Delta Complete Monotonicity and Completely Monotonic Degree on Time Scales

The theory of time scale was proposed to unite continuous and discrete statements. In this paper, we introduce the concepts of complete monotonicity, logarithmic complete monotonicity, and absolute monotonicity of multivariate functions on time scales utilizing the delta derivative. Following that,...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Malaysian Mathematical Sciences Society Vol. 46; no. 4
Main Authors Mao, Zhong-Xuan, Tian, Jing-Feng
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The theory of time scale was proposed to unite continuous and discrete statements. In this paper, we introduce the concepts of complete monotonicity, logarithmic complete monotonicity, and absolute monotonicity of multivariate functions on time scales utilizing the delta derivative. Following that, we investigate the properties of delta complete monotonicity on time scales and present some judgment rules. Using judgment rules, three functions are shown to be delta complete monotonicity on time scales. And then, in order to quantitatively measure two delta completely monotonic functions on time scales, we present the concept of completely monotonic degree of univariate and multivariate functions on time scales and explore some properties of them.
AbstractList The theory of time scale was proposed to unite continuous and discrete statements. In this paper, we introduce the concepts of complete monotonicity, logarithmic complete monotonicity, and absolute monotonicity of multivariate functions on time scales utilizing the delta derivative. Following that, we investigate the properties of delta complete monotonicity on time scales and present some judgment rules. Using judgment rules, three functions are shown to be delta complete monotonicity on time scales. And then, in order to quantitatively measure two delta completely monotonic functions on time scales, we present the concept of completely monotonic degree of univariate and multivariate functions on time scales and explore some properties of them.
ArticleNumber 142
Author Mao, Zhong-Xuan
Tian, Jing-Feng
Author_xml – sequence: 1
  givenname: Zhong-Xuan
  surname: Mao
  fullname: Mao, Zhong-Xuan
  organization: Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics, North China Electric Power University
– sequence: 2
  givenname: Jing-Feng
  orcidid: 0000-0002-0631-038X
  surname: Tian
  fullname: Tian, Jing-Feng
  email: tianjf@ncepu.edu.cn
  organization: Hebei Key Laboratory of Physics and Energy Technology, Department of Mathematics and Physics, North China Electric Power University
BookMark eNp9kDtPwzAUhS0EEqX0DzBFYjb4ESf2iFqeKmKgzJbj3FSpUrvY7pB_TyCISgy9yx3O-e7jXKBT5x0gdEXJDSWkvI05kTnBhHFMqOAc9ydowqgkOGekOEUTQlmBi5KIczSLcUOGEgUrGJ2glwV0yWRzv911kCB79c4n71rbpj4zrv5Tuv6gZQtYB4DMu2zVbiF7t6aDeInOGtNFmP32Kfp4uF_Nn_Dy7fF5frfEllOVsOEcpBV5A4oRZWghWUMqDnmhuLXKlrKxjbG8rHNWKVsAFXVVcSVLlgsiaj5F1-PcXfCfe4hJb_w-uGGlZpIJyZUSbHDJ0WWDjzFAo4eXTGq9S8G0naZEf4enx_D0EJ7-CU_3A8r-obvQbk3oj0N8hOJgdmsIh6uOUF9Xz4PF
CitedBy_id crossref_primary_10_15672_hujms_1191725
Cites_doi 10.1007/s11425-016-0070-y
10.1016/j.mcm.2005.08.014
10.1186/s13660-017-1527-4
10.5802/crmath.399
10.1007/s40840-021-01224-6
10.1007/978-1-4612-0201-1
10.1090/S0025-5718-1986-0856710-6
10.4134/BKMS.2010.47.1.103
10.1016/j.aml.2007.03.013
10.1007/978-3-319-47620-9
10.1016/j.jmaa.2017.05.081
10.1007/s40840-016-0435-y
10.1007/s40840-015-0300-4
10.1007/s13398-020-00992-3
10.1007/s40840-014-0096-7
10.1007/s40840-017-0595-4
10.4310/CMS.2003.v1.n1.a8
10.1007/BF02592679
10.1016/0022-247X(86)90042-9
10.1016/j.jmaa.2016.04.029
10.1007/s11425-014-4917-9
10.1007/s40840-019-00871-0
10.1007/s10473-021-0310-2
10.1007/s13398-018-0609-6
10.1525/9780520345294
10.1007/978-0-8176-8230-9
10.3934/math.2020224
10.1016/j.nahs.2018.12.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40840-023-01533-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2180-4206
ExternalDocumentID 10_1007_s40840_023_01533_y
GroupedDBID 8FE
8FG
ABUWG
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVBZV
HCIFZ
L6V
P2P
REM
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c319t-a33e8c54fe9209a1682f0b3e4693cc9c78fcfac37d42b9c6e15dbb398724505d3
IEDL.DBID AGYKE
ISSN 0126-6705
IngestDate Mon Jun 30 09:03:28 EDT 2025
Tue Jul 01 00:57:16 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 21 02:42:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 33B15
Completely monotonic degree
Time scales
Absolute monotonicity
Primary 26A48
Secondary 26E70
Logarithmic complete monotonicity
26B25
Complete monotonicity
Psi function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a33e8c54fe9209a1682f0b3e4693cc9c78fcfac37d42b9c6e15dbb398724505d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0631-038X
PQID 2825839952
PQPubID 1006356
ParticipantIDs proquest_journals_2825839952
crossref_citationtrail_10_1007_s40840_023_01533_y
crossref_primary_10_1007_s40840_023_01533_y
springer_journals_10_1007_s40840_023_01533_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Bulletin of the Malaysian Mathematical Sciences Society
PublicationTitleAbbrev Bull. Malays. Math. Sci. Soc
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References TianXZhangYFractional time-scales Noether theorem with Caputo Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-derivatives for Hamiltonian systemsAppl. Math. Comput.202139312575341769551508.70025
KayarZKaymakçalanBNovel diamond alpha Bennett–Leindler type dynamic inequalities and their applicationsBull. Malays. Math. Sci. Soc.20224510271054441230810.1007/s40840-021-01224-61497.26022
YangZ-HZhengS-ZComplete monotonicity and inequalites involving Gurland’s ratios of gamma functionsMath. Inequal. Appl.2019229710939059731416.33005
Brito da CruzAMCMartinsNTorresDFMThe diamond integral on time scalesBull. Malays. Math. Sci. Soc.20153814531462339383110.1007/s40840-014-0096-71326.26039
BohnerMPetersonADynamic equations on time scales2001BostonSpringer10.1007/978-1-4612-0201-10978.39001
AticiFMBilesDCLebedinskyAAn application of time scales to economicsMath. Comput. Model.200643718726221831510.1016/j.mcm.2005.08.0141187.91125
BohnerMStreipertSTorresDFMExact solution to a dynamic SIR modelNonlear Anal. Hybri.201932228238389510510.1016/j.nahs.2018.12.0051425.92177
DengXWangQZhouZOscillation criteria for second order neutral dynamic equations of Emden–Fowler type with positive and negative coefficients on time scalesSci. China Math.201760113132358505310.1007/s11425-016-0070-y1370.34146
AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1992New YorkDover Publications0171.38503
ZhangCAgarwalRPBohnerMOscillation of fourth-order delay dynamic equationsSci. China Math.201558143160329633610.1007/s11425-014-4917-91321.34121
YangZ-HZhengS-ZComplete monotonicity involving some ratios of gamma functionsJ. Inequal. Appl.20172017255371162910.1186/s13660-017-1527-41372.33002
TianJ-FZhuY-RCheungW-SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-tuple Diamond-Alpha integral and inequalities on time scalesRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM201911321892200395624310.1007/s13398-018-0609-61429.26048
MaoZ-XTianJ-FMonotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kindC. R. Math. Acad. Sci. Paris2023361217235453854707652644
IsmailMEHCompletely monotonic functions associated with the gamma function and its q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analoguesJ. Math. Anal. Appl.19881161983733710.1016/0022-247X(86)90042-9
QiuY-CWangQ-RExistence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time scalesBull. Malays. Math. Sci. Soc.20184119351952385450010.1007/s40840-016-0435-y1406.34110
YuXWangQWeighted Pseudo-Almost periodic solutions for shunting inhibitory cellular neural networks on time scalesBull. Malays. Math. Sci. Soc.20194220552074398440910.1007/s40840-017-0595-41450.34072
BustozJIsmailMEHOn gamma function inequalitiesMath. Comp.19864765966785671010.1090/S0025-5718-1986-0856710-60607.33002
Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, Würzburg, Germany (1988)
BochnerSHarmonic analysis and the theory of probability1955Berkeley and Los AngelesUniversity of California Press10.1525/97805203452940068.11702
ZhaoT-HWangM-KChuY-MMonotonicity and convexity involving generalized elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM202111546419743710.1007/s13398-020-00992-31456.33016
BernsteinSSur les fonctions absolument monotones(French)Acta Math.192952166155526910.1007/BF0259267955.0142.07
ZhuLCompletely monotonic integer degrees for a class of special functionsAIMS Math.2020534563471414610710.3934/math.20202241484.33007
WeinanEEngquistBThe heterognous multiscale methodsCommun. Math. Sci.2003187132197984610.4310/CMS.2003.v1.n1.a81093.35012
YangZ-HApproximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma functionJ. Math. Anal. Appl.2016441549564349154210.1016/j.jmaa.2016.04.0291336.33005
BohnerMPetersonAAdvances in dynamic equations on time scales2003BostonSpringer10.1007/978-0-8176-8230-91025.34001
BohnerMGeorgievSGMultivariable dynamic calculus on time scales2016ChamSpriner10.1007/978-3-319-47620-91475.26001
GuoB-NQiFTwo new proofs of the complete monotonicity of a function involving the psi functionBull. Korean Math. Soc.201047103111260423610.4134/BKMS.2010.47.1.1031183.33002
WeinanEPrinciples of multiscale modeling2011CambridgeCambridge University Press1238.00010
XuJ-FPervaizBZadaAStability analysis of causal integral evolution impulsive systems on time scalesActa. Math. Sci.202141781800424543310.1007/s10473-021-0310-207557576
AticiFMUysalFA production-inventory model of HMMS on time scalesAppl. Math. Lett.200821236243243373410.1016/j.aml.2007.03.0131153.90001
MalikMKumarVExistence, stability and controllability results of coupled fractional dynamical system on time scalesBull. Malays. Math. Sci. Soc.20204333693394415283610.1007/s40840-019-00871-01478.34098
SakerSHO’ReganDHardy and Littlewood inequalities on time scalesBull. Malays. Math. Sci. Soc.201639527543347132910.1007/s40840-015-0300-41342.26065
WidderDVThe Laplace Transform, Princeton Mathematical Series1941PrincetonPrinceton University Press
YangZ-HSome properties of the divided difference of psi and polygamma functionsJ. Math. Anal. Appl.2017455761777366513110.1016/j.jmaa.2017.05.0811369.33007
X Deng (1533_CR9) 2017; 60
Z-X Mao (1533_CR30) 2023; 361
M Bohner (1533_CR20) 2016
DV Widder (1533_CR22) 1941
Z-H Yang (1533_CR27) 2017; 2017
M Malik (1533_CR12) 2020; 43
E Weinan (1533_CR14) 2011
M Bohner (1533_CR6) 2001
L Zhu (1533_CR32) 2020; 5
Y-C Qiu (1533_CR11) 2018; 41
FM Atici (1533_CR17) 2006; 43
Z-H Yang (1533_CR28) 2019; 22
E Weinan (1533_CR13) 2003; 1
FM Atici (1533_CR18) 2008; 21
M Bohner (1533_CR19) 2019; 32
M Bohner (1533_CR7) 2003
AMC Brito da Cruz (1533_CR2) 2015; 38
1533_CR1
J-F Tian (1533_CR8) 2019; 113
S Bochner (1533_CR31) 1955
X Yu (1533_CR4) 2019; 42
M Abramowitz (1533_CR33) 1992
Z Kayar (1533_CR5) 2022; 45
S Bernstein (1533_CR21) 1929; 52
T-H Zhao (1533_CR29) 2021; 115
J Bustoz (1533_CR23) 1986; 47
C Zhang (1533_CR10) 2015; 58
B-N Guo (1533_CR34) 2010; 47
Z-H Yang (1533_CR26) 2017; 455
SH Saker (1533_CR3) 2016; 39
Z-H Yang (1533_CR25) 2016; 441
MEH Ismail (1533_CR24) 1988; 116
J-F Xu (1533_CR16) 2021; 41
X Tian (1533_CR15) 2021; 393
References_xml – reference: Brito da CruzAMCMartinsNTorresDFMThe diamond integral on time scalesBull. Malays. Math. Sci. Soc.20153814531462339383110.1007/s40840-014-0096-71326.26039
– reference: WeinanEEngquistBThe heterognous multiscale methodsCommun. Math. Sci.2003187132197984610.4310/CMS.2003.v1.n1.a81093.35012
– reference: KayarZKaymakçalanBNovel diamond alpha Bennett–Leindler type dynamic inequalities and their applicationsBull. Malays. Math. Sci. Soc.20224510271054441230810.1007/s40840-021-01224-61497.26022
– reference: AticiFMBilesDCLebedinskyAAn application of time scales to economicsMath. Comput. Model.200643718726221831510.1016/j.mcm.2005.08.0141187.91125
– reference: YangZ-HZhengS-ZComplete monotonicity involving some ratios of gamma functionsJ. Inequal. Appl.20172017255371162910.1186/s13660-017-1527-41372.33002
– reference: BernsteinSSur les fonctions absolument monotones(French)Acta Math.192952166155526910.1007/BF0259267955.0142.07
– reference: BohnerMPetersonAAdvances in dynamic equations on time scales2003BostonSpringer10.1007/978-0-8176-8230-91025.34001
– reference: QiuY-CWangQ-RExistence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time scalesBull. Malays. Math. Sci. Soc.20184119351952385450010.1007/s40840-016-0435-y1406.34110
– reference: MalikMKumarVExistence, stability and controllability results of coupled fractional dynamical system on time scalesBull. Malays. Math. Sci. Soc.20204333693394415283610.1007/s40840-019-00871-01478.34098
– reference: MaoZ-XTianJ-FMonotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kindC. R. Math. Acad. Sci. Paris2023361217235453854707652644
– reference: BohnerMGeorgievSGMultivariable dynamic calculus on time scales2016ChamSpriner10.1007/978-3-319-47620-91475.26001
– reference: ZhaoT-HWangM-KChuY-MMonotonicity and convexity involving generalized elliptic integral of the first kindRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM202111546419743710.1007/s13398-020-00992-31456.33016
– reference: DengXWangQZhouZOscillation criteria for second order neutral dynamic equations of Emden–Fowler type with positive and negative coefficients on time scalesSci. China Math.201760113132358505310.1007/s11425-016-0070-y1370.34146
– reference: AticiFMUysalFA production-inventory model of HMMS on time scalesAppl. Math. Lett.200821236243243373410.1016/j.aml.2007.03.0131153.90001
– reference: YuXWangQWeighted Pseudo-Almost periodic solutions for shunting inhibitory cellular neural networks on time scalesBull. Malays. Math. Sci. Soc.20194220552074398440910.1007/s40840-017-0595-41450.34072
– reference: ZhangCAgarwalRPBohnerMOscillation of fourth-order delay dynamic equationsSci. China Math.201558143160329633610.1007/s11425-014-4917-91321.34121
– reference: BohnerMPetersonADynamic equations on time scales2001BostonSpringer10.1007/978-1-4612-0201-10978.39001
– reference: IsmailMEHCompletely monotonic functions associated with the gamma function and its q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analoguesJ. Math. Anal. Appl.19881161983733710.1016/0022-247X(86)90042-9
– reference: BochnerSHarmonic analysis and the theory of probability1955Berkeley and Los AngelesUniversity of California Press10.1525/97805203452940068.11702
– reference: WidderDVThe Laplace Transform, Princeton Mathematical Series1941PrincetonPrinceton University Press
– reference: YangZ-HZhengS-ZComplete monotonicity and inequalites involving Gurland’s ratios of gamma functionsMath. Inequal. Appl.2019229710939059731416.33005
– reference: WeinanEPrinciples of multiscale modeling2011CambridgeCambridge University Press1238.00010
– reference: XuJ-FPervaizBZadaAStability analysis of causal integral evolution impulsive systems on time scalesActa. Math. Sci.202141781800424543310.1007/s10473-021-0310-207557576
– reference: ZhuLCompletely monotonic integer degrees for a class of special functionsAIMS Math.2020534563471414610710.3934/math.20202241484.33007
– reference: YangZ-HSome properties of the divided difference of psi and polygamma functionsJ. Math. Anal. Appl.2017455761777366513110.1016/j.jmaa.2017.05.0811369.33007
– reference: BohnerMStreipertSTorresDFMExact solution to a dynamic SIR modelNonlear Anal. Hybri.201932228238389510510.1016/j.nahs.2018.12.0051425.92177
– reference: SakerSHO’ReganDHardy and Littlewood inequalities on time scalesBull. Malays. Math. Sci. Soc.201639527543347132910.1007/s40840-015-0300-41342.26065
– reference: BustozJIsmailMEHOn gamma function inequalitiesMath. Comp.19864765966785671010.1090/S0025-5718-1986-0856710-60607.33002
– reference: Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, Würzburg, Germany (1988)
– reference: TianJ-FZhuY-RCheungW-SN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-tuple Diamond-Alpha integral and inequalities on time scalesRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM201911321892200395624310.1007/s13398-018-0609-61429.26048
– reference: YangZ-HApproximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma functionJ. Math. Anal. Appl.2016441549564349154210.1016/j.jmaa.2016.04.0291336.33005
– reference: GuoB-NQiFTwo new proofs of the complete monotonicity of a function involving the psi functionBull. Korean Math. Soc.201047103111260423610.4134/BKMS.2010.47.1.1031183.33002
– reference: TianXZhangYFractional time-scales Noether theorem with Caputo Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-derivatives for Hamiltonian systemsAppl. Math. Comput.202139312575341769551508.70025
– reference: AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1992New YorkDover Publications0171.38503
– volume: 60
  start-page: 113
  year: 2017
  ident: 1533_CR9
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-016-0070-y
– volume: 43
  start-page: 718
  year: 2006
  ident: 1533_CR17
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2005.08.014
– ident: 1533_CR1
– volume: 2017
  start-page: 255
  year: 2017
  ident: 1533_CR27
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1527-4
– volume: 393
  start-page: 125753
  year: 2021
  ident: 1533_CR15
  publication-title: Appl. Math. Comput.
– volume: 361
  start-page: 217
  year: 2023
  ident: 1533_CR30
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.5802/crmath.399
– volume: 45
  start-page: 1027
  year: 2022
  ident: 1533_CR5
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-021-01224-6
– volume-title: Dynamic equations on time scales
  year: 2001
  ident: 1533_CR6
  doi: 10.1007/978-1-4612-0201-1
– volume: 47
  start-page: 659
  year: 1986
  ident: 1533_CR23
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1986-0856710-6
– volume: 47
  start-page: 103
  year: 2010
  ident: 1533_CR34
  publication-title: Bull. Korean Math. Soc.
  doi: 10.4134/BKMS.2010.47.1.103
– volume: 21
  start-page: 236
  year: 2008
  ident: 1533_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2007.03.013
– volume-title: Multivariable dynamic calculus on time scales
  year: 2016
  ident: 1533_CR20
  doi: 10.1007/978-3-319-47620-9
– volume: 455
  start-page: 761
  year: 2017
  ident: 1533_CR26
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.05.081
– volume-title: The Laplace Transform, Princeton Mathematical Series
  year: 1941
  ident: 1533_CR22
– volume-title: Principles of multiscale modeling
  year: 2011
  ident: 1533_CR14
– volume: 41
  start-page: 1935
  year: 2018
  ident: 1533_CR11
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-016-0435-y
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1992
  ident: 1533_CR33
– volume: 39
  start-page: 527
  year: 2016
  ident: 1533_CR3
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-015-0300-4
– volume: 115
  start-page: 46
  year: 2021
  ident: 1533_CR29
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM
  doi: 10.1007/s13398-020-00992-3
– volume: 38
  start-page: 1453
  year: 2015
  ident: 1533_CR2
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-014-0096-7
– volume: 42
  start-page: 2055
  year: 2019
  ident: 1533_CR4
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-017-0595-4
– volume: 1
  start-page: 87
  year: 2003
  ident: 1533_CR13
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2003.v1.n1.a8
– volume: 52
  start-page: 1
  year: 1929
  ident: 1533_CR21
  publication-title: Acta Math.
  doi: 10.1007/BF02592679
– volume: 116
  start-page: 1
  year: 1988
  ident: 1533_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90042-9
– volume: 441
  start-page: 549
  year: 2016
  ident: 1533_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.04.029
– volume: 58
  start-page: 143
  year: 2015
  ident: 1533_CR10
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-014-4917-9
– volume: 43
  start-page: 3369
  year: 2020
  ident: 1533_CR12
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-019-00871-0
– volume: 41
  start-page: 781
  year: 2021
  ident: 1533_CR16
  publication-title: Acta. Math. Sci.
  doi: 10.1007/s10473-021-0310-2
– volume: 113
  start-page: 2189
  year: 2019
  ident: 1533_CR8
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM
  doi: 10.1007/s13398-018-0609-6
– volume-title: Harmonic analysis and the theory of probability
  year: 1955
  ident: 1533_CR31
  doi: 10.1525/9780520345294
– volume-title: Advances in dynamic equations on time scales
  year: 2003
  ident: 1533_CR7
  doi: 10.1007/978-0-8176-8230-9
– volume: 22
  start-page: 97
  year: 2019
  ident: 1533_CR28
  publication-title: Math. Inequal. Appl.
– volume: 5
  start-page: 3456
  year: 2020
  ident: 1533_CR32
  publication-title: AIMS Math.
  doi: 10.3934/math.2020224
– volume: 32
  start-page: 228
  year: 2019
  ident: 1533_CR19
  publication-title: Nonlear Anal. Hybri.
  doi: 10.1016/j.nahs.2018.12.005
SSID ssj0000562621
ssj0000562622
Score 2.2714596
Snippet The theory of time scale was proposed to unite continuous and discrete statements. In this paper, we introduce the concepts of complete monotonicity,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Mathematics
Mathematics and Statistics
Multivariate analysis
Time
Title Delta Complete Monotonicity and Completely Monotonic Degree on Time Scales
URI https://link.springer.com/article/10.1007/s40840-023-01533-y
https://www.proquest.com/docview/2825839952
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2CEpsx0nGllKqonaBSmWKbMdZqFJE0qH8euw0D1EBUsfIiZXcnX3fxffdAdyIQAddHEemuQu2KOXU4joQMd3cRcSkx4Q0BOfxhA2ndDRzZwUpLC2z3csjyXynrshu1PZNKiI2-T8apFirXWhq_GHTBjS7T2_P9b8V49RZ4Zbq6_xAwcHMYp7tFvyZ3yf-6aNq4LlxVpq7oMEhTMuXX2eevN8vM3EvvzbqOm77dUdwUGBS1F0b0THsqOQE9sdVQdf0FEZ9Nc84MruHVrRCeitYZKaqrgbxiCdRNTJf1WOor3Q0r9AiQYZpgl60Paj0DKaDx9eHoVW0YbCkXp-ZxQlRvnRprAJsB9xhPo5tQZQOrImUgfT8WMZcEi-iWASSKceNhCCB72Gq8VVEzqGRLBJ1AchTbmxz5XiKcB0XEo5t5huMojiWfiBa4JSCD2VRo9y0ypiHVXXlXE6hllOYyylcteC2euZjXaHj37vbpT7DYrWmoeHv-obji1twV6qnHv57tsvtbr-CPZxr2GT7tqGRfS7VtcY0mehoEx70epNOYcrfKbfqsQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShgAc2CEpsx0nGigKlrwUqwRTZjrNQpYikQ_n12GkeogIkxsiJldydfd_F990BXIpAB10cR6a5C7Yo5dTiOhAx3dxFxKTHhDQE59GY9Sa0_-K-FKSwtMx2L48k8526IrtR2zepiNjk_2iQYi3WoUl1DK7tutl5eB3U_1aMU2eFW6qv8wMFBzOLebZb8Gd-nvi7j6qB58pZae6C7ndgUr78MvPk7WaeiRv5uVLX8b9ftwvbBSZFnaUR7cGaSvZha1QVdE0PoN9V04wjs3toRSukt4JZZqrqahCPeBJVI9NFPYa6SkfzCs0SZJgm6Enbg0oPYXJ_93zbs4o2DJbU6zOzOCHKly6NVYDtgDvMx7EtiNKBNZEykJ4fy5hL4kUUi0Ay5biRECTwPUw1vorIETSSWaKOAXnKjW2uHE8RruNCwrHNfINRFMfSD0QLnFLwoSxqlJtWGdOwqq6cyynUcgpzOYWLFlxVz7wvK3T8eXe71GdYrNY0NPxd33B8cQuuS_XUw7_PdvK_2y9go_c8GobDx_HgFDZxrm2T-duGRvYxV2ca32TivDDnL_hL7CQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYeCMKBTywQdrEdpxkrCilPIUESGWKbMdZqNKKpkP59dhpHoAACTFGfkj2nX138X3fARyLQAddHEemuAu2KOXU4joQMdXcRcSkx4Q0AOfbO9Z_olcDd_ABxZ9luxdPknNMg2FpStL2OIrbJfCN2r5JS8QmF0g7LNZsEerUcNvVoN65eL6u_rMYA89yE1V9Z48LDmYW82w3x9J8P_Fne1U5oV_eTTNz1FsDXixknoXy0pqmoiXfvnA8_mel67Ca-6qoM1euDVhQySas3JZEr5MtuOqqYcqRuVW0Aiikr4hRath2tXOPeBKVLcNZ1Ya6Skf5Co0SZBAo6EHriZpsw1Pv_PGsb-XlGSypz21qcUKUL10aqwDbAXeYj2NbEKUDbiJlID0_ljGXxIsoFoFkynEjIUjge5hqvysiO1BLRonaBeQpN7a5cjxFuI4XCcc2843vojiWfiAa4BRCCGXOXW5KaAzDknU526dQ71OY7VM4a8BJOWY8Z-74tXezkG2Yn-JJaHC9vsH-4gacFqKqmn-ebe9v3Y9g6b7bC28u7673YRlnwjYJwU2opa9TdaDdnlQc5pr9Dq7u9Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delta+Complete+Monotonicity+and+Completely+Monotonic+Degree+on+Time+Scales&rft.jtitle=Bulletin+of+the+Malaysian+Mathematical+Sciences+Society&rft.au=Zhong-Xuan%2C+Mao&rft.au=Jing-Feng%2C+Tian&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0126-6705&rft.eissn=2180-4206&rft.volume=46&rft.issue=4&rft_id=info:doi/10.1007%2Fs40840-023-01533-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0126-6705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0126-6705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0126-6705&client=summon