Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images
Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 29-30; pp. 20483 - 20518 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data. |
---|---|
AbstractList | Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data. |
Author | Afdel, Karim Bakkouri, Ibtissam |
Author_xml | – sequence: 1 givenname: Ibtissam orcidid: 0000-0003-4827-9007 surname: Bakkouri fullname: Bakkouri, Ibtissam email: ibtissam.bakkouri@gmail.com organization: LabSIV, Department of Computer Science, Faculty of Science, Ibn Zohr University – sequence: 2 givenname: Karim surname: Afdel fullname: Afdel, Karim organization: LabSIV, Department of Computer Science, Faculty of Science, Ibn Zohr University |
BookMark | eNp9kE1rGzEQhkVIIJ9_ICdBL-lBrb7W2j0GN_0AQy_JWci7IyNnV3I0Woqv_eWV7UKhh5xmmJln3pn3mpzHFIGQe8E_Cc7NZxSCa8m46Bg3XdsycUauRGMUM0aK85qrljPTcHFJrhG3nItFI_UV-b1M024ukJkLAwx0CG4TEwakD8vHLx8p7rHARNcOazNFOs1jCWx0e8jUgytzBupnDLUVofxK-ZX6lCm-hkhHONYz9GkTQznktTpAnhL2abenYXIbwFty4d2IcPc33pCXr0_Py-9s9fPbj-XjivVKdIU5MXgBqnGLdiGV4LKBwchOKenXeu0bz8FxPXReGQnQOw1S98o4qaTp_bpTN-TDae8up7cZsNhtmnOsklbKhdYtl0bXKXma6nNCzODtLtc7894Kbg9e25PXtnptj15bUaH2P6gPxR0-LtmF8X1UnVCsOnED-d9V71B_AKiBl7A |
CitedBy_id | crossref_primary_10_1007_s11042_023_15360_7 crossref_primary_10_1016_j_eswa_2023_120381 crossref_primary_10_1007_s11042_023_16247_3 crossref_primary_10_1002_ima_22890 crossref_primary_10_1007_s11042_023_15428_4 crossref_primary_10_1007_s11042_023_16472_w crossref_primary_10_1088_1742_6596_1767_1_012004 crossref_primary_10_1007_s11042_023_15178_3 crossref_primary_10_1111_exsy_13576 crossref_primary_10_3390_diagnostics14040454 crossref_primary_10_1155_2021_1045184 crossref_primary_10_1016_j_engappai_2023_107417 crossref_primary_10_1016_j_eswa_2023_119794 crossref_primary_10_1007_s11042_023_15222_2 crossref_primary_10_1007_s11042_023_15056_y crossref_primary_10_1007_s00521_024_10500_y crossref_primary_10_1007_s11042_023_16569_2 crossref_primary_10_1080_0952813X_2023_2165721 crossref_primary_10_1007_s11042_023_16646_6 crossref_primary_10_1016_j_inffus_2023_101853 crossref_primary_10_3390_cancers14235872 crossref_primary_10_1007_s11042_020_09337_z crossref_primary_10_1007_s11042_023_15305_0 crossref_primary_10_1016_j_eswa_2023_122491 crossref_primary_10_1007_s00500_023_08667_y crossref_primary_10_1371_journal_pone_0309434 crossref_primary_10_1007_s11042_023_17661_3 crossref_primary_10_1007_s11042_023_17908_z crossref_primary_10_1007_s11042_023_16756_1 crossref_primary_10_1007_s00500_023_08957_5 crossref_primary_10_1007_s11042_023_15308_x crossref_primary_10_1007_s11042_023_15620_6 crossref_primary_10_1016_j_compbiomed_2021_104825 crossref_primary_10_1007_s11042_023_14736_z crossref_primary_10_1016_j_bspc_2023_104779 crossref_primary_10_1007_s11042_022_14098_y crossref_primary_10_1007_s00500_023_08637_4 crossref_primary_10_1007_s11042_022_14248_2 crossref_primary_10_1007_s11042_023_15049_x crossref_primary_10_1016_j_imavis_2025_105440 crossref_primary_10_1007_s11042_023_17498_w crossref_primary_10_1007_s11042_023_16224_w crossref_primary_10_1007_s00530_023_01066_1 crossref_primary_10_1007_s11042_023_16121_2 crossref_primary_10_1007_s11042_023_16123_0 crossref_primary_10_1007_s11042_023_16417_3 crossref_primary_10_1007_s10586_024_04331_8 crossref_primary_10_1155_2022_1982555 crossref_primary_10_3390_electronics12041060 crossref_primary_10_1007_s11042_023_16126_x crossref_primary_10_1007_s11042_023_15559_8 crossref_primary_10_1007_s11042_023_16879_5 crossref_primary_10_1007_s12652_023_04659_w crossref_primary_10_1088_1361_6560_ad2a96 crossref_primary_10_1016_j_eswa_2023_121256 crossref_primary_10_1007_s11042_023_15599_0 crossref_primary_10_1007_s11042_023_16237_5 crossref_primary_10_1007_s11042_023_16672_4 crossref_primary_10_1007_s11042_023_15379_w crossref_primary_10_1007_s11042_023_14927_8 crossref_primary_10_1007_s11042_023_15728_9 crossref_primary_10_1007_s11760_022_02373_2 crossref_primary_10_1155_2022_2415726 crossref_primary_10_1007_s11042_022_12242_2 crossref_primary_10_1016_j_inffus_2023_03_021 crossref_primary_10_1016_j_eswa_2023_120735 crossref_primary_10_1007_s11042_023_16273_1 crossref_primary_10_1007_s11042_023_17874_6 crossref_primary_10_1016_j_imavis_2025_105503 crossref_primary_10_1109_ACCESS_2020_3047258 crossref_primary_10_1109_ACCESS_2022_3199613 crossref_primary_10_3390_app11073155 crossref_primary_10_1007_s11042_023_17573_2 crossref_primary_10_1007_s00500_023_08002_5 crossref_primary_10_1007_s11042_022_13538_z crossref_primary_10_3390_s23167134 crossref_primary_10_1016_j_inffus_2023_101949 crossref_primary_10_1007_s11042_022_14014_4 |
Cites_doi | 10.1145/3065386 10.1007/s11042-018-5714-1 10.1007/978-3-319-10584-0_26 10.1016/j.jid.2018.01.028 10.1007/s00371-018-1499-5 10.1007/s11548-018-1806-7 10.1016/j.eswa.2018.07.030 10.1259/bjr.20140016 10.1016/j.neucom.2016.12.002 10.1007/s11042-015-3057-8 10.1109/pdcat.2017.00028 10.1016/j.cmpb.2018.01.011 10.1038/s41598-018-25005-7 10.1007/978-3-319-75541-0_16 10.1109/access.2018.2815149 10.1109/ssci.2017.8285382 10.1145/2647868.2654889 10.1007/978-3-319-25903-1_60 10.1007/s11042-018-6267-z 10.1109/tcyb.2016.2519449 10.1109/icdm.2001.989560 10.1007/978-3-540-28647-9_142 10.1109/access.2017.2713389 10.1109/cvpr.2017.646 10.1109/ehb.2017.7995491 10.1016/j.compeleceng.2014.05.017 10.1109/cvpr.2016.321 10.1016/j.mpmed.2013.04.008 10.1007/s12021-018-9370-4 10.1016/j.neucom.2015.09.116 10.1007/978-3-319-94211-7_49 10.1007/s10916-018-1088-1 10.1038/s41598-017-12320-8 10.1097/md.0000000000002266 10.1016/j.knosys.2018.07.041 10.1016/j.ins.2014.02.145 10.1016/j.compmedimag.2017.05.002 10.1109/isbi.2017.7950523 10.1007/s11042-018-6249-1 10.1186/s12911-018-0631-9 10.1007/978-3-642-41914-0_18 10.1109/bibm.2017.8217751 10.1016/j.fss.2016.06.001 10.1007/s11548-018-1843-2 10.1109/embc.2016.7591352 10.1016/j.artint.2014.02.004 10.1109/5.726791 10.1186/s13640-018-0332-4 10.1007/s11760-018-1325-6 10.1016/j.knosys.2018.05.016 10.1109/cvpr.2015.7298731 10.1038/nature21056 10.1049/iet-cvi.2018.5315 10.3390/electronics7110302 10.1109/icip.2014.7025311 10.1109/mipr.2018.00032 10.1016/j.neucom.2018.03.031 10.1109/tmi.2016.2528162 10.1007/978-3-319-10584-0_22 10.1109/embc.2015.7318461 10.1371/journal.pone.0196621 10.1038/sdata.2018.161 10.1109/atsip.2017.8075562 10.1109/icip.2016.7532519 10.1109/cvpr.2017.243 10.1002/mp.12453 10.1109/cvpr.2016.90 10.1109/isbi.2018.8363547 10.1109/cvprw.2015.7301270 10.1109/bigcomp.2018.00054 10.1016/j.neucom.2016.12.038 10.1109/tgrs.2017.2711275 10.1016/j.cmpb.2018.01.025 10.1016/j.compbiomed.2018.11.010 10.1109/iccv.2015.352 10.1109/tpami.2018.2865311 10.1007/978-3-319-67561-9_14 10.1007/s00500-018-3421-5 10.24963/ijcai.2017/318 10.1007/s10462-011-9225-y 10.1016/j.canep.2013.02.010 10.1007/s11042-017-5314-5 10.1016/s0010-4825(97)00020-6 10.1109/iesys.2017.8233570 10.1109/cvpr.2017.563 10.3390/s18020556 10.1109/access.2017.2735019 10.1007/s11042-018-5765-3 10.1109/tbme.2018.2866166 10.1007/978-3-319-50835-1_11 10.1007/978-3-319-49409-8_34 10.1109/ijcnn.2016.7727665 10.1016/j.media.2016.05.004 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-019-07988-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 20518 |
ExternalDocumentID | 10_1007_s11042_019_07988_1 |
GrantInformation_xml | – fundername: Moroccan Ministry of National Education, Vocational Training, Higher Education and Scientific Research grantid: DS10010 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-a1df1e35a686231025ed729332fb4bf5f0ea04d9f372eeca4e24c37a2327cfb93 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:42:18 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Tue Jul 01 02:07:01 EDT 2025 Fri Feb 21 02:37:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29-30 |
Keywords | Multi-class classification Skin diseases Multi-layer feature fusion Dermoscopic pattern recognition Transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a1df1e35a686231025ed729332fb4bf5f0ea04d9f372eeca4e24c37a2327cfb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4827-9007 |
PQID | 2264480274 |
PQPubID | 54626 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2264480274 crossref_primary_10_1007_s11042_019_07988_1 crossref_citationtrail_10_1007_s11042_019_07988_1 springer_journals_10_1007_s11042_019_07988_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200800 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 8 year: 2020 text: 20200800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chen, Xie, Shin (CR17) 2018; 12 Wan, Yang, Gai, Yang (CR87) 2015; 76 Wan, Li, Yang, Gai, Jin (CR86) 2014; 274 CR39 CR36 CR35 CR33 Huo, Rao, Zhang (CR42) 2018; 78 CR31 Byra, Styczynski, Szmigielski, Kalinowski, Michalowski, Paluszkiewicz, Ziarkiewicz-Wroblewska, Zieniewicz, Sobieraj, Nowicki (CR14) 2018; 13 Yu, Yang, Kim, Jung, Chung, Lee, Oh (CR97) 2018; 13 Anic, Sondak, Messina, Fenske, Zager, Cherpelis, Lee, Fulp, Epling-Burnette, Park, Rollison (CR4) 2013; 37 Baldi, Sadowski (CR12) 2014; 210 Lee, Ng, Gallagher, Coldman, McLean (CR52) 1997; 27 Kuai, Wen, Li (CR48) 2018; 13 Li, Shen (CR57) 2018; 18 CR47 CR46 CR45 CR44 CR43 CR41 Bakkouri, Afdel (CR11) 2018; 78 CR40 Majumder, Hazarika, Gelbukh, Cambria, Poria (CR65) 2018; 161 Tschandl, Sinz, Kittler (CR83) 2019; 104 Du, Gao (CR26) 2017; 5 Banerjee, Crawley, Bhethanabotla, Daldrup-Link, Rubin (CR13) 2018; 65 Duchi, Hazan, Singer (CR27) 2011; 12 Tripathi, Singh, Vishwakarma (CR81) 2018; 35 CR58 Yu, Liu, Pang, Li, Li (CR98) 2018; 296 Chen, Samuelson (CR16) 2014; 87 Chu, Guo, Leng (CR20) 2018; 6 CR50 Chougrad, Zouaki, Alheyane (CR18) 2018; 157 Li, Zurada, Liu, Wu (CR54) 2017; 5 Zhang, Muhammad, Tang (CR103) 2018; 77 Lacy, Alwan (CR49) 2013; 41 Dorj, Lee, Choi, Lee (CR25) 2018; 77 CR69 CR68 CR67 CR66 Guo, Liu, Oerlemans, Lao, Wu, Lew (CR34) 2016; 187 CR64 CR63 Li, Xia, Du, Lin, Samat (CR53) 2017; 55 CR62 CR61 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR28) 2017; 542 Zhang, Wang, Liu, Tao (CR102) 2018; 18 CR79 CR78 Ge, Jiang, Xu, Jiang, Ye (CR29) 2017; 77 CR76 CR75 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR73) 2016; 35 CR74 Antropova, Huynh, Giger (CR5) 2017; 44 Golrizkhatami, Acan (CR32) 2018; 114 CR72 CR71 Lee, Mendes, Spolaôr, Oliva, Sabino Parmezan, Wu, Fonseca-Pinto (CR51) 2018; 158 CR70 Han, Kim, Lim, Park, Park, Chang (CR37) 2018; 138 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR38) 2017; 35 Tang, Mat Isa (CR77) 2014; 40 CR2 CR3 Vu, Ho, Yang, Kim, Song (CR84) 2018; 22 CR8 Yu, Yang, Yao, Sun, Xu (CR99) 2017; 237 CR9 CR80 Li, Weng, Shi, Gu, Mao, Wang, Liu, Zhang (CR55) 2018; 8 Li, Charalampaki, Liu, Yang, Giannarou (CR56) 2018; 13 Abd-Ellah, Awad, Khalaf, Hamed (CR1) 2018; 2018 Liu, Cheng, Wang, Wang (CR59) 2018; 16 Wei, Zhao, Lu, Wei, Liu, Zhu, Yan (CR89) 2016; 47 Tschandl, Rosendahl, Kittler (CR82) 2018; 5 Anwar, Majid, Qayyum, Awais, Alnowami, Khan (CR6) 2018; 42 CR19 CR15 Gibson, Li, Sudre, Fidon, Shakir, Wang, Eaton-Rosen, Gray, Doel, Hu, Whyntie, Nachev, Modat, Barratt, Ourselin, Cardoso, Vercauteren (CR30) 2018; 158 CR10 CR96 CR95 CR94 CR93 CR92 CR91 Wen, Ye, Huang, Li, Yang, Xiao, Xie (CR90) 2015; 94 Yu, Jiang, Zhou, Qin, Ni, Chen, Lei, Wang (CR100) 2018; 66 CR23 CR22 Wang, Hua, Xiao, Li, Hu, Sun (CR88) 2018; 7 CR104 CR21 CR105 Aubreville, Knipfer, Oetter, Jaremenko, Rodner, Denzler, Bohr, Neumann, Stelzle, Maier (CR7) 2017; 7 CR101 Wan, Lai, Yang, Yang, Zhang, Zheng (CR85) 2017; 318 Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR60) 2017; 234 Ding, Zhu, Jia, Su (CR24) 2011; 37 M Abd-Ellah (7988_CR1) 2018; 2018 M Byra (7988_CR14) 2018; 13 J Duchi (7988_CR27) 2011; 12 P Tschandl (7988_CR83) 2019; 104 7988_CR58 S Anwar (7988_CR6) 2018; 42 7988_CR50 J Tang (7988_CR77) 2014; 40 P Tschandl (7988_CR82) 2018; 5 Y Zhang (7988_CR103) 2018; 77 C Yu (7988_CR97) 2018; 13 7988_CR67 7988_CR66 7988_CR2 7988_CR69 7988_CR3 7988_CR68 7988_CR63 7988_CR62 7988_CR64 7988_CR8 7988_CR9 7988_CR61 X Wang (7988_CR88) 2018; 7 W Chen (7988_CR16) 2014; 87 M Havaei (7988_CR38) 2017; 35 F Li (7988_CR54) 2017; 5 7988_CR78 7988_CR79 Y Li (7988_CR57) 2018; 18 7988_CR74 7988_CR76 7988_CR75 7988_CR70 7988_CR72 7988_CR71 C Du (7988_CR26) 2017; 5 J Wen (7988_CR90) 2015; 94 E Gibson (7988_CR30) 2018; 158 X Zhang (7988_CR102) 2018; 18 N Majumder (7988_CR65) 2018; 161 Y Chen (7988_CR17) 2018; 12 7988_CR80 Z Yu (7988_CR100) 2018; 66 A Esteva (7988_CR28) 2017; 542 W Yu (7988_CR99) 2017; 237 S Ding (7988_CR24) 2011; 37 7988_CR19 7988_CR15 Y Ge (7988_CR29) 2017; 77 7988_CR101 7988_CR96 7988_CR95 7988_CR10 7988_CR92 K Lacy (7988_CR49) 2013; 41 7988_CR91 7988_CR94 7988_CR93 7988_CR104 E Li (7988_CR53) 2017; 55 7988_CR105 M Wan (7988_CR85) 2017; 318 U Dorj (7988_CR25) 2018; 77 H Lee (7988_CR51) 2018; 158 I Bakkouri (7988_CR11) 2018; 78 Y Kuai (7988_CR48) 2018; 13 7988_CR23 7988_CR22 7988_CR21 N Antropova (7988_CR5) 2017; 44 T Vu (7988_CR84) 2018; 22 M Wan (7988_CR86) 2014; 274 P Baldi (7988_CR12) 2014; 210 M Aubreville (7988_CR7) 2017; 7 Y Guo (7988_CR34) 2016; 187 Y Wei (7988_CR89) 2016; 47 7988_CR39 W Liu (7988_CR60) 2017; 234 S Han (7988_CR37) 2018; 138 7988_CR33 7988_CR36 7988_CR35 7988_CR31 L Huo (7988_CR42) 2018; 78 H Li (7988_CR55) 2018; 8 H Shin (7988_CR73) 2016; 35 G Tripathi (7988_CR81) 2018; 35 T Lee (7988_CR52) 1997; 27 M Liu (7988_CR59) 2018; 16 Z Golrizkhatami (7988_CR32) 2018; 114 M Wan (7988_CR87) 2015; 76 I Banerjee (7988_CR13) 2018; 65 J Chu (7988_CR20) 2018; 6 7988_CR45 D Yu (7988_CR98) 2018; 296 7988_CR44 7988_CR47 G Anic (7988_CR4) 2013; 37 H Chougrad (7988_CR18) 2018; 157 7988_CR46 7988_CR41 7988_CR40 7988_CR43 Y Li (7988_CR56) 2018; 13 |
References_xml | – ident: CR45 – ident: CR22 – volume: 37 start-page: 169 issue: 3 year: 2011 end-page: 180 ident: CR24 article-title: A survey on feature extraction for pattern recognition publication-title: Artif Intell Rev – ident: CR68 – ident: CR74 – volume: 65 start-page: 167 year: 2018 end-page: 175 ident: CR13 article-title: Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma publication-title: Comput Med Imaging Graph – ident: CR39 – volume: 161 start-page: 124 year: 2018 end-page: 133 ident: CR65 article-title: Multimodal sentiment analysis using hierarchical fusion with context modeling publication-title: Knowl-Based Syst – ident: CR80 – ident: CR8 – volume: 16 start-page: 295 issue: 3/4 year: 2018 end-page: 308 ident: CR59 article-title: Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis publication-title: Neuroinformatics – ident: CR101 – ident: CR71 – ident: CR19 – ident: CR92 – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 10 ident: CR7 article-title: Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning publication-title: Sci Rep – volume: 78 start-page: 1635 issue: 2 year: 2018 end-page: 1648 ident: CR42 article-title: Fused feature encoding in convolutional neural network publication-title: Multimed Tools Appl – ident: CR36 – volume: 7 start-page: 1 issue: 11 year: 2018 end-page: 28 ident: CR88 article-title: Multi-object detection in traffic scenes based on improved SSD publication-title: Electronics – volume: 42 start-page: 1 issue: 11 year: 2018 end-page: 13 ident: CR6 article-title: Medical image analysis using convolutional neural networks: A review publication-title: J Med Syst – volume: 13 start-page: 1895 issue: 12 year: 2018 end-page: 1903 ident: CR14 article-title: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images publication-title: Int J Comput Assist Radiol Surg – volume: 76 start-page: 355 issue: 1 year: 2015 end-page: 371 ident: CR87 article-title: Two-dimensional discriminant locality preserving projections (2DDLPP) and its application to feature extraction via fuzzy set publication-title: Multimed Tools Appl – ident: CR66 – ident: CR91 – volume: 77 start-page: 22821 issue: 17 year: 2018 end-page: 22839 ident: CR103 article-title: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform publication-title: Multimed Tools Appl – ident: CR47 – ident: CR72 – volume: 37 start-page: 434 issue: 4 year: 2013 end-page: 439 ident: CR4 article-title: Telomere length and risk of melanoma, squamous cell carcinoma, and basal cell carcinoma publication-title: Cancer Epidemiol – ident: CR10 – volume: 41 start-page: 402 issue: 7 year: 2013 end-page: 405 ident: CR49 article-title: Skin cancer publication-title: Medicine – ident: CR33 – volume: 157 start-page: 19 year: 2018 end-page: 30 ident: CR18 article-title: Deep convolutional neural networks for breast cancer screening publication-title: Comput Methods Programs Biomed – ident: CR63 – ident: CR69 – ident: CR94 – volume: 5 start-page: 10979 year: 2017 end-page: 10985 ident: CR54 article-title: Input layer regularization of multilayer feedforward neural networks publication-title: IEEE Access – ident: CR44 – ident: CR3 – volume: 77 start-page: 9909 issue: 8 year: 2018 end-page: 9924 ident: CR25 article-title: The skin cancer classification using deep convolutional neural network publication-title: Multimed Tools Appl – volume: 35 start-page: 753 issue: 5 year: 2018 end-page: 776 ident: CR81 article-title: Convolutional neural networks for crowd behaviour analysis: a survey publication-title: Vis Comput – volume: 237 start-page: 235 year: 2017 end-page: 241 ident: CR99 article-title: Exploiting the complementary strengths of multi-layer CNN features for image retrieval publication-title: Neurocomputing – volume: 44 start-page: 5162 issue: 10 year: 2017 end-page: 5171 ident: CR5 article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets publication-title: Med Phys – ident: CR41 – volume: 18 start-page: 1 issue: 2 year: 2018 end-page: 8 ident: CR102 article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge publication-title: BMC Med Inform Decis Mak – volume: 2018 start-page: 1 issue: 97 year: 2018 end-page: 10 ident: CR1 article-title: Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks publication-title: EURASIP Journal on Image and Video Processing – volume: 114 start-page: 54 year: 2018 end-page: 64 ident: CR32 article-title: ECG classification using three-level fusion of different feature descriptors publication-title: Expert Syst Appl – ident: CR70 – volume: 22 start-page: 6825 issue: 20 year: 2018 end-page: 6833 ident: CR84 article-title: Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection publication-title: Soft Comput – volume: 318 start-page: 120 year: 2017 end-page: 131 ident: CR85 article-title: Local graph embedding based on maximum margin criterion via fuzzy set publication-title: Fuzzy Set Syst – volume: 296 start-page: 23 year: 2018 end-page: 32 ident: CR98 article-title: A multi-layer deep fusion convolutional neural network for sketch based image retrieval publication-title: Neurocomputing – ident: CR93 – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 12 ident: CR55 article-title: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images publication-title: Sci Rep – volume: 210 start-page: 78 year: 2014 end-page: 122 ident: CR12 article-title: The dropout learning algorithm publication-title: Artif Intell – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 ident: CR73 article-title: Deep convolutional neural networks for computer-aided detection: CNN Architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – volume: 87 start-page: 1 issue: 1040 year: 2014 end-page: 8 ident: CR16 article-title: The average receiver operating characteristic curve in multireader multicase imaging studies publication-title: Br J Radiol – ident: CR35 – ident: CR61 – ident: CR58 – volume: 77 start-page: 17489 issue: 13 year: 2017 end-page: 17515 ident: CR29 article-title: Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval publication-title: Multimed Tools Appl – ident: CR21 – volume: 13 start-page: 1 issue: 3 year: 2018 end-page: 14 ident: CR97 article-title: Acral melanoma detection using a convolutional neural network for dermoscopy images publication-title: PLOS ONE – ident: CR46 – volume: 94 start-page: 1 issue: 49 year: 2015 end-page: 7 ident: CR90 article-title: Prognostic significance of preoperative circulating monocyte count in patients with breast cancer publication-title: Medicine – volume: 66 start-page: 1006 issue: 4 year: 2018 end-page: 1016 ident: CR100 article-title: Melanoma recognition in dermoscopy images via aggregated deep convolutional features publication-title: IEEE Trans Biomed Eng – ident: CR96 – ident: CR67 – ident: CR75 – volume: 40 start-page: 86 issue: 8 year: 2014 end-page: 103 ident: CR77 article-title: Adaptive image enhancement based on bi-histogram equalization with a clipping limit publication-title: Comput Electr Eng – volume: 27 start-page: 533 issue: 6 year: 1997 end-page: 543 ident: CR52 article-title: Dullrazor: A software approach to hair removal from images publication-title: Comput Biol Med – ident: CR15 – ident: CR50 – ident: CR9 – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: CR38 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – ident: CR78 – volume: 13 start-page: 35 issue: 1 year: 2018 end-page: 42 ident: CR48 article-title: Hyper-Siamese network for robust visual tracking publication-title: SIViP – volume: 274 start-page: 55 year: 2014 end-page: 69 ident: CR86 article-title: Feature extraction using two-dimensional maximum embedding difference publication-title: Inform Sci – volume: 6 start-page: 19959 year: 2018 end-page: 19967 ident: CR20 article-title: Object detection based on multi-layer convolution feature fusion and online hard example mining publication-title: IEEE Access – ident: CR64 – ident: CR105 – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: CR60 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – ident: CR95 – ident: CR43 – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: CR34 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing – ident: CR2 – volume: 138 start-page: 1529 issue: 7 year: 2018 end-page: 1538 ident: CR37 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J Investig Dermatol – volume: 18 start-page: 1 issue: 2 year: 2018 end-page: 16 ident: CR57 article-title: Skin lesion analysis towards melanoma detection using deep learning network publication-title: Sensors – ident: CR79 – volume: 104 start-page: 111 year: 2019 end-page: 116 ident: CR83 article-title: Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation publication-title: Comput Biol Med – volume: 158 start-page: 113 year: 2018 end-page: 122 ident: CR30 article-title: NiftyNet: a deep-learning platform for medical imaging publication-title: Comput Methods Programs Biomed – ident: CR40 – ident: CR104 – ident: CR23 – volume: 5 start-page: 15750 year: 2017 end-page: 15761 ident: CR26 article-title: Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network publication-title: IEEE Access – volume: 55 start-page: 5653 issue: 10 year: 2017 end-page: 5665 ident: CR53 article-title: Integrating multilayer features of convolutional neural networks for remote sensing scene classification publication-title: IEEE Trans Geosci Remote Sens – volume: 158 start-page: 9 year: 2018 end-page: 24 ident: CR51 article-title: Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines publication-title: Knowl-Based Syst – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR27 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – volume: 78 start-page: 12939 issue: 10 year: 2018 end-page: 12960 ident: CR11 article-title: Multi-scale CNN based on region proposals for efficient breast abnormality recognition publication-title: Multimed Tools Appl – volume: 13 start-page: 1187 issue: 8 year: 2018 end-page: 1199 ident: CR56 article-title: Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data publication-title: Int J Comput Assist Radiol Surg – volume: 542 start-page: 115 issue: 7639 year: 2017 end-page: 118 ident: CR28 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – ident: CR31 – volume: 12 start-page: 1179 issue: 8 year: 2018 end-page: 1187 ident: CR17 article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection publication-title: IET Comput Vis – volume: 5 start-page: 1 year: 2018 end-page: 9 ident: CR82 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Scientific Data – volume: 47 start-page: 449 issue: 2 year: 2016 end-page: 460 ident: CR89 article-title: Cross-modal retrieval with CNN visual features: A new baseline publication-title: IEEE Transactions on Cybernetics – ident: CR76 – ident: CR62 – ident: 7988_CR47 doi: 10.1145/3065386 – volume: 77 start-page: 9909 issue: 8 year: 2018 ident: 7988_CR25 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5714-1 – ident: 7988_CR33 doi: 10.1007/978-3-319-10584-0_26 – ident: 7988_CR74 – volume: 138 start-page: 1529 issue: 7 year: 2018 ident: 7988_CR37 publication-title: J Investig Dermatol doi: 10.1016/j.jid.2018.01.028 – volume: 35 start-page: 753 issue: 5 year: 2018 ident: 7988_CR81 publication-title: Vis Comput doi: 10.1007/s00371-018-1499-5 – volume: 13 start-page: 1187 issue: 8 year: 2018 ident: 7988_CR56 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1806-7 – volume: 114 start-page: 54 year: 2018 ident: 7988_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.030 – volume: 87 start-page: 1 issue: 1040 year: 2014 ident: 7988_CR16 publication-title: Br J Radiol doi: 10.1259/bjr.20140016 – volume: 237 start-page: 235 year: 2017 ident: 7988_CR99 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.002 – volume: 76 start-page: 355 issue: 1 year: 2015 ident: 7988_CR87 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-3057-8 – ident: 7988_CR61 doi: 10.1109/pdcat.2017.00028 – volume: 157 start-page: 19 year: 2018 ident: 7988_CR18 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.01.011 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 7988_CR55 publication-title: Sci Rep doi: 10.1038/s41598-018-25005-7 – ident: 7988_CR93 doi: 10.1007/978-3-319-75541-0_16 – volume: 6 start-page: 19959 year: 2018 ident: 7988_CR20 publication-title: IEEE Access doi: 10.1109/access.2018.2815149 – ident: 7988_CR31 doi: 10.1109/ssci.2017.8285382 – ident: 7988_CR44 doi: 10.1145/2647868.2654889 – ident: 7988_CR71 doi: 10.1007/978-3-319-25903-1_60 – volume: 78 start-page: 12939 issue: 10 year: 2018 ident: 7988_CR11 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6267-z – volume: 47 start-page: 449 issue: 2 year: 2016 ident: 7988_CR89 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/tcyb.2016.2519449 – ident: 7988_CR45 – ident: 7988_CR75 doi: 10.1109/icdm.2001.989560 – ident: 7988_CR67 doi: 10.1007/978-3-540-28647-9_142 – volume: 5 start-page: 10979 year: 2017 ident: 7988_CR54 publication-title: IEEE Access doi: 10.1109/access.2017.2713389 – ident: 7988_CR23 doi: 10.1109/cvpr.2017.646 – ident: 7988_CR80 doi: 10.1109/ehb.2017.7995491 – volume: 40 start-page: 86 issue: 8 year: 2014 ident: 7988_CR77 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2014.05.017 – ident: 7988_CR15 doi: 10.1109/cvpr.2016.321 – volume: 41 start-page: 402 issue: 7 year: 2013 ident: 7988_CR49 publication-title: Medicine doi: 10.1016/j.mpmed.2013.04.008 – ident: 7988_CR92 – volume: 16 start-page: 295 issue: 3/4 year: 2018 ident: 7988_CR59 publication-title: Neuroinformatics doi: 10.1007/s12021-018-9370-4 – volume: 187 start-page: 27 year: 2016 ident: 7988_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – ident: 7988_CR10 doi: 10.1007/978-3-319-94211-7_49 – volume: 42 start-page: 1 issue: 11 year: 2018 ident: 7988_CR6 publication-title: J Med Syst doi: 10.1007/s10916-018-1088-1 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 7988_CR7 publication-title: Sci Rep doi: 10.1038/s41598-017-12320-8 – volume: 94 start-page: 1 issue: 49 year: 2015 ident: 7988_CR90 publication-title: Medicine doi: 10.1097/md.0000000000002266 – volume: 161 start-page: 124 year: 2018 ident: 7988_CR65 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.07.041 – volume: 274 start-page: 55 year: 2014 ident: 7988_CR86 publication-title: Inform Sci doi: 10.1016/j.ins.2014.02.145 – volume: 65 start-page: 167 year: 2018 ident: 7988_CR13 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2017.05.002 – ident: 7988_CR68 doi: 10.1109/isbi.2017.7950523 – volume: 78 start-page: 1635 issue: 2 year: 2018 ident: 7988_CR42 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6249-1 – ident: 7988_CR64 – volume: 18 start-page: 1 issue: 2 year: 2018 ident: 7988_CR102 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-018-0631-9 – ident: 7988_CR36 doi: 10.1007/978-3-642-41914-0_18 – ident: 7988_CR95 doi: 10.1109/bibm.2017.8217751 – volume: 318 start-page: 120 year: 2017 ident: 7988_CR85 publication-title: Fuzzy Set Syst doi: 10.1016/j.fss.2016.06.001 – volume: 13 start-page: 1895 issue: 12 year: 2018 ident: 7988_CR14 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1843-2 – ident: 7988_CR69 – ident: 7988_CR70 doi: 10.1109/embc.2016.7591352 – ident: 7988_CR46 – volume: 12 start-page: 2121 year: 2011 ident: 7988_CR27 publication-title: J Mach Learn Res – volume: 210 start-page: 78 year: 2014 ident: 7988_CR12 publication-title: Artif Intell doi: 10.1016/j.artint.2014.02.004 – ident: 7988_CR50 doi: 10.1109/5.726791 – ident: 7988_CR35 – volume: 2018 start-page: 1 issue: 97 year: 2018 ident: 7988_CR1 publication-title: EURASIP Journal on Image and Video Processing doi: 10.1186/s13640-018-0332-4 – volume: 13 start-page: 35 issue: 1 year: 2018 ident: 7988_CR48 publication-title: SIViP doi: 10.1007/s11760-018-1325-6 – volume: 158 start-page: 9 year: 2018 ident: 7988_CR51 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.05.016 – ident: 7988_CR105 – ident: 7988_CR104 doi: 10.1109/cvpr.2015.7298731 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 7988_CR28 publication-title: Nature doi: 10.1038/nature21056 – volume: 12 start-page: 1179 issue: 8 year: 2018 ident: 7988_CR17 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2018.5315 – volume: 7 start-page: 1 issue: 11 year: 2018 ident: 7988_CR88 publication-title: Electronics doi: 10.3390/electronics7110302 – ident: 7988_CR94 doi: 10.1109/icip.2014.7025311 – ident: 7988_CR78 doi: 10.1109/mipr.2018.00032 – volume: 296 start-page: 23 year: 2018 ident: 7988_CR98 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.031 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 7988_CR73 publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2016.2528162 – ident: 7988_CR2 doi: 10.1007/978-3-319-10584-0_22 – ident: 7988_CR72 doi: 10.1109/embc.2015.7318461 – volume: 13 start-page: 1 issue: 3 year: 2018 ident: 7988_CR97 publication-title: PLOS ONE doi: 10.1371/journal.pone.0196621 – volume: 5 start-page: 1 year: 2018 ident: 7988_CR82 publication-title: Scientific Data doi: 10.1038/sdata.2018.161 – ident: 7988_CR9 doi: 10.1109/atsip.2017.8075562 – ident: 7988_CR21 – ident: 7988_CR3 doi: 10.1109/icip.2016.7532519 – ident: 7988_CR41 doi: 10.1109/cvpr.2017.243 – ident: 7988_CR96 – volume: 44 start-page: 5162 issue: 10 year: 2017 ident: 7988_CR5 publication-title: Med Phys doi: 10.1002/mp.12453 – ident: 7988_CR39 doi: 10.1109/cvpr.2016.90 – ident: 7988_CR22 doi: 10.1109/isbi.2018.8363547 – ident: 7988_CR8 doi: 10.1109/cvprw.2015.7301270 – ident: 7988_CR101 doi: 10.1109/bigcomp.2018.00054 – volume: 234 start-page: 11 year: 2017 ident: 7988_CR60 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 55 start-page: 5653 issue: 10 year: 2017 ident: 7988_CR53 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/tgrs.2017.2711275 – volume: 158 start-page: 113 year: 2018 ident: 7988_CR30 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.01.025 – volume: 104 start-page: 111 year: 2019 ident: 7988_CR83 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.11.010 – ident: 7988_CR62 doi: 10.1109/iccv.2015.352 – ident: 7988_CR63 doi: 10.1109/tpami.2018.2865311 – ident: 7988_CR76 doi: 10.1007/978-3-319-67561-9_14 – volume: 22 start-page: 6825 issue: 20 year: 2018 ident: 7988_CR84 publication-title: Soft Comput doi: 10.1007/s00500-018-3421-5 – ident: 7988_CR58 doi: 10.24963/ijcai.2017/318 – volume: 37 start-page: 169 issue: 3 year: 2011 ident: 7988_CR24 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9225-y – volume: 37 start-page: 434 issue: 4 year: 2013 ident: 7988_CR4 publication-title: Cancer Epidemiol doi: 10.1016/j.canep.2013.02.010 – volume: 77 start-page: 17489 issue: 13 year: 2017 ident: 7988_CR29 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5314-5 – volume: 27 start-page: 533 issue: 6 year: 1997 ident: 7988_CR52 publication-title: Comput Biol Med doi: 10.1016/s0010-4825(97)00020-6 – ident: 7988_CR79 doi: 10.1109/iesys.2017.8233570 – ident: 7988_CR91 – ident: 7988_CR40 doi: 10.1109/cvpr.2017.563 – volume: 18 start-page: 1 issue: 2 year: 2018 ident: 7988_CR57 publication-title: Sensors doi: 10.3390/s18020556 – volume: 5 start-page: 15750 year: 2017 ident: 7988_CR26 publication-title: IEEE Access doi: 10.1109/access.2017.2735019 – volume: 77 start-page: 22821 issue: 17 year: 2018 ident: 7988_CR103 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5765-3 – volume: 66 start-page: 1006 issue: 4 year: 2018 ident: 7988_CR100 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2018.2866166 – ident: 7988_CR66 doi: 10.1007/978-3-319-50835-1_11 – ident: 7988_CR19 doi: 10.1007/978-3-319-49409-8_34 – ident: 7988_CR43 doi: 10.1109/ijcnn.2016.7727665 – volume: 35 start-page: 18 year: 2017 ident: 7988_CR38 publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 |
SSID | ssj0016524 |
Score | 2.52984 |
Snippet | Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20483 |
SubjectTerms | Algorithms Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Diagnosis Digital imaging Feature recognition Image analysis Image classification Lesions Medical imaging Multilayers Multimedia Information Systems Object recognition Pattern recognition Performance enhancement Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vejBb3F1lRw8KBpskna3PYnKigiKiIK3kjQJLK5dtevBq7_cSZruqqC3kiY5ZCYzL8nMG4C9LJHMiiSiPGWWxtymVFqr0BhGqVJCqCxyucPXN93Lh_jqMXkMF25VCKtsbKI31HpUuDvyY-5PEu4QdfLySl3VKPe6GkpozMIcmuA0bcHcWf_m9m7yjtBNQlnbNKLoG1lIm6mT55hLTYl8Ek-G-sJ-uqYp3vz1ROo9z8UyLAbISE5rGa_AjClXYakpx0DC7lyFhW_cgmvw2XSgjgRSE13H1A0qso-rf0BqCmfivJgmo5L4yEI6lAjBiTWe7pPYd3eXRso6VJwgviXV06AkQ-PbJ8FH-I2tGo38yGW5fJDBM5qpah0eLvr355c0FFygBe7EMZVMW2ZEIl3aCOI-nhiN4FsIblWsbGIjI6NYZ1b0uDGFjA2PC9GTiMp6hVWZ2IBWOSrNJhBslBK1VHEdx1IJxCGF7QqrFOsqybM2sGat8yKwkbuiGMN8yqPs5JOjfHIvn5y14XAy5qXm4vi3d6cRYR72ZZVPtagNR41Yp7__nm3r_9m2YZ67g7iPDOxAa_z2bnYQrYzVblDJL0aU588 priority: 102 providerName: ProQuest |
Title | Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images |
URI | https://link.springer.com/article/10.1007/s11042-019-07988-1 https://www.proquest.com/docview/2264480274 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BXWDgG1EolQcGEFiK7aRNxha1IBAVQlSCKbITW6ooKSJlYOWXc3aSFhAgMTlyHA8---5dfO8O4DAKJDMi8CgPmaE-NyGVxihUhl6olBAq8ix3-HrQuhj6l_fBfUkKy6to9-pK0mnqOdmNWSqJ50g3EcoXfZ5agL67DeQa8s7s7qAVlKVsQ4-iPWQlVebnOb6aoznG_HYt6qxNfx1WS5hIOoVcN2BBZ5uwVpVgIOWJ3ISVT_kEt-C9GkBt4seUpEUc3SgnR7jix6RI20ys5UrJJCMumpCOJcJuYrRL8UnMq_1_RrIiPJwgpiX54ygjY-36ZwFH-Iy9KSr2iWW2vJHRE6qmfBuG_d7d2QUtiyzQBE_flEqWGqZFIC1VBLEeD3SKgFsIbpSvTGA8LT0_jYxoc60T6WvuJ6ItEYm1E6MisQNL2STTu0CwU0rcmYqnvi-VQOyRmJYwSrGWkjyqA6vWOk7KDOS2EMY4nudOtvKJUT6xk0_M6nAy--a5yL_x5-hGJcK4PIt5zJ0Pat3vOpxWYp2__n22vf8N34dlbp1xFx3YgKXpy6s-QMQyVU1YDPvnTah1-t3uwLbnD1c9bLu9wc1t023fDyFs6PY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceBQQCwXmABIIrMaP7G4OCCFg2dLHqZV6C3ZsSyuWbCFboV75QfxGZpxkF5DorbfIcXLIN5n5bM83A_C0yK2MOs-EGssojIpjYWN05AyzsXNauyJj7fDB4XB6bD6d5Ccb8KvXwnBaZe8Tk6P2i4r3yHdUWknwIurN6TfBXaP4dLVvodGaxV44_0FLtub17nvC95lSkw9H76ai6yogKjK3pbDSRxl0blkbQeRG5cETw9RaRWdczGMWbGZ8EfVIhVBZE5Sp9MgS9RhV0XHxJXL5V4ymSM7K9MnH1anFMO-a6I4zQZFYdiKdVqonWQiTJclQQdYp_w6Ea3b7z4FsinOTW3CjI6j4trWo27AR6i242Td_wM4XbMH1PyoZ3oGf_QTBJSc9-jaDb9bgc8L6BbYFo5FjpsdFjSmPUcwtEX6MIRUXxXjGO3dYt4npSGwamy-zGuchja9SneiaRj2FlAVras5x9pWcYnMXji8FiHuwWS_qcB-QBq2lf8Ipb4x1mlhPFYc6OieHzqpiALL_1mXV1T7nFhzzcl21mfEpCZ8y4VPKAbxcPXPaVv64cPZ2D2HZeYGmXNvsAF71sK5v__9tDy5-2xO4Oj062C_3dw_3HsI1xVsAKSdxGzaX38_CI-JJS_c4GSfC58v-G34D9zkjxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH4hS2L0AIoaFhF70ESjDdN2ZnfnYIwIGxDdECMJt6GdtsmGZRacJYSrf5Z_ne91OrtqIjduk06nh_le3_te-34AvMwzLbzKEi4HwvNU-gHX3htUhsnAGKVMnlDu8NdRb_84_XySnSzBrzYXhsIqW50YFLWdlnRGvi2DJ0FO1LaPYRFHu8MPF5ecOkjRTWvbTqMRkUN3c43uW_3-YBexfiXlcO_7p30eOwzwEkVvxrWwXjiVacqTQKIjM2eRbSolvUmNz3zidJLa3Ku-dK7UqZNpqfoaaUi_9IYKMaH6X-6TV9SB5Z290dG3-R1GL4stdQcJR7ssYspOk7gnKC0mCQlEOcqq-NssLrjuP9ezweoNH8JKpKvsYyNfj2DJVWuw2raCYFEzrMGDP-oaPoaf7QROBSgts00837hmrxH5N6wpH83Iglo2rViIauQTjfSfeRdKjTJ_Red4rGrC1Blya1afjSs2cWF8HviEzzhq0cBMKcPmho3PUUXWT-D4TqB4Cp1qWrl1YDioNe4QI22aaqOQA5W-p7wxome0zLsg2n9dlLESOjXkmBSLGs6ET4H4FAGfQnTh7fybi6YOyK2zN1sIi6gT6mIhwV1418K6eP3_1TZuX-0F3MOdUHw5GB0-g_uSzgNCgOImdGY_rtxzJE0zsxWlk8HpXW-I32e7KVY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+%28CAD%29+system+based+on+multi-layer+feature+fusion+network+for+skin+lesion+recognition+in+dermoscopy+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bakkouri%2C+Ibtissam&rft.au=Afdel%2C+Karim&rft.date=2020-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=29-30&rft.spage=20483&rft.epage=20518&rft_id=info:doi/10.1007%2Fs11042-019-07988-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_07988_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |