Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures
Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO 2 ) layer, two layers of TiN nano-ribbon arrays, a SiO 2 dielectric layer, and a TiN film to realize e...
Saved in:
Published in | Plasmonics (Norwell, Mass.) Vol. 16; no. 3; pp. 799 - 809 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO
2
) layer, two layers of TiN nano-ribbon arrays, a SiO
2
dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO
2
, the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments. |
---|---|
AbstractList | Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO
2
) layer, two layers of TiN nano-ribbon arrays, a SiO
2
dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO
2
, the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments. Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO2) layer, two layers of TiN nano-ribbon arrays, a SiO2 dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO2, the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments. |
Author | Luo, Tengfei Xiong, Guoping Wu, Shiwen |
Author_xml | – sequence: 1 givenname: Shiwen surname: Wu fullname: Wu, Shiwen organization: Department of Mechanical Engineering, The University of Texas at Dallas, Department of Mechanical Engineering, University of Nevada – sequence: 2 givenname: Tengfei surname: Luo fullname: Luo, Tengfei organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame – sequence: 3 givenname: Guoping orcidid: 0000-0002-3216-0506 surname: Xiong fullname: Xiong, Guoping email: Guoping.Xiong@UTDallas.edu organization: Department of Mechanical Engineering, The University of Texas at Dallas, Department of Mechanical Engineering, University of Nevada |
BookMark | eNp9kEtLAzEUhYNUsD7-gKuA69S8ZiazlKK2YNVFXYdkktFIm9QkA-qvN7Wi4KKrexfnu_eccwxGPngLwDnBE4Jxc5kI4bVAmGKECaMc0QMwJlXVINLWbPS7V9UROE7pFWPOec3H4P1xpdI6eDj70NEZ96myCx7NvRk6a-DTKkeFdAzKaOUNnLnnF3ilU4ibrQ72MawhnnCYAyQTAReui8En6Dxcuqy8G9bw3uVy2cKFzSrlOHR5iDadgsNerZI9-5kn4OnmejmdobuH2_n06g51jLQZKYY505T2taiYpbpWpm8b3HS44VZ0gmldWWXbRrQVbajRmjLTC2I6JXQjBDsBF7u7mxjeBpuyfA1D9OWlpBUVgjPKSFGJnarYTynaXnbF_jZiye9WkmC57VnuepalZ_nds6QFpf_QTXRrFT_2Q2wHpSL2zzb-udpDfQFkX5KO |
CitedBy_id | crossref_primary_10_1007_s11468_024_02289_2 crossref_primary_10_2139_ssrn_3947716 crossref_primary_10_1364_JOSAB_537571 crossref_primary_10_1016_j_optmat_2021_111117 crossref_primary_10_3390_nano11051092 crossref_primary_10_1364_OL_447593 crossref_primary_10_1021_acsami_3c08214 |
Cites_doi | 10.1002/adma.201401874 10.1021/nl4033457 10.1039/C9NA00385A 10.1038/srep41373 10.1038/s41467-020-16267-9 10.1016/j.mattod.2014.10.039 10.1088/2040-8986/aac1d8 10.1021/acsphotonics.6b00360 10.1002/aenm.201901286 10.1021/acs.nanolett.5b05166 10.1039/C9NA00770A 10.1364/AO.58.006700 10.1007/s11468-016-0249-7 10.1109/LPT.2015.2495245 10.1364/OME.2.000478 10.1007/s11468-019-01087-5 10.1063/1.5101009 10.1021/acsenergylett.9b02611 10.1002/adma.201205076 10.1142/S0217984917503651 10.1021/acsphotonics.6b00763 10.1007/s00340-012-4955-3 10.1007/s11468-015-0171-4 10.1039/C8EE01146J 10.1016/j.matlet.2009.04.009 10.1016/j.rinp.2020.102930 10.1364/OME.1.001090 10.1016/j.optcom.2018.09.069 10.1021/acsphotonics.7b00558 10.1103/PhysRevB.90.041407 10.1126/science.1200165 10.1007/s11468-015-9962-x 10.1088/0957-4484/21/11/115201 10.3390/ma8063128 10.1364/OE.26.027683 10.1016/j.optmat.2019.109377 10.1007/0-387-37825-1 10.1186/s11671-016-1374-0 10.23919/PIERS.2018.8598236 10.1186/s11671-019-2876-3 10.1088/0022-3727/49/16/165307 10.1201/b17118 10.1007/s11468-015-0076-2 10.1063/1.4905261 10.5829/idosi.ije.2016.29.05b.12 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11468-020-01324-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1557-1963 |
EndPage | 809 |
ExternalDocumentID | 10_1007_s11468_020_01324_2 |
GrantInformation_xml | – fundername: University of Nevada, Reno grantid: Startup fund funderid: http://dx.doi.org/10.13039/100011347 – fundername: National Science Foundation grantid: CBET-1937923 funderid: http://dx.doi.org/10.13039/100000001 – fundername: University of Texas at Dallas grantid: Startup fund funderid: http://dx.doi.org/10.13039/501100012645 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7X Z7Y Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-a3043b22f6853e2b6adf9707c074e8c83bb5eae97895272dbb23df81dca8b7883 |
IEDL.DBID | U2A |
ISSN | 1557-1955 |
IngestDate | Sat Jul 26 00:29:29 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Tue Jul 01 02:01:14 EDT 2025 Fri Feb 21 02:48:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Finite-difference time-domain method Ultra-broadband absorption Plasmonic hybridization Nano-ribbon arrays Metastructures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a3043b22f6853e2b6adf9707c074e8c83bb5eae97895272dbb23df81dca8b7883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3216-0506 |
PQID | 2528843231 |
PQPubID | 2044107 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2528843231 crossref_citationtrail_10_1007_s11468_020_01324_2 crossref_primary_10_1007_s11468_020_01324_2 springer_journals_10_1007_s11468_020_01324_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Plasmonics (Norwell, Mass.) |
PublicationTitleAbbrev | Plasmonics |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chernyshev (CR21) 2009; 63 Naik, Shalaev, Boltasseva (CR24) 2013; 25 Habib, Florio, Sundararaman (CR26) 2018; 20 Kamakura, Murai, Ishii, Nagao, Fujita, Tanaka (CR35) 2017; 4 Nikitin, Low, Martin-Moreno (CR43) 2014; 90 CR18 Patsalas, Kalfagiannis, Kassavetis (CR22) 2015; 8 Li, Shen, Zhuang, Chen, Liang (CR45) 2014; 2014 Guler, Shalaev, Boltasseva (CR25) 2015; 18 Naik, Schroeder, Ni, Kildishev, Sands, Boltasseva (CR31) 2012; 2 Pang, Zhang, Ma, Qu, Lee, Luo (CR6) 2020; 5 Wang, Tang, Niu, He, Chen (CR19) 2019; 1 CR14 Guler, Naik, Boltasseva, Shalaev, Kildishev (CR29) 2012; 107 Ishii, Shinde, Jevasuwan, Fukata, Nagao (CR34) 2016; 3 CR11 Fang, Liu, Han, Shao, Zhang, Hao (CR46) 2018; 26 CR10 Wu, Xiong, Yang, Gong, Tian, Xu, Wang, Fisher, Yan, Cen, Luo, Tu, Bo, Ostrikov (CR2) 2019; 9 Wang, He, Lou, Huang, Pi (CR15) 2020; 16 Gao, Zhu, Peh, Ho (CR17) 2019; 12 Liu, Aydin (CR44) 2016; 16 Wang, Wang, Sang, Wang (CR13) 2017; 7 Gao, Peng, Liang, Chu, Yu, Liu, Zhang (CR33) 2019; 15 Li, Guler, Kinsey, Naik, Boltasseva, Guan, Shalaev, Kildishev (CR20) 2014; 26 Manai, Dridi Rezgui, Benabderrahmane Zaghouani, Barakel, Torchio, Palais, Bessais (CR5) 2016; 11 Wang, Wang, Wang, Zhai (CR9) 2016; 28 Lee, Huang, Luo (CR7) 2020; 11 CR4 Liang, Fu, Xia, Wang, Gao (CR37) 2018; 32 CR8 Juneja, Shishodia (CR39) 2019; 433 CR28 Wang, Zhang, Zhu, Yi, Shao (CR32) 2015; 10 CR48 Blankenship, Tiede, Barber, Brudvig, Fleming, Ghirardi, Gunner, Junge, Kramer, Melis, Moore, Moser, Nocera, Nozik, Ort, Parson, Prince, Sayre (CR1) 2011; 332 Podder, Pal (CR36) 2019; 126 Guler, Ndukaife, Naik, Nnanna, Kildishev, Shalaev, Boltasseva (CR30) 2013; 13 CR41 Gonçalves, Xiao, Peres, Mortensen (CR42) 2017; 4 Meng, Tan, Xu, Chen, Jin, Sun, Wang, Zuo, Qin, Zhao, Guo (CR47) 2019; 58 Cortie, Giddings, Dowd (CR27) 2010; 21 Bhardwaj, Pathak, Ji, Uma, Sharma (CR3) 2017; 12 Palik (CR40) 1985 Wang, He, Lou, Xing (CR16) 2020; 2 Gao, Peng, Cui, Chu, Yu, Yang (CR38) 2019; 97 Wang (CR12) 2017; 23 Naik, Kim, Boltasseva (CR23) 2011; 1 R Kamakura (1324_CR35) 2017; 4 MB Cortie (1324_CR27) 2010; 21 PAD Gonçalves (1324_CR42) 2017; 4 RE Blankenship (1324_CR1) 2011; 332 1324_CR11 1324_CR10 S Wu (1324_CR2) 2019; 9 1324_CR14 C Fang (1324_CR46) 2018; 26 Y-L Meng (1324_CR47) 2019; 58 1324_CR18 H Gao (1324_CR33) 2019; 15 P Patsalas (1324_CR22) 2015; 8 1324_CR4 H Gao (1324_CR38) 2019; 97 BX Wang (1324_CR16) 2020; 2 1324_CR8 AP Chernyshev (1324_CR21) 2009; 63 U Guler (1324_CR30) 2013; 13 ED Palik (1324_CR40) 1985 BX Wang (1324_CR19) 2019; 1 AY Nikitin (1324_CR43) 2014; 90 S Podder (1324_CR36) 2019; 126 1324_CR41 M Li (1324_CR45) 2014; 2014 U Guler (1324_CR25) 2015; 18 A Habib (1324_CR26) 2018; 20 GV Naik (1324_CR23) 2011; 1 1324_CR48 M Gao (1324_CR17) 2019; 12 J Wang (1324_CR32) 2015; 10 S Bhardwaj (1324_CR3) 2017; 12 BX Wang (1324_CR9) 2016; 28 BX Wang (1324_CR13) 2017; 7 1324_CR28 S Juneja (1324_CR39) 2019; 433 S Ishii (1324_CR34) 2016; 3 Q Liang (1324_CR37) 2018; 32 BX Wang (1324_CR12) 2017; 23 BX Wang (1324_CR15) 2020; 16 Z Liu (1324_CR44) 2016; 16 Y Pang (1324_CR6) 2020; 5 W Li (1324_CR20) 2014; 26 E Lee (1324_CR7) 2020; 11 U Guler (1324_CR29) 2012; 107 GV Naik (1324_CR24) 2013; 25 GV Naik (1324_CR31) 2012; 2 L Manai (1324_CR5) 2016; 11 |
References_xml | – ident: CR18 – volume: 26 start-page: 7959 issue: 47 year: 2014 end-page: 7965 ident: CR20 article-title: Refractory plasmonics with titanium nitride: broadband metamaterial absorber publication-title: Advanced Materials doi: 10.1002/adma.201401874 – volume: 13 start-page: 6078 issue: 12 year: 2013 end-page: 6083 ident: CR30 article-title: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles publication-title: Nano Letters doi: 10.1021/nl4033457 – volume: 1 start-page: 3621 issue: 9 year: 2019 end-page: 3625 ident: CR19 article-title: A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot publication-title: Nanoscale Advances doi: 10.1039/C9NA00385A – volume: 7 start-page: 41373 issue: 1 year: 2017 ident: CR13 article-title: Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure publication-title: Scientific Reports doi: 10.1038/srep41373 – ident: CR4 – volume: 11 start-page: 2404 issue: 1 year: 2020 ident: CR7 article-title: Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces publication-title: Nature Communications doi: 10.1038/s41467-020-16267-9 – ident: CR14 – volume: 18 start-page: 227 issue: 4 year: 2015 end-page: 237 ident: CR25 article-title: Nanoparticle plasmonics: going practical with transition metal nitrides publication-title: Materials Today doi: 10.1016/j.mattod.2014.10.039 – year: 1985 ident: CR40 publication-title: Handbook of optical constants of solids – volume: 20 start-page: 064001 issue: 6 year: 2018 ident: CR26 article-title: Hot carrier dynamics in plasmonic transition metal nitrides publication-title: Journal of Optics doi: 10.1088/2040-8986/aac1d8 – ident: CR10 – volume: 3 start-page: 1552 issue: 9 year: 2016 end-page: 1557 ident: CR34 article-title: Hot electron excitation from titanium nitride using visible light publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00360 – volume: 9 start-page: 1901286 issue: 30 year: 2019 ident: CR2 article-title: Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination publication-title: Advanced Energy Materials doi: 10.1002/aenm.201901286 – volume: 16 start-page: 3457 issue: 6 year: 2016 end-page: 3462 ident: CR44 article-title: Localized surface plasmons in nanostructured monolayer black phosphorus publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b05166 – volume: 2 start-page: 763 issue: 2 year: 2020 end-page: 769 ident: CR16 article-title: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application publication-title: Nanoscale Advances doi: 10.1039/C9NA00770A – volume: 58 start-page: 6700 issue: 24 year: 2019 end-page: 6705 ident: CR47 article-title: Salisbury screen optical color filter with ultra-thin titanium nitride film publication-title: Appl Opt doi: 10.1364/AO.58.006700 – ident: CR8 – volume: 12 start-page: 193 issue: 1 year: 2017 end-page: 201 ident: CR3 article-title: Tunable properties of surface plasmon resonance of metal nanospheroid: graphene plasmon interaction publication-title: Plasmonics doi: 10.1007/s11468-016-0249-7 – volume: 28 start-page: 307 issue: 3 year: 2016 end-page: 310 ident: CR9 article-title: Design of a five-band terahertz absorber based on three nested split-ring resonators publication-title: IEEE Photonics Technology Letters doi: 10.1109/LPT.2015.2495245 – volume: 2 start-page: 478 issue: 4 year: 2012 end-page: 489 ident: CR31 article-title: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths publication-title: Opt Mater Express doi: 10.1364/OME.2.000478 – volume: 15 start-page: 573 year: 2019 end-page: 580 ident: CR33 article-title: Plasmonic broadband perfect absorber for visible light solar cells application publication-title: Plasmonics doi: 10.1007/s11468-019-01087-5 – volume: 126 start-page: 083108 issue: 8 year: 2019 ident: CR36 article-title: Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride publication-title: Journal of Applied Physics doi: 10.1063/1.5101009 – volume: 5 start-page: 437 issue: 2 year: 2020 end-page: 456 ident: CR6 article-title: Solar–thermal water evaporation: a review publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.9b02611 – volume: 25 start-page: 3264 issue: 24 year: 2013 end-page: 3294 ident: CR24 article-title: Alternative plasmonic materials: beyond gold and silver publication-title: Advanced Materials doi: 10.1002/adma.201205076 – ident: CR48 – volume: 32 start-page: 1750365 issue: 01 year: 2018 ident: CR37 article-title: Titanium nitride nano-disk arrays-based metasurface as a perfect absorber in the visible range publication-title: Modern Physics Letters B doi: 10.1142/S0217984917503651 – volume: 4 start-page: 815 issue: 4 year: 2017 end-page: 822 ident: CR35 article-title: Plasmonic–photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00763 – volume: 107 start-page: 285 issue: 2 year: 2012 end-page: 291 ident: CR29 article-title: Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications publication-title: Applied Physics B doi: 10.1007/s00340-012-4955-3 – volume: 11 start-page: 1273 issue: 5 year: 2016 end-page: 1277 ident: CR5 article-title: Tuning of light trapping and surface plasmon resonance in silver nanoparticles/C-Si structures for solar cells publication-title: Plasmonics doi: 10.1007/s11468-015-0171-4 – volume: 12 start-page: 841 issue: 3 year: 2019 end-page: 864 ident: CR17 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energy & Environmental Science doi: 10.1039/C8EE01146J – volume: 63 start-page: 1525 issue: 17 year: 2009 end-page: 1527 ident: CR21 article-title: Effect of nanoparticle size on the onset temperature of surface melting publication-title: Materials Letters doi: 10.1016/j.matlet.2009.04.009 – ident: CR11 – volume: 16 start-page: 102930 year: 2020 ident: CR15 article-title: Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators publication-title: Results in Physics doi: 10.1016/j.rinp.2020.102930 – volume: 1 start-page: 1090 issue: 6 year: 2011 end-page: 1099 ident: CR23 article-title: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] publication-title: Opt Mater Express doi: 10.1364/OME.1.001090 – volume: 433 start-page: 89 year: 2019 end-page: 96 ident: CR39 article-title: Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers publication-title: Optics Communications doi: 10.1016/j.optcom.2018.09.069 – volume: 4 start-page: 3045 issue: 12 year: 2017 end-page: 3054 ident: CR42 article-title: Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00558 – volume: 90 start-page: 041407 issue: 4 year: 2014 ident: CR43 article-title: Anomalous reflection phase of graphene plasmons and its influence on resonators publication-title: Physical Review B doi: 10.1103/PhysRevB.90.041407 – volume: 332 start-page: 805 issue: 6031 year: 2011 end-page: 809 ident: CR1 article-title: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement publication-title: Science doi: 10.1126/science.1200165 – volume: 10 start-page: 1473 issue: 6 year: 2015 end-page: 1478 ident: CR32 article-title: Broadband perfect absorber with titanium nitride nano-disk array publication-title: Plasmonics doi: 10.1007/s11468-015-9962-x – volume: 21 start-page: 115201 issue: 11 year: 2010 ident: CR27 article-title: Optical properties and plasmon resonances of titanium nitride nanostructures publication-title: Nanotechnology doi: 10.1088/0957-4484/21/11/115201 – ident: CR28 – ident: CR41 – volume: 8 start-page: 3128 issue: 6 year: 2015 end-page: 3154 ident: CR22 article-title: Optical properties and plasmonic performance of titanium nitride publication-title: Materials doi: 10.3390/ma8063128 – volume: 26 start-page: 27683 issue: 21 year: 2018 end-page: 27693 ident: CR46 article-title: Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies publication-title: Opt Express doi: 10.1364/OE.26.027683 – volume: 23 start-page: 1 issue: 4 year: 2017 end-page: 7 ident: CR12 article-title: Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs publication-title: IEEE Journal of Selected Topics in Quantum Electronics – volume: 97 start-page: 109377 year: 2019 ident: CR38 article-title: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber publication-title: Optical Materials doi: 10.1016/j.optmat.2019.109377 – volume: 2014 start-page: 1 year: 2014 end-page: 5 ident: CR45 article-title: SiO antireflection coatings fabricated by electron-beam evaporation for black monocrystalline silicon solar cells publication-title: International Journal of Photoenergy – ident: 1324_CR18 doi: 10.1007/0-387-37825-1 – volume: 4 start-page: 3045 issue: 12 year: 2017 ident: 1324_CR42 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00558 – ident: 1324_CR4 doi: 10.1186/s11671-016-1374-0 – volume: 11 start-page: 2404 issue: 1 year: 2020 ident: 1324_CR7 publication-title: Nature Communications doi: 10.1038/s41467-020-16267-9 – volume: 433 start-page: 89 year: 2019 ident: 1324_CR39 publication-title: Optics Communications doi: 10.1016/j.optcom.2018.09.069 – volume: 16 start-page: 102930 year: 2020 ident: 1324_CR15 publication-title: Results in Physics doi: 10.1016/j.rinp.2020.102930 – volume: 2 start-page: 763 issue: 2 year: 2020 ident: 1324_CR16 publication-title: Nanoscale Advances doi: 10.1039/C9NA00770A – volume: 8 start-page: 3128 issue: 6 year: 2015 ident: 1324_CR22 publication-title: Materials doi: 10.3390/ma8063128 – ident: 1324_CR28 doi: 10.23919/PIERS.2018.8598236 – volume: 32 start-page: 1750365 issue: 01 year: 2018 ident: 1324_CR37 publication-title: Modern Physics Letters B doi: 10.1142/S0217984917503651 – volume: 90 start-page: 041407 issue: 4 year: 2014 ident: 1324_CR43 publication-title: Physical Review B doi: 10.1103/PhysRevB.90.041407 – volume: 2 start-page: 478 issue: 4 year: 2012 ident: 1324_CR31 publication-title: Opt Mater Express doi: 10.1364/OME.2.000478 – volume-title: Handbook of optical constants of solids year: 1985 ident: 1324_CR40 – volume: 2014 start-page: 1 year: 2014 ident: 1324_CR45 publication-title: International Journal of Photoenergy – volume: 7 start-page: 41373 issue: 1 year: 2017 ident: 1324_CR13 publication-title: Scientific Reports doi: 10.1038/srep41373 – volume: 13 start-page: 6078 issue: 12 year: 2013 ident: 1324_CR30 publication-title: Nano Letters doi: 10.1021/nl4033457 – volume: 10 start-page: 1473 issue: 6 year: 2015 ident: 1324_CR32 publication-title: Plasmonics doi: 10.1007/s11468-015-9962-x – volume: 3 start-page: 1552 issue: 9 year: 2016 ident: 1324_CR34 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00360 – volume: 4 start-page: 815 issue: 4 year: 2017 ident: 1324_CR35 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00763 – ident: 1324_CR14 doi: 10.1186/s11671-019-2876-3 – volume: 23 start-page: 1 issue: 4 year: 2017 ident: 1324_CR12 publication-title: IEEE Journal of Selected Topics in Quantum Electronics – volume: 11 start-page: 1273 issue: 5 year: 2016 ident: 1324_CR5 publication-title: Plasmonics doi: 10.1007/s11468-015-0171-4 – volume: 58 start-page: 6700 issue: 24 year: 2019 ident: 1324_CR47 publication-title: Appl Opt doi: 10.1364/AO.58.006700 – volume: 12 start-page: 841 issue: 3 year: 2019 ident: 1324_CR17 publication-title: Energy & Environmental Science doi: 10.1039/C8EE01146J – volume: 63 start-page: 1525 issue: 17 year: 2009 ident: 1324_CR21 publication-title: Materials Letters doi: 10.1016/j.matlet.2009.04.009 – volume: 18 start-page: 227 issue: 4 year: 2015 ident: 1324_CR25 publication-title: Materials Today doi: 10.1016/j.mattod.2014.10.039 – volume: 20 start-page: 064001 issue: 6 year: 2018 ident: 1324_CR26 publication-title: Journal of Optics doi: 10.1088/2040-8986/aac1d8 – volume: 12 start-page: 193 issue: 1 year: 2017 ident: 1324_CR3 publication-title: Plasmonics doi: 10.1007/s11468-016-0249-7 – ident: 1324_CR10 doi: 10.1088/0022-3727/49/16/165307 – volume: 107 start-page: 285 issue: 2 year: 2012 ident: 1324_CR29 publication-title: Applied Physics B doi: 10.1007/s00340-012-4955-3 – volume: 97 start-page: 109377 year: 2019 ident: 1324_CR38 publication-title: Optical Materials doi: 10.1016/j.optmat.2019.109377 – volume: 1 start-page: 3621 issue: 9 year: 2019 ident: 1324_CR19 publication-title: Nanoscale Advances doi: 10.1039/C9NA00385A – ident: 1324_CR41 doi: 10.1201/b17118 – volume: 26 start-page: 7959 issue: 47 year: 2014 ident: 1324_CR20 publication-title: Advanced Materials doi: 10.1002/adma.201401874 – volume: 9 start-page: 1901286 issue: 30 year: 2019 ident: 1324_CR2 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201901286 – volume: 16 start-page: 3457 issue: 6 year: 2016 ident: 1324_CR44 publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b05166 – volume: 21 start-page: 115201 issue: 11 year: 2010 ident: 1324_CR27 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/11/115201 – volume: 26 start-page: 27683 issue: 21 year: 2018 ident: 1324_CR46 publication-title: Opt Express doi: 10.1364/OE.26.027683 – volume: 332 start-page: 805 issue: 6031 year: 2011 ident: 1324_CR1 publication-title: Science doi: 10.1126/science.1200165 – volume: 15 start-page: 573 year: 2019 ident: 1324_CR33 publication-title: Plasmonics doi: 10.1007/s11468-019-01087-5 – ident: 1324_CR11 doi: 10.1007/s11468-015-0076-2 – ident: 1324_CR8 doi: 10.1063/1.4905261 – volume: 28 start-page: 307 issue: 3 year: 2016 ident: 1324_CR9 publication-title: IEEE Photonics Technology Letters doi: 10.1109/LPT.2015.2495245 – volume: 126 start-page: 083108 issue: 8 year: 2019 ident: 1324_CR36 publication-title: Journal of Applied Physics doi: 10.1063/1.5101009 – volume: 1 start-page: 1090 issue: 6 year: 2011 ident: 1324_CR23 publication-title: Opt Mater Express doi: 10.1364/OME.1.001090 – volume: 25 start-page: 3264 issue: 24 year: 2013 ident: 1324_CR24 publication-title: Advanced Materials doi: 10.1002/adma.201205076 – volume: 5 start-page: 437 issue: 2 year: 2020 ident: 1324_CR6 publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.9b02611 – ident: 1324_CR48 doi: 10.5829/idosi.ije.2016.29.05b.12 |
SSID | ssj0044464 |
Score | 2.316277 |
Snippet | Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 799 |
SubjectTerms | Absorption Biochemistry Biological and Medical Physics Biophysics Biotechnology Broadband Chemistry Chemistry and Materials Science Electric fields Energy harvesting Nanotechnology Near infrared radiation Photovoltaic cells Ribbon arrays Silicon dioxide Solar energy Titanium nitride |
Title | Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures |
URI | https://link.springer.com/article/10.1007/s11468-020-01324-2 https://www.proquest.com/docview/2528843231 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iEb2IVsVqLTl408huHvs4lmItSouHFuppyatQ0K10t6D_3km6a1FU8LzJHDLJzPftvBC6jAMdamk4cb3CCDepIYrxiIShBHfMUyZ8u6bhKBpM-P1UTKuisKLOdq9Dkt5Sb4rdfJWQozsuPsAJGN6GcNwdbvGEdmv7y4Hg-FiyEDEJUyGqUpmfZXx1RxuM-S0s6r1N_wDtVzARd9d6PURbNm-i3V49na2Jdnzqpi6O0NsjAGC4THjw7qqvqrpK4mZyaGvw5LlcSqKWC2mUzA12iR24q4rF0hsL7OpLcHDDcbnA4U2Chy5DLy_wPMfjOSDH-eoFj-YlSLZ4aEu5bji7ApZ-jCb923FvQKp5CkTDQyuJZAFnitJZBD7aUhVJM0vjINYAI2yiE6aUsNICr0wFjalRijIzA0CrZaKAKrMTtJ0vcnuKcAIbQmtYZDhwawWsRAQq1TMXZgUTEbdQWB9rpqtm427mxXO2aZPsVJGBKjKvioy20NXnntd1q40_V7drbWXVsysyKmiScAaYtYWuaw1uPv8u7ex_y8_RHnW5Lf5vTBttw8nbCwAnpeqgRvfu6eG24-_kB_wT2V8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EEb2IVsVq1T1405VkH3kcS7FUbYuHFnoL-yoUNJUmBf33zm4Ti6KC5-zuIZOd-b7MfDMIXcWBDrU0nLheYYSb1BDFeETCUEI45ikTvl3TYBj1xvxhIiaVKKyoq93rlKT31Guxm1cJObrj8gOcgOPdAjCQuEKuMW3X_pcDwfG5ZCFiEqZCVFKZn8_4Go7WGPNbWtRHm-4-2qtgIm6v7HqANmzeQDudejpbA2370k1dHKK3JwDA8DHh3rtTX1W6SuJmcmhr8Pi5XEiiFnNplMwNdoUduK2K-cI7C-z0JTi45bic4_A2wQNXoZcXeJbj0QyQ42z5goezEk62eGBLuWo4uwSWfoTG3btRp0eqeQpEw0UriWQBZ4rSaQQx2lIVSTNN4yDWACNsohOmlLDSAq9MBY2pUYoyMwVAq2WigCqzY7SZz3N7gnACG0JrWGQ4cGsFrEQEKtVTl2YFFxE3UVi_1kxXzcbdzIvnbN0m2ZkiA1Nk3hQZbaLrzz2vq1Ybf65u1dbKqmtXZFTQJOEMMGsT3dQWXD_-_bTT_y2_RDu90aCf9e-Hj2dol7o6F_9npoU2wQr2HIBKqS78d_kBjYfavg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5E8XERrYrVqnvwpqvJPvI4FrXUR4sHC97CvgKFmkobQf-9s9vEqqjgOZs97LeZ-SYz3wxCx3GgQy0NJ65XGOEmNUQxHpEwlOCOecqEb9fU60fdAb95FI-fVPy-2r1OSc40Da5LU1GeP5v8fC5884ohF_q4XAEnYISXwByH7l4PaLu2xRyCHZ9XFiImYSpEJZv5eY-vrmnON7-lSL3n6Wyg9Yoy4vYM4020YIsGWr2oJ7U10LIv49TTLfR6D2QYLhbuvjklVqWxJG4-h7YGD0blRBI1GUujZGGwK_LAbTUdT7zhwE5rgoMzjssxDs8S3HPVesUUDwv8MAQWOXx5wv1hCTtb3LOlnDWffYGIfRsNOlcPF11SzVYgGk6pJJIFnClK8wj8taUqkiZP4yDWQClsohOmlLDSQoyZChpToxRlJgdyq2WiIGxmO2ixGBd2F-EEXgitYZHhEGcriFBEoFKdu5QrmIu4icL6WDNdNR538y9G2bxlsoMiAygyD0VGm-jk453nWduNP1e3arSy6hOcZlTQJOEM-GsTndYIzh__vtve_5YfoZX7y052d92_3Udr1JW8-J80LbQIINgD4CylOvTX8h1wc976 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon+Hybridization-Induced+Ultra-broadband+High+Absorption+from+0.4+to+1.8+Microns+in+Titanium+Nitride+Metastructures&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Wu%2C+Shiwen&rft.au=Luo%2C+Tengfei&rft.au=Xiong%2C+Guoping&rft.date=2021-06-01&rft.pub=Springer+US&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=16&rft.issue=3&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1007%2Fs11468-020-01324-2&rft.externalDocID=10_1007_s11468_020_01324_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon |