Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images

Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 29-30; pp. 20483 - 20518
Main Authors Bakkouri, Ibtissam, Afdel, Karim
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data.
AbstractList Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data.
Author Afdel, Karim
Bakkouri, Ibtissam
Author_xml – sequence: 1
  givenname: Ibtissam
  orcidid: 0000-0003-4827-9007
  surname: Bakkouri
  fullname: Bakkouri, Ibtissam
  email: ibtissam.bakkouri@gmail.com
  organization: LabSIV, Department of Computer Science, Faculty of Science, Ibn Zohr University
– sequence: 2
  givenname: Karim
  surname: Afdel
  fullname: Afdel, Karim
  organization: LabSIV, Department of Computer Science, Faculty of Science, Ibn Zohr University
BookMark eNp9kE1rGzEQhkVIIJ9_ICdBL-lBrb7W2j0GN_0AQy_JWci7IyNnV3I0Woqv_eWV7UKhh5xmmJln3pn3mpzHFIGQe8E_Cc7NZxSCa8m46Bg3XdsycUauRGMUM0aK85qrljPTcHFJrhG3nItFI_UV-b1M024ukJkLAwx0CG4TEwakD8vHLx8p7rHARNcOazNFOs1jCWx0e8jUgytzBupnDLUVofxK-ZX6lCm-hkhHONYz9GkTQznktTpAnhL2abenYXIbwFty4d2IcPc33pCXr0_Py-9s9fPbj-XjivVKdIU5MXgBqnGLdiGV4LKBwchOKenXeu0bz8FxPXReGQnQOw1S98o4qaTp_bpTN-TDae8up7cZsNhtmnOsklbKhdYtl0bXKXma6nNCzODtLtc7894Kbg9e25PXtnptj15bUaH2P6gPxR0-LtmF8X1UnVCsOnED-d9V71B_AKiBl7A
CitedBy_id crossref_primary_10_1007_s11042_023_15360_7
crossref_primary_10_1016_j_eswa_2023_120381
crossref_primary_10_1007_s11042_023_16247_3
crossref_primary_10_1002_ima_22890
crossref_primary_10_1007_s11042_023_15428_4
crossref_primary_10_1007_s11042_023_16472_w
crossref_primary_10_1088_1742_6596_1767_1_012004
crossref_primary_10_1007_s11042_023_15178_3
crossref_primary_10_1111_exsy_13576
crossref_primary_10_3390_diagnostics14040454
crossref_primary_10_1155_2021_1045184
crossref_primary_10_1016_j_engappai_2023_107417
crossref_primary_10_1016_j_eswa_2023_119794
crossref_primary_10_1007_s11042_023_15222_2
crossref_primary_10_1007_s11042_023_15056_y
crossref_primary_10_1007_s00521_024_10500_y
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_1080_0952813X_2023_2165721
crossref_primary_10_1007_s11042_023_16646_6
crossref_primary_10_1016_j_inffus_2023_101853
crossref_primary_10_3390_cancers14235872
crossref_primary_10_1007_s11042_020_09337_z
crossref_primary_10_1007_s11042_023_15305_0
crossref_primary_10_1016_j_eswa_2023_122491
crossref_primary_10_1007_s00500_023_08667_y
crossref_primary_10_1371_journal_pone_0309434
crossref_primary_10_1007_s11042_023_17661_3
crossref_primary_10_1007_s11042_023_17908_z
crossref_primary_10_1007_s11042_023_16756_1
crossref_primary_10_1007_s00500_023_08957_5
crossref_primary_10_1007_s11042_023_15308_x
crossref_primary_10_1007_s11042_023_15620_6
crossref_primary_10_1016_j_compbiomed_2021_104825
crossref_primary_10_1007_s11042_023_14736_z
crossref_primary_10_1016_j_bspc_2023_104779
crossref_primary_10_1007_s11042_022_14098_y
crossref_primary_10_1007_s00500_023_08637_4
crossref_primary_10_1007_s11042_022_14248_2
crossref_primary_10_1007_s11042_023_15049_x
crossref_primary_10_1016_j_imavis_2025_105440
crossref_primary_10_1007_s11042_023_17498_w
crossref_primary_10_1007_s11042_023_16224_w
crossref_primary_10_1007_s00530_023_01066_1
crossref_primary_10_1007_s11042_023_16121_2
crossref_primary_10_1007_s11042_023_16123_0
crossref_primary_10_1007_s11042_023_16417_3
crossref_primary_10_1007_s10586_024_04331_8
crossref_primary_10_1155_2022_1982555
crossref_primary_10_3390_electronics12041060
crossref_primary_10_1007_s11042_023_16126_x
crossref_primary_10_1007_s11042_023_15559_8
crossref_primary_10_1007_s11042_023_16879_5
crossref_primary_10_1007_s12652_023_04659_w
crossref_primary_10_1088_1361_6560_ad2a96
crossref_primary_10_1016_j_eswa_2023_121256
crossref_primary_10_1007_s11042_023_15599_0
crossref_primary_10_1007_s11042_023_16237_5
crossref_primary_10_1007_s11042_023_16672_4
crossref_primary_10_1007_s11042_023_15379_w
crossref_primary_10_1007_s11042_023_14927_8
crossref_primary_10_1007_s11042_023_15728_9
crossref_primary_10_1007_s11760_022_02373_2
crossref_primary_10_1155_2022_2415726
crossref_primary_10_1007_s11042_022_12242_2
crossref_primary_10_1016_j_inffus_2023_03_021
crossref_primary_10_1016_j_eswa_2023_120735
crossref_primary_10_1007_s11042_023_16273_1
crossref_primary_10_1007_s11042_023_17874_6
crossref_primary_10_1016_j_imavis_2025_105503
crossref_primary_10_1109_ACCESS_2020_3047258
crossref_primary_10_1109_ACCESS_2022_3199613
crossref_primary_10_3390_app11073155
crossref_primary_10_1007_s11042_023_17573_2
crossref_primary_10_1007_s00500_023_08002_5
crossref_primary_10_1007_s11042_022_13538_z
crossref_primary_10_3390_s23167134
crossref_primary_10_1016_j_inffus_2023_101949
crossref_primary_10_1007_s11042_022_14014_4
Cites_doi 10.1145/3065386
10.1007/s11042-018-5714-1
10.1007/978-3-319-10584-0_26
10.1016/j.jid.2018.01.028
10.1007/s00371-018-1499-5
10.1007/s11548-018-1806-7
10.1016/j.eswa.2018.07.030
10.1259/bjr.20140016
10.1016/j.neucom.2016.12.002
10.1007/s11042-015-3057-8
10.1109/pdcat.2017.00028
10.1016/j.cmpb.2018.01.011
10.1038/s41598-018-25005-7
10.1007/978-3-319-75541-0_16
10.1109/access.2018.2815149
10.1109/ssci.2017.8285382
10.1145/2647868.2654889
10.1007/978-3-319-25903-1_60
10.1007/s11042-018-6267-z
10.1109/tcyb.2016.2519449
10.1109/icdm.2001.989560
10.1007/978-3-540-28647-9_142
10.1109/access.2017.2713389
10.1109/cvpr.2017.646
10.1109/ehb.2017.7995491
10.1016/j.compeleceng.2014.05.017
10.1109/cvpr.2016.321
10.1016/j.mpmed.2013.04.008
10.1007/s12021-018-9370-4
10.1016/j.neucom.2015.09.116
10.1007/978-3-319-94211-7_49
10.1007/s10916-018-1088-1
10.1038/s41598-017-12320-8
10.1097/md.0000000000002266
10.1016/j.knosys.2018.07.041
10.1016/j.ins.2014.02.145
10.1016/j.compmedimag.2017.05.002
10.1109/isbi.2017.7950523
10.1007/s11042-018-6249-1
10.1186/s12911-018-0631-9
10.1007/978-3-642-41914-0_18
10.1109/bibm.2017.8217751
10.1016/j.fss.2016.06.001
10.1007/s11548-018-1843-2
10.1109/embc.2016.7591352
10.1016/j.artint.2014.02.004
10.1109/5.726791
10.1186/s13640-018-0332-4
10.1007/s11760-018-1325-6
10.1016/j.knosys.2018.05.016
10.1109/cvpr.2015.7298731
10.1038/nature21056
10.1049/iet-cvi.2018.5315
10.3390/electronics7110302
10.1109/icip.2014.7025311
10.1109/mipr.2018.00032
10.1016/j.neucom.2018.03.031
10.1109/tmi.2016.2528162
10.1007/978-3-319-10584-0_22
10.1109/embc.2015.7318461
10.1371/journal.pone.0196621
10.1038/sdata.2018.161
10.1109/atsip.2017.8075562
10.1109/icip.2016.7532519
10.1109/cvpr.2017.243
10.1002/mp.12453
10.1109/cvpr.2016.90
10.1109/isbi.2018.8363547
10.1109/cvprw.2015.7301270
10.1109/bigcomp.2018.00054
10.1016/j.neucom.2016.12.038
10.1109/tgrs.2017.2711275
10.1016/j.cmpb.2018.01.025
10.1016/j.compbiomed.2018.11.010
10.1109/iccv.2015.352
10.1109/tpami.2018.2865311
10.1007/978-3-319-67561-9_14
10.1007/s00500-018-3421-5
10.24963/ijcai.2017/318
10.1007/s10462-011-9225-y
10.1016/j.canep.2013.02.010
10.1007/s11042-017-5314-5
10.1016/s0010-4825(97)00020-6
10.1109/iesys.2017.8233570
10.1109/cvpr.2017.563
10.3390/s18020556
10.1109/access.2017.2735019
10.1007/s11042-018-5765-3
10.1109/tbme.2018.2866166
10.1007/978-3-319-50835-1_11
10.1007/978-3-319-49409-8_34
10.1109/ijcnn.2016.7727665
10.1016/j.media.2016.05.004
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-07988-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 20518
ExternalDocumentID 10_1007_s11042_019_07988_1
GrantInformation_xml – fundername: Moroccan Ministry of National Education, Vocational Training, Higher Education and Scientific Research
  grantid: DS10010
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-a1df1e35a686231025ed729332fb4bf5f0ea04d9f372eeca4e24c37a2327cfb93
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 23:42:18 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Jul 01 02:07:01 EDT 2025
Fri Feb 21 02:37:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29-30
Keywords Multi-class classification
Skin diseases
Multi-layer feature fusion
Dermoscopic pattern recognition
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a1df1e35a686231025ed729332fb4bf5f0ea04d9f372eeca4e24c37a2327cfb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4827-9007
PQID 2264480274
PQPubID 54626
PageCount 36
ParticipantIDs proquest_journals_2264480274
crossref_primary_10_1007_s11042_019_07988_1
crossref_citationtrail_10_1007_s11042_019_07988_1
springer_journals_10_1007_s11042_019_07988_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200800
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 8
  year: 2020
  text: 20200800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Xie, Shin (CR17) 2018; 12
Wan, Yang, Gai, Yang (CR87) 2015; 76
Wan, Li, Yang, Gai, Jin (CR86) 2014; 274
CR39
CR36
CR35
CR33
Huo, Rao, Zhang (CR42) 2018; 78
CR31
Byra, Styczynski, Szmigielski, Kalinowski, Michalowski, Paluszkiewicz, Ziarkiewicz-Wroblewska, Zieniewicz, Sobieraj, Nowicki (CR14) 2018; 13
Yu, Yang, Kim, Jung, Chung, Lee, Oh (CR97) 2018; 13
Anic, Sondak, Messina, Fenske, Zager, Cherpelis, Lee, Fulp, Epling-Burnette, Park, Rollison (CR4) 2013; 37
Baldi, Sadowski (CR12) 2014; 210
Lee, Ng, Gallagher, Coldman, McLean (CR52) 1997; 27
Kuai, Wen, Li (CR48) 2018; 13
Li, Shen (CR57) 2018; 18
CR47
CR46
CR45
CR44
CR43
CR41
Bakkouri, Afdel (CR11) 2018; 78
CR40
Majumder, Hazarika, Gelbukh, Cambria, Poria (CR65) 2018; 161
Tschandl, Sinz, Kittler (CR83) 2019; 104
Du, Gao (CR26) 2017; 5
Banerjee, Crawley, Bhethanabotla, Daldrup-Link, Rubin (CR13) 2018; 65
Duchi, Hazan, Singer (CR27) 2011; 12
Tripathi, Singh, Vishwakarma (CR81) 2018; 35
CR58
Yu, Liu, Pang, Li, Li (CR98) 2018; 296
Chen, Samuelson (CR16) 2014; 87
Chu, Guo, Leng (CR20) 2018; 6
CR50
Chougrad, Zouaki, Alheyane (CR18) 2018; 157
Li, Zurada, Liu, Wu (CR54) 2017; 5
Zhang, Muhammad, Tang (CR103) 2018; 77
Lacy, Alwan (CR49) 2013; 41
Dorj, Lee, Choi, Lee (CR25) 2018; 77
CR69
CR68
CR67
CR66
Guo, Liu, Oerlemans, Lao, Wu, Lew (CR34) 2016; 187
CR64
CR63
Li, Xia, Du, Lin, Samat (CR53) 2017; 55
CR62
CR61
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR28) 2017; 542
Zhang, Wang, Liu, Tao (CR102) 2018; 18
CR79
CR78
Ge, Jiang, Xu, Jiang, Ye (CR29) 2017; 77
CR76
CR75
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR73) 2016; 35
CR74
Antropova, Huynh, Giger (CR5) 2017; 44
Golrizkhatami, Acan (CR32) 2018; 114
CR72
CR71
Lee, Mendes, Spolaôr, Oliva, Sabino Parmezan, Wu, Fonseca-Pinto (CR51) 2018; 158
CR70
Han, Kim, Lim, Park, Park, Chang (CR37) 2018; 138
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR38) 2017; 35
Tang, Mat Isa (CR77) 2014; 40
CR2
CR3
Vu, Ho, Yang, Kim, Song (CR84) 2018; 22
CR8
Yu, Yang, Yao, Sun, Xu (CR99) 2017; 237
CR9
CR80
Li, Weng, Shi, Gu, Mao, Wang, Liu, Zhang (CR55) 2018; 8
Li, Charalampaki, Liu, Yang, Giannarou (CR56) 2018; 13
Abd-Ellah, Awad, Khalaf, Hamed (CR1) 2018; 2018
Liu, Cheng, Wang, Wang (CR59) 2018; 16
Wei, Zhao, Lu, Wei, Liu, Zhu, Yan (CR89) 2016; 47
Tschandl, Rosendahl, Kittler (CR82) 2018; 5
Anwar, Majid, Qayyum, Awais, Alnowami, Khan (CR6) 2018; 42
CR19
CR15
Gibson, Li, Sudre, Fidon, Shakir, Wang, Eaton-Rosen, Gray, Doel, Hu, Whyntie, Nachev, Modat, Barratt, Ourselin, Cardoso, Vercauteren (CR30) 2018; 158
CR10
CR96
CR95
CR94
CR93
CR92
CR91
Wen, Ye, Huang, Li, Yang, Xiao, Xie (CR90) 2015; 94
Yu, Jiang, Zhou, Qin, Ni, Chen, Lei, Wang (CR100) 2018; 66
CR23
CR22
Wang, Hua, Xiao, Li, Hu, Sun (CR88) 2018; 7
CR104
CR21
CR105
Aubreville, Knipfer, Oetter, Jaremenko, Rodner, Denzler, Bohr, Neumann, Stelzle, Maier (CR7) 2017; 7
CR101
Wan, Lai, Yang, Yang, Zhang, Zheng (CR85) 2017; 318
Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR60) 2017; 234
Ding, Zhu, Jia, Su (CR24) 2011; 37
M Abd-Ellah (7988_CR1) 2018; 2018
M Byra (7988_CR14) 2018; 13
J Duchi (7988_CR27) 2011; 12
P Tschandl (7988_CR83) 2019; 104
7988_CR58
S Anwar (7988_CR6) 2018; 42
7988_CR50
J Tang (7988_CR77) 2014; 40
P Tschandl (7988_CR82) 2018; 5
Y Zhang (7988_CR103) 2018; 77
C Yu (7988_CR97) 2018; 13
7988_CR67
7988_CR66
7988_CR2
7988_CR69
7988_CR3
7988_CR68
7988_CR63
7988_CR62
7988_CR64
7988_CR8
7988_CR9
7988_CR61
X Wang (7988_CR88) 2018; 7
W Chen (7988_CR16) 2014; 87
M Havaei (7988_CR38) 2017; 35
F Li (7988_CR54) 2017; 5
7988_CR78
7988_CR79
Y Li (7988_CR57) 2018; 18
7988_CR74
7988_CR76
7988_CR75
7988_CR70
7988_CR72
7988_CR71
C Du (7988_CR26) 2017; 5
J Wen (7988_CR90) 2015; 94
E Gibson (7988_CR30) 2018; 158
X Zhang (7988_CR102) 2018; 18
N Majumder (7988_CR65) 2018; 161
Y Chen (7988_CR17) 2018; 12
7988_CR80
Z Yu (7988_CR100) 2018; 66
A Esteva (7988_CR28) 2017; 542
W Yu (7988_CR99) 2017; 237
S Ding (7988_CR24) 2011; 37
7988_CR19
7988_CR15
Y Ge (7988_CR29) 2017; 77
7988_CR101
7988_CR96
7988_CR95
7988_CR10
7988_CR92
K Lacy (7988_CR49) 2013; 41
7988_CR91
7988_CR94
7988_CR93
7988_CR104
E Li (7988_CR53) 2017; 55
7988_CR105
M Wan (7988_CR85) 2017; 318
U Dorj (7988_CR25) 2018; 77
H Lee (7988_CR51) 2018; 158
I Bakkouri (7988_CR11) 2018; 78
Y Kuai (7988_CR48) 2018; 13
7988_CR23
7988_CR22
7988_CR21
N Antropova (7988_CR5) 2017; 44
T Vu (7988_CR84) 2018; 22
M Wan (7988_CR86) 2014; 274
P Baldi (7988_CR12) 2014; 210
M Aubreville (7988_CR7) 2017; 7
Y Guo (7988_CR34) 2016; 187
Y Wei (7988_CR89) 2016; 47
7988_CR39
W Liu (7988_CR60) 2017; 234
S Han (7988_CR37) 2018; 138
7988_CR33
7988_CR36
7988_CR35
7988_CR31
L Huo (7988_CR42) 2018; 78
H Li (7988_CR55) 2018; 8
H Shin (7988_CR73) 2016; 35
G Tripathi (7988_CR81) 2018; 35
T Lee (7988_CR52) 1997; 27
M Liu (7988_CR59) 2018; 16
Z Golrizkhatami (7988_CR32) 2018; 114
M Wan (7988_CR87) 2015; 76
I Banerjee (7988_CR13) 2018; 65
J Chu (7988_CR20) 2018; 6
7988_CR45
D Yu (7988_CR98) 2018; 296
7988_CR44
7988_CR47
G Anic (7988_CR4) 2013; 37
H Chougrad (7988_CR18) 2018; 157
7988_CR46
7988_CR41
7988_CR40
7988_CR43
Y Li (7988_CR56) 2018; 13
References_xml – ident: CR45
– ident: CR22
– volume: 37
  start-page: 169
  issue: 3
  year: 2011
  end-page: 180
  ident: CR24
  article-title: A survey on feature extraction for pattern recognition
  publication-title: Artif Intell Rev
– ident: CR68
– ident: CR74
– volume: 65
  start-page: 167
  year: 2018
  end-page: 175
  ident: CR13
  article-title: Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma
  publication-title: Comput Med Imaging Graph
– ident: CR39
– volume: 161
  start-page: 124
  year: 2018
  end-page: 133
  ident: CR65
  article-title: Multimodal sentiment analysis using hierarchical fusion with context modeling
  publication-title: Knowl-Based Syst
– ident: CR80
– ident: CR8
– volume: 16
  start-page: 295
  issue: 3/4
  year: 2018
  end-page: 308
  ident: CR59
  article-title: Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
– ident: CR101
– ident: CR71
– ident: CR19
– ident: CR92
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 10
  ident: CR7
  article-title: Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning
  publication-title: Sci Rep
– volume: 78
  start-page: 1635
  issue: 2
  year: 2018
  end-page: 1648
  ident: CR42
  article-title: Fused feature encoding in convolutional neural network
  publication-title: Multimed Tools Appl
– ident: CR36
– volume: 7
  start-page: 1
  issue: 11
  year: 2018
  end-page: 28
  ident: CR88
  article-title: Multi-object detection in traffic scenes based on improved SSD
  publication-title: Electronics
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  end-page: 13
  ident: CR6
  article-title: Medical image analysis using convolutional neural networks: A review
  publication-title: J Med Syst
– volume: 13
  start-page: 1895
  issue: 12
  year: 2018
  end-page: 1903
  ident: CR14
  article-title: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images
  publication-title: Int J Comput Assist Radiol Surg
– volume: 76
  start-page: 355
  issue: 1
  year: 2015
  end-page: 371
  ident: CR87
  article-title: Two-dimensional discriminant locality preserving projections (2DDLPP) and its application to feature extraction via fuzzy set
  publication-title: Multimed Tools Appl
– ident: CR66
– ident: CR91
– volume: 77
  start-page: 22821
  issue: 17
  year: 2018
  end-page: 22839
  ident: CR103
  article-title: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform
  publication-title: Multimed Tools Appl
– ident: CR47
– ident: CR72
– volume: 37
  start-page: 434
  issue: 4
  year: 2013
  end-page: 439
  ident: CR4
  article-title: Telomere length and risk of melanoma, squamous cell carcinoma, and basal cell carcinoma
  publication-title: Cancer Epidemiol
– ident: CR10
– volume: 41
  start-page: 402
  issue: 7
  year: 2013
  end-page: 405
  ident: CR49
  article-title: Skin cancer
  publication-title: Medicine
– ident: CR33
– volume: 157
  start-page: 19
  year: 2018
  end-page: 30
  ident: CR18
  article-title: Deep convolutional neural networks for breast cancer screening
  publication-title: Comput Methods Programs Biomed
– ident: CR63
– ident: CR69
– ident: CR94
– volume: 5
  start-page: 10979
  year: 2017
  end-page: 10985
  ident: CR54
  article-title: Input layer regularization of multilayer feedforward neural networks
  publication-title: IEEE Access
– ident: CR44
– ident: CR3
– volume: 77
  start-page: 9909
  issue: 8
  year: 2018
  end-page: 9924
  ident: CR25
  article-title: The skin cancer classification using deep convolutional neural network
  publication-title: Multimed Tools Appl
– volume: 35
  start-page: 753
  issue: 5
  year: 2018
  end-page: 776
  ident: CR81
  article-title: Convolutional neural networks for crowd behaviour analysis: a survey
  publication-title: Vis Comput
– volume: 237
  start-page: 235
  year: 2017
  end-page: 241
  ident: CR99
  article-title: Exploiting the complementary strengths of multi-layer CNN features for image retrieval
  publication-title: Neurocomputing
– volume: 44
  start-page: 5162
  issue: 10
  year: 2017
  end-page: 5171
  ident: CR5
  article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets
  publication-title: Med Phys
– ident: CR41
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  end-page: 8
  ident: CR102
  article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge
  publication-title: BMC Med Inform Decis Mak
– volume: 2018
  start-page: 1
  issue: 97
  year: 2018
  end-page: 10
  ident: CR1
  article-title: Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 114
  start-page: 54
  year: 2018
  end-page: 64
  ident: CR32
  article-title: ECG classification using three-level fusion of different feature descriptors
  publication-title: Expert Syst Appl
– ident: CR70
– volume: 22
  start-page: 6825
  issue: 20
  year: 2018
  end-page: 6833
  ident: CR84
  article-title: Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection
  publication-title: Soft Comput
– volume: 318
  start-page: 120
  year: 2017
  end-page: 131
  ident: CR85
  article-title: Local graph embedding based on maximum margin criterion via fuzzy set
  publication-title: Fuzzy Set Syst
– volume: 296
  start-page: 23
  year: 2018
  end-page: 32
  ident: CR98
  article-title: A multi-layer deep fusion convolutional neural network for sketch based image retrieval
  publication-title: Neurocomputing
– ident: CR93
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  ident: CR55
  article-title: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images
  publication-title: Sci Rep
– volume: 210
  start-page: 78
  year: 2014
  end-page: 122
  ident: CR12
  article-title: The dropout learning algorithm
  publication-title: Artif Intell
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR73
  article-title: Deep convolutional neural networks for computer-aided detection: CNN Architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 87
  start-page: 1
  issue: 1040
  year: 2014
  end-page: 8
  ident: CR16
  article-title: The average receiver operating characteristic curve in multireader multicase imaging studies
  publication-title: Br J Radiol
– ident: CR35
– ident: CR61
– ident: CR58
– volume: 77
  start-page: 17489
  issue: 13
  year: 2017
  end-page: 17515
  ident: CR29
  article-title: Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval
  publication-title: Multimed Tools Appl
– ident: CR21
– volume: 13
  start-page: 1
  issue: 3
  year: 2018
  end-page: 14
  ident: CR97
  article-title: Acral melanoma detection using a convolutional neural network for dermoscopy images
  publication-title: PLOS ONE
– ident: CR46
– volume: 94
  start-page: 1
  issue: 49
  year: 2015
  end-page: 7
  ident: CR90
  article-title: Prognostic significance of preoperative circulating monocyte count in patients with breast cancer
  publication-title: Medicine
– volume: 66
  start-page: 1006
  issue: 4
  year: 2018
  end-page: 1016
  ident: CR100
  article-title: Melanoma recognition in dermoscopy images via aggregated deep convolutional features
  publication-title: IEEE Trans Biomed Eng
– ident: CR96
– ident: CR67
– ident: CR75
– volume: 40
  start-page: 86
  issue: 8
  year: 2014
  end-page: 103
  ident: CR77
  article-title: Adaptive image enhancement based on bi-histogram equalization with a clipping limit
  publication-title: Comput Electr Eng
– volume: 27
  start-page: 533
  issue: 6
  year: 1997
  end-page: 543
  ident: CR52
  article-title: Dullrazor: A software approach to hair removal from images
  publication-title: Comput Biol Med
– ident: CR15
– ident: CR50
– ident: CR9
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR38
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– ident: CR78
– volume: 13
  start-page: 35
  issue: 1
  year: 2018
  end-page: 42
  ident: CR48
  article-title: Hyper-Siamese network for robust visual tracking
  publication-title: SIViP
– volume: 274
  start-page: 55
  year: 2014
  end-page: 69
  ident: CR86
  article-title: Feature extraction using two-dimensional maximum embedding difference
  publication-title: Inform Sci
– volume: 6
  start-page: 19959
  year: 2018
  end-page: 19967
  ident: CR20
  article-title: Object detection based on multi-layer convolution feature fusion and online hard example mining
  publication-title: IEEE Access
– ident: CR64
– ident: CR105
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: CR60
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– ident: CR95
– ident: CR43
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: CR34
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– ident: CR2
– volume: 138
  start-page: 1529
  issue: 7
  year: 2018
  end-page: 1538
  ident: CR37
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J Investig Dermatol
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  end-page: 16
  ident: CR57
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
– ident: CR79
– volume: 104
  start-page: 111
  year: 2019
  end-page: 116
  ident: CR83
  article-title: Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation
  publication-title: Comput Biol Med
– volume: 158
  start-page: 113
  year: 2018
  end-page: 122
  ident: CR30
  article-title: NiftyNet: a deep-learning platform for medical imaging
  publication-title: Comput Methods Programs Biomed
– ident: CR40
– ident: CR104
– ident: CR23
– volume: 5
  start-page: 15750
  year: 2017
  end-page: 15761
  ident: CR26
  article-title: Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network
  publication-title: IEEE Access
– volume: 55
  start-page: 5653
  issue: 10
  year: 2017
  end-page: 5665
  ident: CR53
  article-title: Integrating multilayer features of convolutional neural networks for remote sensing scene classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 158
  start-page: 9
  year: 2018
  end-page: 24
  ident: CR51
  article-title: Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines
  publication-title: Knowl-Based Syst
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR27
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– volume: 78
  start-page: 12939
  issue: 10
  year: 2018
  end-page: 12960
  ident: CR11
  article-title: Multi-scale CNN based on region proposals for efficient breast abnormality recognition
  publication-title: Multimed Tools Appl
– volume: 13
  start-page: 1187
  issue: 8
  year: 2018
  end-page: 1199
  ident: CR56
  article-title: Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data
  publication-title: Int J Comput Assist Radiol Surg
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  end-page: 118
  ident: CR28
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– ident: CR31
– volume: 12
  start-page: 1179
  issue: 8
  year: 2018
  end-page: 1187
  ident: CR17
  article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection
  publication-title: IET Comput Vis
– volume: 5
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR82
  article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Scientific Data
– volume: 47
  start-page: 449
  issue: 2
  year: 2016
  end-page: 460
  ident: CR89
  article-title: Cross-modal retrieval with CNN visual features: A new baseline
  publication-title: IEEE Transactions on Cybernetics
– ident: CR76
– ident: CR62
– ident: 7988_CR47
  doi: 10.1145/3065386
– volume: 77
  start-page: 9909
  issue: 8
  year: 2018
  ident: 7988_CR25
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5714-1
– ident: 7988_CR33
  doi: 10.1007/978-3-319-10584-0_26
– ident: 7988_CR74
– volume: 138
  start-page: 1529
  issue: 7
  year: 2018
  ident: 7988_CR37
  publication-title: J Investig Dermatol
  doi: 10.1016/j.jid.2018.01.028
– volume: 35
  start-page: 753
  issue: 5
  year: 2018
  ident: 7988_CR81
  publication-title: Vis Comput
  doi: 10.1007/s00371-018-1499-5
– volume: 13
  start-page: 1187
  issue: 8
  year: 2018
  ident: 7988_CR56
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1806-7
– volume: 114
  start-page: 54
  year: 2018
  ident: 7988_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.030
– volume: 87
  start-page: 1
  issue: 1040
  year: 2014
  ident: 7988_CR16
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20140016
– volume: 237
  start-page: 235
  year: 2017
  ident: 7988_CR99
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.002
– volume: 76
  start-page: 355
  issue: 1
  year: 2015
  ident: 7988_CR87
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-3057-8
– ident: 7988_CR61
  doi: 10.1109/pdcat.2017.00028
– volume: 157
  start-page: 19
  year: 2018
  ident: 7988_CR18
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.01.011
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 7988_CR55
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25005-7
– ident: 7988_CR93
  doi: 10.1007/978-3-319-75541-0_16
– volume: 6
  start-page: 19959
  year: 2018
  ident: 7988_CR20
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2815149
– ident: 7988_CR31
  doi: 10.1109/ssci.2017.8285382
– ident: 7988_CR44
  doi: 10.1145/2647868.2654889
– ident: 7988_CR71
  doi: 10.1007/978-3-319-25903-1_60
– volume: 78
  start-page: 12939
  issue: 10
  year: 2018
  ident: 7988_CR11
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6267-z
– volume: 47
  start-page: 449
  issue: 2
  year: 2016
  ident: 7988_CR89
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/tcyb.2016.2519449
– ident: 7988_CR45
– ident: 7988_CR75
  doi: 10.1109/icdm.2001.989560
– ident: 7988_CR67
  doi: 10.1007/978-3-540-28647-9_142
– volume: 5
  start-page: 10979
  year: 2017
  ident: 7988_CR54
  publication-title: IEEE Access
  doi: 10.1109/access.2017.2713389
– ident: 7988_CR23
  doi: 10.1109/cvpr.2017.646
– ident: 7988_CR80
  doi: 10.1109/ehb.2017.7995491
– volume: 40
  start-page: 86
  issue: 8
  year: 2014
  ident: 7988_CR77
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2014.05.017
– ident: 7988_CR15
  doi: 10.1109/cvpr.2016.321
– volume: 41
  start-page: 402
  issue: 7
  year: 2013
  ident: 7988_CR49
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2013.04.008
– ident: 7988_CR92
– volume: 16
  start-page: 295
  issue: 3/4
  year: 2018
  ident: 7988_CR59
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9370-4
– volume: 187
  start-page: 27
  year: 2016
  ident: 7988_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– ident: 7988_CR10
  doi: 10.1007/978-3-319-94211-7_49
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  ident: 7988_CR6
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1088-1
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 7988_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12320-8
– volume: 94
  start-page: 1
  issue: 49
  year: 2015
  ident: 7988_CR90
  publication-title: Medicine
  doi: 10.1097/md.0000000000002266
– volume: 161
  start-page: 124
  year: 2018
  ident: 7988_CR65
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.07.041
– volume: 274
  start-page: 55
  year: 2014
  ident: 7988_CR86
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.02.145
– volume: 65
  start-page: 167
  year: 2018
  ident: 7988_CR13
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2017.05.002
– ident: 7988_CR68
  doi: 10.1109/isbi.2017.7950523
– volume: 78
  start-page: 1635
  issue: 2
  year: 2018
  ident: 7988_CR42
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6249-1
– ident: 7988_CR64
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  ident: 7988_CR102
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-018-0631-9
– ident: 7988_CR36
  doi: 10.1007/978-3-642-41914-0_18
– ident: 7988_CR95
  doi: 10.1109/bibm.2017.8217751
– volume: 318
  start-page: 120
  year: 2017
  ident: 7988_CR85
  publication-title: Fuzzy Set Syst
  doi: 10.1016/j.fss.2016.06.001
– volume: 13
  start-page: 1895
  issue: 12
  year: 2018
  ident: 7988_CR14
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1843-2
– ident: 7988_CR69
– ident: 7988_CR70
  doi: 10.1109/embc.2016.7591352
– ident: 7988_CR46
– volume: 12
  start-page: 2121
  year: 2011
  ident: 7988_CR27
  publication-title: J Mach Learn Res
– volume: 210
  start-page: 78
  year: 2014
  ident: 7988_CR12
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2014.02.004
– ident: 7988_CR50
  doi: 10.1109/5.726791
– ident: 7988_CR35
– volume: 2018
  start-page: 1
  issue: 97
  year: 2018
  ident: 7988_CR1
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/s13640-018-0332-4
– volume: 13
  start-page: 35
  issue: 1
  year: 2018
  ident: 7988_CR48
  publication-title: SIViP
  doi: 10.1007/s11760-018-1325-6
– volume: 158
  start-page: 9
  year: 2018
  ident: 7988_CR51
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.016
– ident: 7988_CR105
– ident: 7988_CR104
  doi: 10.1109/cvpr.2015.7298731
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 7988_CR28
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 12
  start-page: 1179
  issue: 8
  year: 2018
  ident: 7988_CR17
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2018.5315
– volume: 7
  start-page: 1
  issue: 11
  year: 2018
  ident: 7988_CR88
  publication-title: Electronics
  doi: 10.3390/electronics7110302
– ident: 7988_CR94
  doi: 10.1109/icip.2014.7025311
– ident: 7988_CR78
  doi: 10.1109/mipr.2018.00032
– volume: 296
  start-page: 23
  year: 2018
  ident: 7988_CR98
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.031
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 7988_CR73
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/tmi.2016.2528162
– ident: 7988_CR2
  doi: 10.1007/978-3-319-10584-0_22
– ident: 7988_CR72
  doi: 10.1109/embc.2015.7318461
– volume: 13
  start-page: 1
  issue: 3
  year: 2018
  ident: 7988_CR97
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0196621
– volume: 5
  start-page: 1
  year: 2018
  ident: 7988_CR82
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.161
– ident: 7988_CR9
  doi: 10.1109/atsip.2017.8075562
– ident: 7988_CR21
– ident: 7988_CR3
  doi: 10.1109/icip.2016.7532519
– ident: 7988_CR41
  doi: 10.1109/cvpr.2017.243
– ident: 7988_CR96
– volume: 44
  start-page: 5162
  issue: 10
  year: 2017
  ident: 7988_CR5
  publication-title: Med Phys
  doi: 10.1002/mp.12453
– ident: 7988_CR39
  doi: 10.1109/cvpr.2016.90
– ident: 7988_CR22
  doi: 10.1109/isbi.2018.8363547
– ident: 7988_CR8
  doi: 10.1109/cvprw.2015.7301270
– ident: 7988_CR101
  doi: 10.1109/bigcomp.2018.00054
– volume: 234
  start-page: 11
  year: 2017
  ident: 7988_CR60
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 55
  start-page: 5653
  issue: 10
  year: 2017
  ident: 7988_CR53
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/tgrs.2017.2711275
– volume: 158
  start-page: 113
  year: 2018
  ident: 7988_CR30
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.01.025
– volume: 104
  start-page: 111
  year: 2019
  ident: 7988_CR83
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.11.010
– ident: 7988_CR62
  doi: 10.1109/iccv.2015.352
– ident: 7988_CR63
  doi: 10.1109/tpami.2018.2865311
– ident: 7988_CR76
  doi: 10.1007/978-3-319-67561-9_14
– volume: 22
  start-page: 6825
  issue: 20
  year: 2018
  ident: 7988_CR84
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3421-5
– ident: 7988_CR58
  doi: 10.24963/ijcai.2017/318
– volume: 37
  start-page: 169
  issue: 3
  year: 2011
  ident: 7988_CR24
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9225-y
– volume: 37
  start-page: 434
  issue: 4
  year: 2013
  ident: 7988_CR4
  publication-title: Cancer Epidemiol
  doi: 10.1016/j.canep.2013.02.010
– volume: 77
  start-page: 17489
  issue: 13
  year: 2017
  ident: 7988_CR29
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5314-5
– volume: 27
  start-page: 533
  issue: 6
  year: 1997
  ident: 7988_CR52
  publication-title: Comput Biol Med
  doi: 10.1016/s0010-4825(97)00020-6
– ident: 7988_CR79
  doi: 10.1109/iesys.2017.8233570
– ident: 7988_CR91
– ident: 7988_CR40
  doi: 10.1109/cvpr.2017.563
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  ident: 7988_CR57
  publication-title: Sensors
  doi: 10.3390/s18020556
– volume: 5
  start-page: 15750
  year: 2017
  ident: 7988_CR26
  publication-title: IEEE Access
  doi: 10.1109/access.2017.2735019
– volume: 77
  start-page: 22821
  issue: 17
  year: 2018
  ident: 7988_CR103
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5765-3
– volume: 66
  start-page: 1006
  issue: 4
  year: 2018
  ident: 7988_CR100
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2018.2866166
– ident: 7988_CR66
  doi: 10.1007/978-3-319-50835-1_11
– ident: 7988_CR19
  doi: 10.1007/978-3-319-49409-8_34
– ident: 7988_CR43
  doi: 10.1109/ijcnn.2016.7727665
– volume: 35
  start-page: 18
  year: 2017
  ident: 7988_CR38
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
SSID ssj0016524
Score 2.52984
Snippet Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20483
SubjectTerms Algorithms
Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Diagnosis
Digital imaging
Feature recognition
Image analysis
Image classification
Lesions
Medical imaging
Multilayers
Multimedia Information Systems
Object recognition
Pattern recognition
Performance enhancement
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vejBb3F1lRw8KBpskna3PYnKigiKiIK3kjQJLK5dtevBq7_cSZruqqC3kiY5ZCYzL8nMG4C9LJHMiiSiPGWWxtymVFqr0BhGqVJCqCxyucPXN93Lh_jqMXkMF25VCKtsbKI31HpUuDvyY-5PEu4QdfLySl3VKPe6GkpozMIcmuA0bcHcWf_m9m7yjtBNQlnbNKLoG1lIm6mT55hLTYl8Ek-G-sJ-uqYp3vz1ROo9z8UyLAbISE5rGa_AjClXYakpx0DC7lyFhW_cgmvw2XSgjgRSE13H1A0qso-rf0BqCmfivJgmo5L4yEI6lAjBiTWe7pPYd3eXRso6VJwgviXV06AkQ-PbJ8FH-I2tGo38yGW5fJDBM5qpah0eLvr355c0FFygBe7EMZVMW2ZEIl3aCOI-nhiN4FsIblWsbGIjI6NYZ1b0uDGFjA2PC9GTiMp6hVWZ2IBWOSrNJhBslBK1VHEdx1IJxCGF7QqrFOsqybM2sGat8yKwkbuiGMN8yqPs5JOjfHIvn5y14XAy5qXm4vi3d6cRYR72ZZVPtagNR41Yp7__nm3r_9m2YZ67g7iPDOxAa_z2bnYQrYzVblDJL0aU588
  priority: 102
  providerName: ProQuest
Title Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images
URI https://link.springer.com/article/10.1007/s11042-019-07988-1
https://www.proquest.com/docview/2264480274
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BXWDgG1EolQcGEFiK7aRNxha1IBAVQlSCKbITW6ooKSJlYOWXc3aSFhAgMTlyHA8---5dfO8O4DAKJDMi8CgPmaE-NyGVxihUhl6olBAq8ix3-HrQuhj6l_fBfUkKy6to9-pK0mnqOdmNWSqJ50g3EcoXfZ5agL67DeQa8s7s7qAVlKVsQ4-iPWQlVebnOb6aoznG_HYt6qxNfx1WS5hIOoVcN2BBZ5uwVpVgIOWJ3ISVT_kEt-C9GkBt4seUpEUc3SgnR7jix6RI20ys5UrJJCMumpCOJcJuYrRL8UnMq_1_RrIiPJwgpiX54ygjY-36ZwFH-Iy9KSr2iWW2vJHRE6qmfBuG_d7d2QUtiyzQBE_flEqWGqZFIC1VBLEeD3SKgFsIbpSvTGA8LT0_jYxoc60T6WvuJ6ItEYm1E6MisQNL2STTu0CwU0rcmYqnvi-VQOyRmJYwSrGWkjyqA6vWOk7KDOS2EMY4nudOtvKJUT6xk0_M6nAy--a5yL_x5-hGJcK4PIt5zJ0Pat3vOpxWYp2__n22vf8N34dlbp1xFx3YgKXpy6s-QMQyVU1YDPvnTah1-t3uwLbnD1c9bLu9wc1t023fDyFs6PY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceBQQCwXmABIIrMaP7G4OCCFg2dLHqZV6C3ZsSyuWbCFboV75QfxGZpxkF5DorbfIcXLIN5n5bM83A_C0yK2MOs-EGssojIpjYWN05AyzsXNauyJj7fDB4XB6bD6d5Ccb8KvXwnBaZe8Tk6P2i4r3yHdUWknwIurN6TfBXaP4dLVvodGaxV44_0FLtub17nvC95lSkw9H76ai6yogKjK3pbDSRxl0blkbQeRG5cETw9RaRWdczGMWbGZ8EfVIhVBZE5Sp9MgS9RhV0XHxJXL5V4ymSM7K9MnH1anFMO-a6I4zQZFYdiKdVqonWQiTJclQQdYp_w6Ea3b7z4FsinOTW3CjI6j4trWo27AR6i242Td_wM4XbMH1PyoZ3oGf_QTBJSc9-jaDb9bgc8L6BbYFo5FjpsdFjSmPUcwtEX6MIRUXxXjGO3dYt4npSGwamy-zGuchja9SneiaRj2FlAVras5x9pWcYnMXji8FiHuwWS_qcB-QBq2lf8Ipb4x1mlhPFYc6OieHzqpiALL_1mXV1T7nFhzzcl21mfEpCZ8y4VPKAbxcPXPaVv64cPZ2D2HZeYGmXNvsAF71sK5v__9tDy5-2xO4Oj062C_3dw_3HsI1xVsAKSdxGzaX38_CI-JJS_c4GSfC58v-G34D9zkjxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH4hS2L0AIoaFhF70ESjDdN2ZnfnYIwIGxDdECMJt6GdtsmGZRacJYSrf5Z_ne91OrtqIjduk06nh_le3_te-34AvMwzLbzKEi4HwvNU-gHX3htUhsnAGKVMnlDu8NdRb_84_XySnSzBrzYXhsIqW50YFLWdlnRGvi2DJ0FO1LaPYRFHu8MPF5ecOkjRTWvbTqMRkUN3c43uW_3-YBexfiXlcO_7p30eOwzwEkVvxrWwXjiVacqTQKIjM2eRbSolvUmNz3zidJLa3Ku-dK7UqZNpqfoaaUi_9IYKMaH6X-6TV9SB5Z290dG3-R1GL4stdQcJR7ssYspOk7gnKC0mCQlEOcqq-NssLrjuP9ezweoNH8JKpKvsYyNfj2DJVWuw2raCYFEzrMGDP-oaPoaf7QROBSgts00837hmrxH5N6wpH83Iglo2rViIauQTjfSfeRdKjTJ_Red4rGrC1Blya1afjSs2cWF8HviEzzhq0cBMKcPmho3PUUXWT-D4TqB4Cp1qWrl1YDioNe4QI22aaqOQA5W-p7wxome0zLsg2n9dlLESOjXkmBSLGs6ET4H4FAGfQnTh7fybi6YOyK2zN1sIi6gT6mIhwV1418K6eP3_1TZuX-0F3MOdUHw5GB0-g_uSzgNCgOImdGY_rtxzJE0zsxWlk8HpXW-I32e7KVY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+%28CAD%29+system+based+on+multi-layer+feature+fusion+network+for+skin+lesion+recognition+in+dermoscopy+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bakkouri%2C+Ibtissam&rft.au=Afdel%2C+Karim&rft.date=2020-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=29-30&rft.spage=20483&rft.epage=20518&rft_id=info:doi/10.1007%2Fs11042-019-07988-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_07988_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon