Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures

Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO 2 ) layer, two layers of TiN nano-ribbon arrays, a SiO 2 dielectric layer, and a TiN film to realize e...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 16; no. 3; pp. 799 - 809
Main Authors Wu, Shiwen, Luo, Tengfei, Xiong, Guoping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO 2 ) layer, two layers of TiN nano-ribbon arrays, a SiO 2 dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO 2 , the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments.
AbstractList Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO 2 ) layer, two layers of TiN nano-ribbon arrays, a SiO 2 dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO 2 , the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments.
Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO2) layer, two layers of TiN nano-ribbon arrays, a SiO2 dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO2, the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments.
Author Luo, Tengfei
Xiong, Guoping
Wu, Shiwen
Author_xml – sequence: 1
  givenname: Shiwen
  surname: Wu
  fullname: Wu, Shiwen
  organization: Department of Mechanical Engineering, The University of Texas at Dallas, Department of Mechanical Engineering, University of Nevada
– sequence: 2
  givenname: Tengfei
  surname: Luo
  fullname: Luo, Tengfei
  organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame
– sequence: 3
  givenname: Guoping
  orcidid: 0000-0002-3216-0506
  surname: Xiong
  fullname: Xiong, Guoping
  email: Guoping.Xiong@UTDallas.edu
  organization: Department of Mechanical Engineering, The University of Texas at Dallas, Department of Mechanical Engineering, University of Nevada
BookMark eNp9kEtLAzEUhYNUsD7-gKuA69S8ZiazlKK2YNVFXYdkktFIm9QkA-qvN7Wi4KKrexfnu_eccwxGPngLwDnBE4Jxc5kI4bVAmGKECaMc0QMwJlXVINLWbPS7V9UROE7pFWPOec3H4P1xpdI6eDj70NEZ96myCx7NvRk6a-DTKkeFdAzKaOUNnLnnF3ilU4ibrQ72MawhnnCYAyQTAReui8En6Dxcuqy8G9bw3uVy2cKFzSrlOHR5iDadgsNerZI9-5kn4OnmejmdobuH2_n06g51jLQZKYY505T2taiYpbpWpm8b3HS44VZ0gmldWWXbRrQVbajRmjLTC2I6JXQjBDsBF7u7mxjeBpuyfA1D9OWlpBUVgjPKSFGJnarYTynaXnbF_jZiye9WkmC57VnuepalZ_nds6QFpf_QTXRrFT_2Q2wHpSL2zzb-udpDfQFkX5KO
CitedBy_id crossref_primary_10_1007_s11468_024_02289_2
crossref_primary_10_2139_ssrn_3947716
crossref_primary_10_1364_JOSAB_537571
crossref_primary_10_1016_j_optmat_2021_111117
crossref_primary_10_3390_nano11051092
crossref_primary_10_1364_OL_447593
crossref_primary_10_1021_acsami_3c08214
Cites_doi 10.1002/adma.201401874
10.1021/nl4033457
10.1039/C9NA00385A
10.1038/srep41373
10.1038/s41467-020-16267-9
10.1016/j.mattod.2014.10.039
10.1088/2040-8986/aac1d8
10.1021/acsphotonics.6b00360
10.1002/aenm.201901286
10.1021/acs.nanolett.5b05166
10.1039/C9NA00770A
10.1364/AO.58.006700
10.1007/s11468-016-0249-7
10.1109/LPT.2015.2495245
10.1364/OME.2.000478
10.1007/s11468-019-01087-5
10.1063/1.5101009
10.1021/acsenergylett.9b02611
10.1002/adma.201205076
10.1142/S0217984917503651
10.1021/acsphotonics.6b00763
10.1007/s00340-012-4955-3
10.1007/s11468-015-0171-4
10.1039/C8EE01146J
10.1016/j.matlet.2009.04.009
10.1016/j.rinp.2020.102930
10.1364/OME.1.001090
10.1016/j.optcom.2018.09.069
10.1021/acsphotonics.7b00558
10.1103/PhysRevB.90.041407
10.1126/science.1200165
10.1007/s11468-015-9962-x
10.1088/0957-4484/21/11/115201
10.3390/ma8063128
10.1364/OE.26.027683
10.1016/j.optmat.2019.109377
10.1007/0-387-37825-1
10.1186/s11671-016-1374-0
10.23919/PIERS.2018.8598236
10.1186/s11671-019-2876-3
10.1088/0022-3727/49/16/165307
10.1201/b17118
10.1007/s11468-015-0076-2
10.1063/1.4905261
10.5829/idosi.ije.2016.29.05b.12
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11468-020-01324-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1557-1963
EndPage 809
ExternalDocumentID 10_1007_s11468_020_01324_2
GrantInformation_xml – fundername: University of Nevada, Reno
  grantid: Startup fund
  funderid: http://dx.doi.org/10.13039/100011347
– fundername: National Science Foundation
  grantid: CBET-1937923
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: University of Texas at Dallas
  grantid: Startup fund
  funderid: http://dx.doi.org/10.13039/501100012645
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-a3043b22f6853e2b6adf9707c074e8c83bb5eae97895272dbb23df81dca8b7883
IEDL.DBID U2A
ISSN 1557-1955
IngestDate Sat Jul 26 00:29:29 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Tue Jul 01 02:01:14 EDT 2025
Fri Feb 21 02:48:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Finite-difference time-domain method
Ultra-broadband absorption
Plasmonic hybridization
Nano-ribbon arrays
Metastructures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a3043b22f6853e2b6adf9707c074e8c83bb5eae97895272dbb23df81dca8b7883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3216-0506
PQID 2528843231
PQPubID 2044107
PageCount 11
ParticipantIDs proquest_journals_2528843231
crossref_citationtrail_10_1007_s11468_020_01324_2
crossref_primary_10_1007_s11468_020_01324_2
springer_journals_10_1007_s11468_020_01324_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Plasmonics (Norwell, Mass.)
PublicationTitleAbbrev Plasmonics
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chernyshev (CR21) 2009; 63
Naik, Shalaev, Boltasseva (CR24) 2013; 25
Habib, Florio, Sundararaman (CR26) 2018; 20
Kamakura, Murai, Ishii, Nagao, Fujita, Tanaka (CR35) 2017; 4
Nikitin, Low, Martin-Moreno (CR43) 2014; 90
CR18
Patsalas, Kalfagiannis, Kassavetis (CR22) 2015; 8
Li, Shen, Zhuang, Chen, Liang (CR45) 2014; 2014
Guler, Shalaev, Boltasseva (CR25) 2015; 18
Naik, Schroeder, Ni, Kildishev, Sands, Boltasseva (CR31) 2012; 2
Pang, Zhang, Ma, Qu, Lee, Luo (CR6) 2020; 5
Wang, Tang, Niu, He, Chen (CR19) 2019; 1
CR14
Guler, Naik, Boltasseva, Shalaev, Kildishev (CR29) 2012; 107
Ishii, Shinde, Jevasuwan, Fukata, Nagao (CR34) 2016; 3
CR11
Fang, Liu, Han, Shao, Zhang, Hao (CR46) 2018; 26
CR10
Wu, Xiong, Yang, Gong, Tian, Xu, Wang, Fisher, Yan, Cen, Luo, Tu, Bo, Ostrikov (CR2) 2019; 9
Wang, He, Lou, Huang, Pi (CR15) 2020; 16
Gao, Zhu, Peh, Ho (CR17) 2019; 12
Liu, Aydin (CR44) 2016; 16
Wang, Wang, Sang, Wang (CR13) 2017; 7
Gao, Peng, Liang, Chu, Yu, Liu, Zhang (CR33) 2019; 15
Li, Guler, Kinsey, Naik, Boltasseva, Guan, Shalaev, Kildishev (CR20) 2014; 26
Manai, Dridi Rezgui, Benabderrahmane Zaghouani, Barakel, Torchio, Palais, Bessais (CR5) 2016; 11
Wang, Wang, Wang, Zhai (CR9) 2016; 28
Lee, Huang, Luo (CR7) 2020; 11
CR4
Liang, Fu, Xia, Wang, Gao (CR37) 2018; 32
CR8
Juneja, Shishodia (CR39) 2019; 433
CR28
Wang, Zhang, Zhu, Yi, Shao (CR32) 2015; 10
CR48
Blankenship, Tiede, Barber, Brudvig, Fleming, Ghirardi, Gunner, Junge, Kramer, Melis, Moore, Moser, Nocera, Nozik, Ort, Parson, Prince, Sayre (CR1) 2011; 332
Podder, Pal (CR36) 2019; 126
Guler, Ndukaife, Naik, Nnanna, Kildishev, Shalaev, Boltasseva (CR30) 2013; 13
CR41
Gonçalves, Xiao, Peres, Mortensen (CR42) 2017; 4
Meng, Tan, Xu, Chen, Jin, Sun, Wang, Zuo, Qin, Zhao, Guo (CR47) 2019; 58
Cortie, Giddings, Dowd (CR27) 2010; 21
Bhardwaj, Pathak, Ji, Uma, Sharma (CR3) 2017; 12
Palik (CR40) 1985
Wang, He, Lou, Xing (CR16) 2020; 2
Gao, Peng, Cui, Chu, Yu, Yang (CR38) 2019; 97
Wang (CR12) 2017; 23
Naik, Kim, Boltasseva (CR23) 2011; 1
R Kamakura (1324_CR35) 2017; 4
MB Cortie (1324_CR27) 2010; 21
PAD Gonçalves (1324_CR42) 2017; 4
RE Blankenship (1324_CR1) 2011; 332
1324_CR11
1324_CR10
S Wu (1324_CR2) 2019; 9
1324_CR14
C Fang (1324_CR46) 2018; 26
Y-L Meng (1324_CR47) 2019; 58
1324_CR18
H Gao (1324_CR33) 2019; 15
P Patsalas (1324_CR22) 2015; 8
1324_CR4
H Gao (1324_CR38) 2019; 97
BX Wang (1324_CR16) 2020; 2
1324_CR8
AP Chernyshev (1324_CR21) 2009; 63
U Guler (1324_CR30) 2013; 13
ED Palik (1324_CR40) 1985
BX Wang (1324_CR19) 2019; 1
AY Nikitin (1324_CR43) 2014; 90
S Podder (1324_CR36) 2019; 126
1324_CR41
M Li (1324_CR45) 2014; 2014
U Guler (1324_CR25) 2015; 18
A Habib (1324_CR26) 2018; 20
GV Naik (1324_CR23) 2011; 1
1324_CR48
M Gao (1324_CR17) 2019; 12
J Wang (1324_CR32) 2015; 10
S Bhardwaj (1324_CR3) 2017; 12
BX Wang (1324_CR9) 2016; 28
BX Wang (1324_CR13) 2017; 7
1324_CR28
S Juneja (1324_CR39) 2019; 433
S Ishii (1324_CR34) 2016; 3
Q Liang (1324_CR37) 2018; 32
BX Wang (1324_CR12) 2017; 23
BX Wang (1324_CR15) 2020; 16
Z Liu (1324_CR44) 2016; 16
Y Pang (1324_CR6) 2020; 5
W Li (1324_CR20) 2014; 26
E Lee (1324_CR7) 2020; 11
U Guler (1324_CR29) 2012; 107
GV Naik (1324_CR24) 2013; 25
GV Naik (1324_CR31) 2012; 2
L Manai (1324_CR5) 2016; 11
References_xml – ident: CR18
– volume: 26
  start-page: 7959
  issue: 47
  year: 2014
  end-page: 7965
  ident: CR20
  article-title: Refractory plasmonics with titanium nitride: broadband metamaterial absorber
  publication-title: Advanced Materials
  doi: 10.1002/adma.201401874
– volume: 13
  start-page: 6078
  issue: 12
  year: 2013
  end-page: 6083
  ident: CR30
  article-title: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles
  publication-title: Nano Letters
  doi: 10.1021/nl4033457
– volume: 1
  start-page: 3621
  issue: 9
  year: 2019
  end-page: 3625
  ident: CR19
  article-title: A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00385A
– volume: 7
  start-page: 41373
  issue: 1
  year: 2017
  ident: CR13
  article-title: Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure
  publication-title: Scientific Reports
  doi: 10.1038/srep41373
– ident: CR4
– volume: 11
  start-page: 2404
  issue: 1
  year: 2020
  ident: CR7
  article-title: Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-16267-9
– ident: CR14
– volume: 18
  start-page: 227
  issue: 4
  year: 2015
  end-page: 237
  ident: CR25
  article-title: Nanoparticle plasmonics: going practical with transition metal nitrides
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2014.10.039
– year: 1985
  ident: CR40
  publication-title: Handbook of optical constants of solids
– volume: 20
  start-page: 064001
  issue: 6
  year: 2018
  ident: CR26
  article-title: Hot carrier dynamics in plasmonic transition metal nitrides
  publication-title: Journal of Optics
  doi: 10.1088/2040-8986/aac1d8
– ident: CR10
– volume: 3
  start-page: 1552
  issue: 9
  year: 2016
  end-page: 1557
  ident: CR34
  article-title: Hot electron excitation from titanium nitride using visible light
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00360
– volume: 9
  start-page: 1901286
  issue: 30
  year: 2019
  ident: CR2
  article-title: Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201901286
– volume: 16
  start-page: 3457
  issue: 6
  year: 2016
  end-page: 3462
  ident: CR44
  article-title: Localized surface plasmons in nanostructured monolayer black phosphorus
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b05166
– volume: 2
  start-page: 763
  issue: 2
  year: 2020
  end-page: 769
  ident: CR16
  article-title: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00770A
– volume: 58
  start-page: 6700
  issue: 24
  year: 2019
  end-page: 6705
  ident: CR47
  article-title: Salisbury screen optical color filter with ultra-thin titanium nitride film
  publication-title: Appl Opt
  doi: 10.1364/AO.58.006700
– ident: CR8
– volume: 12
  start-page: 193
  issue: 1
  year: 2017
  end-page: 201
  ident: CR3
  article-title: Tunable properties of surface plasmon resonance of metal nanospheroid: graphene plasmon interaction
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0249-7
– volume: 28
  start-page: 307
  issue: 3
  year: 2016
  end-page: 310
  ident: CR9
  article-title: Design of a five-band terahertz absorber based on three nested split-ring resonators
  publication-title: IEEE Photonics Technology Letters
  doi: 10.1109/LPT.2015.2495245
– volume: 2
  start-page: 478
  issue: 4
  year: 2012
  end-page: 489
  ident: CR31
  article-title: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
  publication-title: Opt Mater Express
  doi: 10.1364/OME.2.000478
– volume: 15
  start-page: 573
  year: 2019
  end-page: 580
  ident: CR33
  article-title: Plasmonic broadband perfect absorber for visible light solar cells application
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-01087-5
– volume: 126
  start-page: 083108
  issue: 8
  year: 2019
  ident: CR36
  article-title: Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.5101009
– volume: 5
  start-page: 437
  issue: 2
  year: 2020
  end-page: 456
  ident: CR6
  article-title: Solar–thermal water evaporation: a review
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.9b02611
– volume: 25
  start-page: 3264
  issue: 24
  year: 2013
  end-page: 3294
  ident: CR24
  article-title: Alternative plasmonic materials: beyond gold and silver
  publication-title: Advanced Materials
  doi: 10.1002/adma.201205076
– ident: CR48
– volume: 32
  start-page: 1750365
  issue: 01
  year: 2018
  ident: CR37
  article-title: Titanium nitride nano-disk arrays-based metasurface as a perfect absorber in the visible range
  publication-title: Modern Physics Letters B
  doi: 10.1142/S0217984917503651
– volume: 4
  start-page: 815
  issue: 4
  year: 2017
  end-page: 822
  ident: CR35
  article-title: Plasmonic–photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00763
– volume: 107
  start-page: 285
  issue: 2
  year: 2012
  end-page: 291
  ident: CR29
  article-title: Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications
  publication-title: Applied Physics B
  doi: 10.1007/s00340-012-4955-3
– volume: 11
  start-page: 1273
  issue: 5
  year: 2016
  end-page: 1277
  ident: CR5
  article-title: Tuning of light trapping and surface plasmon resonance in silver nanoparticles/C-Si structures for solar cells
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0171-4
– volume: 12
  start-page: 841
  issue: 3
  year: 2019
  end-page: 864
  ident: CR17
  article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
  publication-title: Energy & Environmental Science
  doi: 10.1039/C8EE01146J
– volume: 63
  start-page: 1525
  issue: 17
  year: 2009
  end-page: 1527
  ident: CR21
  article-title: Effect of nanoparticle size on the onset temperature of surface melting
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2009.04.009
– ident: CR11
– volume: 16
  start-page: 102930
  year: 2020
  ident: CR15
  article-title: Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.102930
– volume: 1
  start-page: 1090
  issue: 6
  year: 2011
  end-page: 1099
  ident: CR23
  article-title: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]
  publication-title: Opt Mater Express
  doi: 10.1364/OME.1.001090
– volume: 433
  start-page: 89
  year: 2019
  end-page: 96
  ident: CR39
  article-title: Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers
  publication-title: Optics Communications
  doi: 10.1016/j.optcom.2018.09.069
– volume: 4
  start-page: 3045
  issue: 12
  year: 2017
  end-page: 3054
  ident: CR42
  article-title: Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00558
– volume: 90
  start-page: 041407
  issue: 4
  year: 2014
  ident: CR43
  article-title: Anomalous reflection phase of graphene plasmons and its influence on resonators
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.90.041407
– volume: 332
  start-page: 805
  issue: 6031
  year: 2011
  end-page: 809
  ident: CR1
  article-title: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
  publication-title: Science
  doi: 10.1126/science.1200165
– volume: 10
  start-page: 1473
  issue: 6
  year: 2015
  end-page: 1478
  ident: CR32
  article-title: Broadband perfect absorber with titanium nitride nano-disk array
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9962-x
– volume: 21
  start-page: 115201
  issue: 11
  year: 2010
  ident: CR27
  article-title: Optical properties and plasmon resonances of titanium nitride nanostructures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/11/115201
– ident: CR28
– ident: CR41
– volume: 8
  start-page: 3128
  issue: 6
  year: 2015
  end-page: 3154
  ident: CR22
  article-title: Optical properties and plasmonic performance of titanium nitride
  publication-title: Materials
  doi: 10.3390/ma8063128
– volume: 26
  start-page: 27683
  issue: 21
  year: 2018
  end-page: 27693
  ident: CR46
  article-title: Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies
  publication-title: Opt Express
  doi: 10.1364/OE.26.027683
– volume: 23
  start-page: 1
  issue: 4
  year: 2017
  end-page: 7
  ident: CR12
  article-title: Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
– volume: 97
  start-page: 109377
  year: 2019
  ident: CR38
  article-title: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber
  publication-title: Optical Materials
  doi: 10.1016/j.optmat.2019.109377
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 5
  ident: CR45
  article-title: SiO antireflection coatings fabricated by electron-beam evaporation for black monocrystalline silicon solar cells
  publication-title: International Journal of Photoenergy
– ident: 1324_CR18
  doi: 10.1007/0-387-37825-1
– volume: 4
  start-page: 3045
  issue: 12
  year: 2017
  ident: 1324_CR42
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00558
– ident: 1324_CR4
  doi: 10.1186/s11671-016-1374-0
– volume: 11
  start-page: 2404
  issue: 1
  year: 2020
  ident: 1324_CR7
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-16267-9
– volume: 433
  start-page: 89
  year: 2019
  ident: 1324_CR39
  publication-title: Optics Communications
  doi: 10.1016/j.optcom.2018.09.069
– volume: 16
  start-page: 102930
  year: 2020
  ident: 1324_CR15
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2020.102930
– volume: 2
  start-page: 763
  issue: 2
  year: 2020
  ident: 1324_CR16
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00770A
– volume: 8
  start-page: 3128
  issue: 6
  year: 2015
  ident: 1324_CR22
  publication-title: Materials
  doi: 10.3390/ma8063128
– ident: 1324_CR28
  doi: 10.23919/PIERS.2018.8598236
– volume: 32
  start-page: 1750365
  issue: 01
  year: 2018
  ident: 1324_CR37
  publication-title: Modern Physics Letters B
  doi: 10.1142/S0217984917503651
– volume: 90
  start-page: 041407
  issue: 4
  year: 2014
  ident: 1324_CR43
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.90.041407
– volume: 2
  start-page: 478
  issue: 4
  year: 2012
  ident: 1324_CR31
  publication-title: Opt Mater Express
  doi: 10.1364/OME.2.000478
– volume-title: Handbook of optical constants of solids
  year: 1985
  ident: 1324_CR40
– volume: 2014
  start-page: 1
  year: 2014
  ident: 1324_CR45
  publication-title: International Journal of Photoenergy
– volume: 7
  start-page: 41373
  issue: 1
  year: 2017
  ident: 1324_CR13
  publication-title: Scientific Reports
  doi: 10.1038/srep41373
– volume: 13
  start-page: 6078
  issue: 12
  year: 2013
  ident: 1324_CR30
  publication-title: Nano Letters
  doi: 10.1021/nl4033457
– volume: 10
  start-page: 1473
  issue: 6
  year: 2015
  ident: 1324_CR32
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9962-x
– volume: 3
  start-page: 1552
  issue: 9
  year: 2016
  ident: 1324_CR34
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00360
– volume: 4
  start-page: 815
  issue: 4
  year: 2017
  ident: 1324_CR35
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00763
– ident: 1324_CR14
  doi: 10.1186/s11671-019-2876-3
– volume: 23
  start-page: 1
  issue: 4
  year: 2017
  ident: 1324_CR12
  publication-title: IEEE Journal of Selected Topics in Quantum Electronics
– volume: 11
  start-page: 1273
  issue: 5
  year: 2016
  ident: 1324_CR5
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0171-4
– volume: 58
  start-page: 6700
  issue: 24
  year: 2019
  ident: 1324_CR47
  publication-title: Appl Opt
  doi: 10.1364/AO.58.006700
– volume: 12
  start-page: 841
  issue: 3
  year: 2019
  ident: 1324_CR17
  publication-title: Energy & Environmental Science
  doi: 10.1039/C8EE01146J
– volume: 63
  start-page: 1525
  issue: 17
  year: 2009
  ident: 1324_CR21
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2009.04.009
– volume: 18
  start-page: 227
  issue: 4
  year: 2015
  ident: 1324_CR25
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2014.10.039
– volume: 20
  start-page: 064001
  issue: 6
  year: 2018
  ident: 1324_CR26
  publication-title: Journal of Optics
  doi: 10.1088/2040-8986/aac1d8
– volume: 12
  start-page: 193
  issue: 1
  year: 2017
  ident: 1324_CR3
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0249-7
– ident: 1324_CR10
  doi: 10.1088/0022-3727/49/16/165307
– volume: 107
  start-page: 285
  issue: 2
  year: 2012
  ident: 1324_CR29
  publication-title: Applied Physics B
  doi: 10.1007/s00340-012-4955-3
– volume: 97
  start-page: 109377
  year: 2019
  ident: 1324_CR38
  publication-title: Optical Materials
  doi: 10.1016/j.optmat.2019.109377
– volume: 1
  start-page: 3621
  issue: 9
  year: 2019
  ident: 1324_CR19
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00385A
– ident: 1324_CR41
  doi: 10.1201/b17118
– volume: 26
  start-page: 7959
  issue: 47
  year: 2014
  ident: 1324_CR20
  publication-title: Advanced Materials
  doi: 10.1002/adma.201401874
– volume: 9
  start-page: 1901286
  issue: 30
  year: 2019
  ident: 1324_CR2
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201901286
– volume: 16
  start-page: 3457
  issue: 6
  year: 2016
  ident: 1324_CR44
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b05166
– volume: 21
  start-page: 115201
  issue: 11
  year: 2010
  ident: 1324_CR27
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/11/115201
– volume: 26
  start-page: 27683
  issue: 21
  year: 2018
  ident: 1324_CR46
  publication-title: Opt Express
  doi: 10.1364/OE.26.027683
– volume: 332
  start-page: 805
  issue: 6031
  year: 2011
  ident: 1324_CR1
  publication-title: Science
  doi: 10.1126/science.1200165
– volume: 15
  start-page: 573
  year: 2019
  ident: 1324_CR33
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-01087-5
– ident: 1324_CR11
  doi: 10.1007/s11468-015-0076-2
– ident: 1324_CR8
  doi: 10.1063/1.4905261
– volume: 28
  start-page: 307
  issue: 3
  year: 2016
  ident: 1324_CR9
  publication-title: IEEE Photonics Technology Letters
  doi: 10.1109/LPT.2015.2495245
– volume: 126
  start-page: 083108
  issue: 8
  year: 2019
  ident: 1324_CR36
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.5101009
– volume: 1
  start-page: 1090
  issue: 6
  year: 2011
  ident: 1324_CR23
  publication-title: Opt Mater Express
  doi: 10.1364/OME.1.001090
– volume: 25
  start-page: 3264
  issue: 24
  year: 2013
  ident: 1324_CR24
  publication-title: Advanced Materials
  doi: 10.1002/adma.201205076
– volume: 5
  start-page: 437
  issue: 2
  year: 2020
  ident: 1324_CR6
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.9b02611
– ident: 1324_CR48
  doi: 10.5829/idosi.ije.2016.29.05b.12
SSID ssj0044464
Score 2.316277
Snippet Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 799
SubjectTerms Absorption
Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Broadband
Chemistry
Chemistry and Materials Science
Electric fields
Energy harvesting
Nanotechnology
Near infrared radiation
Photovoltaic cells
Ribbon arrays
Silicon dioxide
Solar energy
Titanium nitride
Title Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures
URI https://link.springer.com/article/10.1007/s11468-020-01324-2
https://www.proquest.com/docview/2528843231
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iEb2IVsVqLTl408huHvs4lmItSouHFuppyatQ0K10t6D_3km6a1FU8LzJHDLJzPftvBC6jAMdamk4cb3CCDepIYrxiIShBHfMUyZ8u6bhKBpM-P1UTKuisKLOdq9Dkt5Sb4rdfJWQozsuPsAJGN6GcNwdbvGEdmv7y4Hg-FiyEDEJUyGqUpmfZXx1RxuM-S0s6r1N_wDtVzARd9d6PURbNm-i3V49na2Jdnzqpi6O0NsjAGC4THjw7qqvqrpK4mZyaGvw5LlcSqKWC2mUzA12iR24q4rF0hsL7OpLcHDDcbnA4U2Chy5DLy_wPMfjOSDH-eoFj-YlSLZ4aEu5bji7ApZ-jCb923FvQKp5CkTDQyuJZAFnitJZBD7aUhVJM0vjINYAI2yiE6aUsNICr0wFjalRijIzA0CrZaKAKrMTtJ0vcnuKcAIbQmtYZDhwawWsRAQq1TMXZgUTEbdQWB9rpqtm427mxXO2aZPsVJGBKjKvioy20NXnntd1q40_V7drbWXVsysyKmiScAaYtYWuaw1uPv8u7ex_y8_RHnW5Lf5vTBttw8nbCwAnpeqgRvfu6eG24-_kB_wT2V8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EEb2IVsVq1T1405VkH3kcS7FUbYuHFnoL-yoUNJUmBf33zm4Ti6KC5-zuIZOd-b7MfDMIXcWBDrU0nLheYYSb1BDFeETCUEI45ikTvl3TYBj1xvxhIiaVKKyoq93rlKT31Guxm1cJObrj8gOcgOPdAjCQuEKuMW3X_pcDwfG5ZCFiEqZCVFKZn8_4Go7WGPNbWtRHm-4-2qtgIm6v7HqANmzeQDudejpbA2370k1dHKK3JwDA8DHh3rtTX1W6SuJmcmhr8Pi5XEiiFnNplMwNdoUduK2K-cI7C-z0JTi45bic4_A2wQNXoZcXeJbj0QyQ42z5goezEk62eGBLuWo4uwSWfoTG3btRp0eqeQpEw0UriWQBZ4rSaQQx2lIVSTNN4yDWACNsohOmlLDSAq9MBY2pUYoyMwVAq2WigCqzY7SZz3N7gnACG0JrWGQ4cGsFrEQEKtVTl2YFFxE3UVi_1kxXzcbdzIvnbN0m2ZkiA1Nk3hQZbaLrzz2vq1Ybf65u1dbKqmtXZFTQJOEMMGsT3dQWXD_-_bTT_y2_RDu90aCf9e-Hj2dol7o6F_9npoU2wQr2HIBKqS78d_kBjYfavg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5E8XERrYrVqnvwpqvJPvI4FrXUR4sHC97CvgKFmkobQf-9s9vEqqjgOZs97LeZ-SYz3wxCx3GgQy0NJ65XGOEmNUQxHpEwlOCOecqEb9fU60fdAb95FI-fVPy-2r1OSc40Da5LU1GeP5v8fC5884ohF_q4XAEnYISXwByH7l4PaLu2xRyCHZ9XFiImYSpEJZv5eY-vrmnON7-lSL3n6Wyg9Yoy4vYM4020YIsGWr2oJ7U10LIv49TTLfR6D2QYLhbuvjklVqWxJG4-h7YGD0blRBI1GUujZGGwK_LAbTUdT7zhwE5rgoMzjssxDs8S3HPVesUUDwv8MAQWOXx5wv1hCTtb3LOlnDWffYGIfRsNOlcPF11SzVYgGk6pJJIFnClK8wj8taUqkiZP4yDWQClsohOmlLDSQoyZChpToxRlJgdyq2WiIGxmO2ixGBd2F-EEXgitYZHhEGcriFBEoFKdu5QrmIu4icL6WDNdNR538y9G2bxlsoMiAygyD0VGm-jk453nWduNP1e3arSy6hOcZlTQJOEM-GsTndYIzh__vtve_5YfoZX7y052d92_3Udr1JW8-J80LbQIINgD4CylOvTX8h1wc976
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon+Hybridization-Induced+Ultra-broadband+High+Absorption+from+0.4+to+1.8+Microns+in+Titanium+Nitride+Metastructures&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Wu%2C+Shiwen&rft.au=Luo%2C+Tengfei&rft.au=Xiong%2C+Guoping&rft.date=2021-06-01&rft.pub=Springer+US&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=16&rft.issue=3&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1007%2Fs11468-020-01324-2&rft.externalDocID=10_1007_s11468_020_01324_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon