, Nehad Ali Ramesh, G. K. Muhammad, Noor Bai, Di Ahmed, Shams Forruque |
Author_xml | – sequence: 1 givenname: Di surname: Bai fullname: Bai, Di organization: School of Mathematics and Statistics, Shandong University – sequence: 2 givenname: Noor surname: Muhammad fullname: Muhammad, Noor email: noor@sms.edu.pk organization: Abdus Salam School of Mathematical Sciences, Government College University – sequence: 3 givenname: Nehad Ali surname: Shah fullname: Shah, Nehad Ali email: nehadali199@yahoo.com organization: Department of Mechanical Engineering, Sejong University – sequence: 4 givenname: Bagh surname: Ali fullname: Ali, Bagh organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology – sequence: 5 givenname: C. S. K. surname: Raju fullname: Raju, C. S. K. organization: Department of Mathematics, GITAM School of Science, GITAM Deemed to be University – sequence: 6 givenname: Abderrahim surname: Wakif fullname: Wakif, Abderrahim organization: Laboratory of Mechanics, Faculty of Sciences Ain Chock, University Hassan II of Casablanca – sequence: 7 givenname: G. K. surname: Ramesh fullname: Ramesh, G. K. organization: Department of Mathematics, K.L.E. Society’s J.T. College – sequence: 8 givenname: Shams Forruque surname: Ahmed fullname: Ahmed, Shams Forruque organization: Science and Math Program, Asian University for Women – sequence: 9 givenname: J. K. surname: Madhukesh fullname: Madhukesh, J. K. organization: Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham – sequence: 10 givenname: J. surname: Madhu fullname: Madhu, J. organization: Department of Studied in Mathematics, Davangere University – sequence: 11 givenname: B. C. surname: Prasannakumara fullname: Prasannakumara, B. C. organization: Department of Studied in Mathematics, Davangere University – sequence: 12 givenname: I. surname: Sarris fullname: Sarris, I. organization: Department of Mechanical Engineering, University of West Attica |
BookMark | eNp9kE9LwzAYh4NMcJt-AU8Bz9GkSZvk5hhOBWUXPYe0fSsdbTKTFPXbW1dB8DByeHP4Pe-fZ4FmzjtA6JLRa0apvIksK4QiNBOEcqpyok7QnGopiFYinx3-nDCRqzO0iHFHaaGZzOfodrsHt9munnFs-6GzqfUO-wanIZRDBy7hpvMfuHXY4sr3-w4-cW17HFMYqjEE5-i0sV2Ei9-6RK-bu5f1A3na3j-uV0-k4kwnYoXOSlHzLKvyura2kaKQeSEZSJtVvATOQDEQDYAYiWJ8UDYamBYl1YXlS3Q19d0H_z5ATGbnh-DGkYZTqQqeZ5KOKTWlquBjDNCYqk2Ho1KwbWcYNT--zOTLjL7MwZdRI5r9Q_eh7W34Og7xCYpj2L1B-NvqCPUNL19-9w |
CitedBy_id | crossref_primary_10_1515_arh_2024_0012 crossref_primary_10_1186_s40712_024_00144_0 crossref_primary_10_1515_ntrev_2024_0083 crossref_primary_10_1080_01430750_2024_2404536 crossref_primary_10_1016_j_ijft_2024_100731 |
Cites_doi | 10.1007/s40065-017-0187-z 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1016/j.physa.2019.122738 10.1063/1.5145051 10.4236/ojfd.2020.102009 10.1006/jcph.1996.5597 10.1146/annurev.fluid.32.1.1 10.1016/j.ijheatmasstransfer.2019.119143 10.2514/1.T6143 10.3390/mi14051072 10.1146/annurev.fl.28.010196.000401 10.3390/fluids5040217 10.1016/j.fuel.2020.119402 10.1016/0021-9991(75)90093-5 10.1007/s00521-016-2741-6 10.5194/hess-14-705-2010 10.3390/fluids5040250 10.1140/epjp/s13360-020-01001-7 10.1016/j.oceaneng.2020.108007 10.1016/j.cpc.2019.107047 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 10.1038/srep40147 10.1017/S0022112000008776 10.1146/annurev.fluid.34.082901.144919 10.1017/jfm.2012.150 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-024-03085-8 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 3286 |
ExternalDocumentID | 10_1007_s12648_024_03085_8 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-a492b4d322c5ddaaf74675671e7a2c3be31e81e4fee4c316161ebf9e194b096a3 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Sat Jul 26 03:23:27 EDT 2025 Tue Jul 01 03:02:40 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Fri Feb 21 02:39:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | OpenFOAM Turbulence Large eddy simulation Dam break |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a492b4d322c5ddaaf74675671e7a2c3be31e81e4fee4c316161ebf9e194b096a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3078635270 |
PQPubID | 2034531 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3078635270 crossref_citationtrail_10_1007_s12648_024_03085_8 crossref_primary_10_1007_s12648_024_03085_8 springer_journals_10_1007_s12648_024_03085_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2024 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | PeltonenPKanninenPLaurilaEVuorinenVOcean Eng.202021610.1016/j.oceaneng.2020.108007 DeardorffJWJ. Atmos. Sci.1972299110.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 MuhammadNUllahNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7 SmagorinskyJMon. Weather Rev.1963919910.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 MeneveauCKatzJAnnu. Rev. Fluid Mech.200032110.1146/annurev.fluid.32.1.1 ShahNAZafarAAAkhtarSArab. J. Math.201874910.1007/s40065-017-0187-z FadigaECasariNSumanAPinelliMComput. Phys. Commun.202025010.1016/j.cpc.2019.107047 R. Becker, M. Braack, R. Rannacher, and T. Richter, Diffus. Transp. 47 (2007) TahirHKhanUDinAChuYMMuhammadNJ. Thermophys. Heat Transf.20213540210.2514/1.T6143 BouselsalMMebarek-OudinaFBiswasNIsmailAAIMicromachines202314107210.3390/mi14051072 NguyenVBDoQVPhamVSPhys. Fluids20203210.1063/1.5145051 BiscariniCFrancescoSDManciolaPEarth Syst. Sci.20101470510.5194/hess-14-705-2010 F. Porte´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}-Agel, C. Meneveau, and M.B. Parlange, J. Fluid Mech., 415 261 (2000) MuhammadNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7 PiomelliUBalarasEAnnu. Rev. Fluid Mech.20023434910.1146/annurev.fluid.34.082901.144919 KravchenkoAGMoinPJ. Comput. Phys.199713131010.1006/jcph.1996.5597 HigginsEPittJPatersonEFluids2020525010.3390/fluids5040250 HuangZZhaoMXuYLiGZhangHFuel202028610.1016/j.fuel.2020.119402 KhanIShahINADennisLCCSci. Rep.201774014710.1038/srep40147 LesieurMMetaisOAnnu. Rev. Fluid Mech.1996284510.1146/annurev.fl.28.010196.000401 ChenSXiaZPeiSWangJYangYXiaoZShiYJ. Fluid Mech.20127031294990110.1017/jfm.2012.150 MuhammadNNadeemSIssakhovAPhys. A: Stat. Mech. Appl.202053710.1016/j.physa.2019.122738 NakhchiMEEsfahaniJAKimKCInt. J. Heat Mass Transf.202014810.1016/j.ijheatmasstransfer.2019.119143 D.K. Lilly, Proc. IBM Scientific Computing Symp. Environ. Sci. 195 (1967) WestermaierSKowalczykWOpen J. Fluid Dyn.20201013510.4236/ojfd.2020.102009 RojasJPOchoaGVForeroJDInt. Rev. Model. Simul.2020138 ImranMAShahNAKhanIAleemMNeural Comput. Appl.201830158910.1007/s00521-016-2741-6 JacobsCTFluids2020521710.3390/fluids5040217 SchumannUJ. Comput. Phys.19741837610.1016/0021-9991(75)90093-5 E Fadiga (3085_CR9) 2020; 250 N Muhammad (3085_CR26) 2021; 136 C Biscarini (3085_CR25) 2010; 14 H Tahir (3085_CR3) 2021; 35 AG Kravchenko (3085_CR20) 1997; 131 U Schumann (3085_CR22) 1974; 18 JP Rojas (3085_CR13) 2020; 13 JW Deardorff (3085_CR21) 1972; 29 C Meneveau (3085_CR18) 2000; 32 N Muhammad (3085_CR7) 2020; 537 P Peltonen (3085_CR8) 2020; 216 3085_CR16 M Bouselsal (3085_CR28) 2023; 14 S Chen (3085_CR24) 2012; 703 MA Imran (3085_CR2) 2018; 30 NA Shah (3085_CR6) 2018; 7 VB Nguyen (3085_CR4) 2020; 32 Z Huang (3085_CR12) 2020; 286 U Piomelli (3085_CR19) 2002; 34 CT Jacobs (3085_CR10) 2020; 5 E Higgins (3085_CR11) 2020; 5 S Westermaier (3085_CR1) 2020; 10 N Muhammad (3085_CR5) 2021; 136 J Smagorinsky (3085_CR15) 1963; 91 3085_CR23 3085_CR29 I Khan (3085_CR14) 2017; 7 M Lesieur (3085_CR17) 1996; 28 ME Nakhchi (3085_CR27) 2020; 148 |
References_xml | – reference: PeltonenPKanninenPLaurilaEVuorinenVOcean Eng.202021610.1016/j.oceaneng.2020.108007 – reference: KhanIShahINADennisLCCSci. Rep.201774014710.1038/srep40147 – reference: F. Porte´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}-Agel, C. Meneveau, and M.B. Parlange, J. Fluid Mech., 415 261 (2000) – reference: KravchenkoAGMoinPJ. Comput. Phys.199713131010.1006/jcph.1996.5597 – reference: SchumannUJ. Comput. Phys.19741837610.1016/0021-9991(75)90093-5 – reference: PiomelliUBalarasEAnnu. Rev. Fluid Mech.20023434910.1146/annurev.fluid.34.082901.144919 – reference: NakhchiMEEsfahaniJAKimKCInt. J. Heat Mass Transf.202014810.1016/j.ijheatmasstransfer.2019.119143 – reference: MeneveauCKatzJAnnu. Rev. Fluid Mech.200032110.1146/annurev.fluid.32.1.1 – reference: SmagorinskyJMon. Weather Rev.1963919910.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – reference: LesieurMMetaisOAnnu. Rev. Fluid Mech.1996284510.1146/annurev.fl.28.010196.000401 – reference: MuhammadNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7 – reference: ShahNAZafarAAAkhtarSArab. J. Math.201874910.1007/s40065-017-0187-z – reference: HuangZZhaoMXuYLiGZhangHFuel202028610.1016/j.fuel.2020.119402 – reference: TahirHKhanUDinAChuYMMuhammadNJ. Thermophys. Heat Transf.20213540210.2514/1.T6143 – reference: BouselsalMMebarek-OudinaFBiswasNIsmailAAIMicromachines202314107210.3390/mi14051072 – reference: NguyenVBDoQVPhamVSPhys. Fluids20203210.1063/1.5145051 – reference: JacobsCTFluids2020521710.3390/fluids5040217 – reference: RojasJPOchoaGVForeroJDInt. Rev. Model. Simul.2020138 – reference: DeardorffJWJ. Atmos. Sci.1972299110.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 – reference: HigginsEPittJPatersonEFluids2020525010.3390/fluids5040250 – reference: ChenSXiaZPeiSWangJYangYXiaoZShiYJ. Fluid Mech.20127031294990110.1017/jfm.2012.150 – reference: ImranMAShahNAKhanIAleemMNeural Comput. Appl.201830158910.1007/s00521-016-2741-6 – reference: FadigaECasariNSumanAPinelliMComput. Phys. Commun.202025010.1016/j.cpc.2019.107047 – reference: R. Becker, M. Braack, R. Rannacher, and T. Richter, Diffus. Transp. 47 (2007) – reference: BiscariniCFrancescoSDManciolaPEarth Syst. Sci.20101470510.5194/hess-14-705-2010 – reference: MuhammadNUllahNEur. Phys. J. Plus2021136110.1140/epjp/s13360-020-01001-7 – reference: MuhammadNNadeemSIssakhovAPhys. A: Stat. Mech. Appl.202053710.1016/j.physa.2019.122738 – reference: D.K. Lilly, Proc. IBM Scientific Computing Symp. Environ. Sci. 195 (1967) – reference: WestermaierSKowalczykWOpen J. Fluid Dyn.20201013510.4236/ojfd.2020.102009 – volume: 7 start-page: 49 year: 2018 ident: 3085_CR6 publication-title: Arab. J. Math. doi: 10.1007/s40065-017-0187-z – ident: 3085_CR29 – volume: 91 start-page: 99 year: 1963 ident: 3085_CR15 publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 537 year: 2020 ident: 3085_CR7 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2019.122738 – volume: 32 year: 2020 ident: 3085_CR4 publication-title: Phys. Fluids doi: 10.1063/1.5145051 – volume: 10 start-page: 135 year: 2020 ident: 3085_CR1 publication-title: Open J. Fluid Dyn. doi: 10.4236/ojfd.2020.102009 – volume: 13 start-page: 8 year: 2020 ident: 3085_CR13 publication-title: Int. Rev. Model. Simul. – volume: 131 start-page: 310 year: 1997 ident: 3085_CR20 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5597 – volume: 32 start-page: 1 year: 2000 ident: 3085_CR18 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.32.1.1 – volume: 148 year: 2020 ident: 3085_CR27 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119143 – volume: 35 start-page: 402 year: 2021 ident: 3085_CR3 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T6143 – volume: 14 start-page: 1072 year: 2023 ident: 3085_CR28 publication-title: Micromachines doi: 10.3390/mi14051072 – volume: 28 start-page: 45 year: 1996 ident: 3085_CR17 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.28.010196.000401 – volume: 5 start-page: 217 year: 2020 ident: 3085_CR10 publication-title: Fluids doi: 10.3390/fluids5040217 – volume: 286 year: 2020 ident: 3085_CR12 publication-title: Fuel doi: 10.1016/j.fuel.2020.119402 – volume: 18 start-page: 376 year: 1974 ident: 3085_CR22 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(75)90093-5 – volume: 30 start-page: 1589 year: 2018 ident: 3085_CR2 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2741-6 – volume: 14 start-page: 705 year: 2010 ident: 3085_CR25 publication-title: Earth Syst. Sci. doi: 10.5194/hess-14-705-2010 – volume: 5 start-page: 250 year: 2020 ident: 3085_CR11 publication-title: Fluids doi: 10.3390/fluids5040250 – volume: 136 start-page: 1 year: 2021 ident: 3085_CR5 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-01001-7 – volume: 216 year: 2020 ident: 3085_CR8 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108007 – ident: 3085_CR16 – volume: 250 year: 2020 ident: 3085_CR9 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.107047 – volume: 29 start-page: 91 year: 1972 ident: 3085_CR21 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 – volume: 7 start-page: 40147 year: 2017 ident: 3085_CR14 publication-title: Sci. Rep. doi: 10.1038/srep40147 – ident: 3085_CR23 doi: 10.1017/S0022112000008776 – volume: 34 start-page: 349 year: 2002 ident: 3085_CR19 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.34.082901.144919 – volume: 703 start-page: 1 year: 2012 ident: 3085_CR24 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.150 – volume: 136 start-page: 1 year: 2021 ident: 3085_CR26 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-01001-7 |
SSID | ssj0069175 |
Score | 2.370141 |
Snippet | The economic and environmental benefits of dam flow need to be calculated theoretically using open-source field operation and manipulation (OpenFOAM). The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3277 |
SubjectTerms | Astrophysics and Astroparticles Dam failure Fluid dynamics Fluid flow Kinetic energy Large eddy simulation Obstructions Original Paper Physics Physics and Astronomy River beds Simulation Simulators Spillways Three dimensional flow Turbulent flow |
Title | OpenFOAM simulation of turbulent flow in a complex dam structure |
URI | https://link.springer.com/article/10.1007/s12648-024-03085-8 https://www.proquest.com/docview/3078635270 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20RfAifmK1lj1404Um2SSbm620FqX1YqGewn5MoNCmYlr05zu7TSyKCpJDDtndw8vOzFv2zQwhl1pz0U5Um2kjfcalAfSDbcUiHUIcGBmAKyk0HEWDMb-fhJMyKayo1O7VlaTz1JtkNyvGYhhTmK2xEjKxTeqhPbvjLh77ncr_RngAccLFJA6Yx0NRpsr8vMbXcLThmN-uRV206e-TvZIm0s76vx6QLcgPyY6Ta-riiNxYHUj_sTOkxXReNuCii4xi_FArG0doNlu80WlOJXWicXinRs7pulrs6hWOybjfe7odsLIXAtNoJEsmeeIrbtD8dGiMlJltExJGsQex9HWgIPBAeMAzAI4zInxAZQl4CVd4SpHBCanlixxOCUVKJsGOiSLFfSORkMRCSqEVcoVIxA3iVZCkuiwUbvtVzNJNiWMLY4owpg7GVDTI1eecl3WZjD9HNyuk09JkihSdjUD248ftBrmu0N98_n21s_8NPye7vtsAVsTXJDUEHi6QWCxVi9Q7_W53ZN93zw-9lttXH7cKxTs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEb2In1itmoM3DexHdjd7s4ilalsvLfQWkuwsFOxW3Bb9-U7SXYuiguxxkxxeMjMv5M0MIZfGcOGl2mMmUwHjKgP0g55msYkgCTMVgisp1B_E3RF_GEfjKimsrNXu9ZOk89SrZDcrxmIYU5itsRIxsU42kAwIK-QaBe3a_8Z4AXHCxTQJmc8jUaXK_LzG13C04pjfnkVdtOnskp2KJtL2cl_3yBoU-2TTyTVNeUBurA6k89Tu03IyrRpw0VlOMX7ohY0jNH-evdFJQRV1onF4p5ma0mW12MUrHJJR525422VVLwRm0EjmTPE00DxD8zNRlimV2zYhUZz4kKjAhBpCH4QPPAfgOCPGD3Segp9yjbcUFR6RRjEr4JhQpGQK7Jg41jzIFBKSRCgljEauEIukSfwaEmmqQuG2X8WzXJU4tjBKhFE6GKVokqvPOS_LMhl_jm7VSMvKZEqJzkYg-wkSr0mua_RXv39f7eR_wy_IVnfY78ne_eDxlGwH7jBYQV-LNHAT4AxJxlyfuzP1AcsaxR4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aUbyIT6xWzcGbhnZ3s7vZm0Utvlo9WOhtyWMWCu222Bb9-U7SXauiguwxD9hJMvOFfPMNIadac9FIVINpI33GpQH0gw3FIh1CHBgZgJMUaneimy6_64W9T1n8ju1ePknOcxqsSlM-rY9NVl8kvlliFsP4wqzeSsjEMllBd-zZfd31m6UvjvAy4kiMSRwwj4eiSJv5eY6voWmBN789kbrI09okGwVkpM35Gm-RJci3yaqjburJDrmwnJDWY7NNJ_1hUYyLjjKKsUTNbEyh2WD0Svs5ldQRyOGNGjmkc-XY2Qvskm7r-vnyhhV1EZjGP5wyyRNfcYNHUYfGSJnZkiFhFHsQS18HCgIPhAc8A-A4IsIPVJaAl3CFNxYZ7JFKPsphn1CEZxJsnyhS3DcSwUkspBRaIW6IRFwlXmmSVBei4bZ2xSBdyB1bM6ZoxtSZMRVVcvYxZjyXzPizd620dFocn0mKjkcgEvLjRpWcl9ZfNP8-28H_up-QtaerVvpw27k_JOu-2wuW21cjFVwDOEK8MVXHbku9A5rkyVo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenFOAM+simulation+of+turbulent+flow+in+a+complex+dam+structure&rft.jtitle=Indian+journal+of+physics&rft.au=Bai%2C+Di&rft.au=Noor%2C+Muhammad&rft.au=Shah%2C+Nehad+Ali&rft.au=Bagh%2C+Ali&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=9&rft.spage=3277&rft.epage=3286&rft_id=info:doi/10.1007%2Fs12648-024-03085-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |