Non-blind and Blind Deconvolution Under Poisson Noise Using Fractional-Order Total Variation

In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts. Poisson noise often occurs when photon counting is involved in such imaging modalities as X-ray, positron emission tomography, and fluorescenc...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 62; no. 9; pp. 1238 - 1255
Main Authors Chowdhury, Mujibur Rahman, Qin, Jing, Lou, Yifei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts. Poisson noise often occurs when photon counting is involved in such imaging modalities as X-ray, positron emission tomography, and fluorescence microscopy. Meanwhile, blurring is also inevitable due to the physical mechanism of an imaging system, which can be modeled as a convolution of the image with a point spread function. In this paper, we consider both non-blind and blind image deblurring models that deal with Poisson noise. In the pursuit of high-order smoothness of a restored image, we propose a fractional-order total variation regularization to remove the blur and Poisson noise simultaneously. We develop two efficient algorithms based on the alternating direction method of multipliers, while an expectation-maximization algorithm is adopted only in the blind case. A variety of numerical experiments have demonstrated that the proposed algorithms can efficiently reconstruct piecewise smooth images degraded by Poisson noise and various types of blurring, including Gaussian and motion blurs. Specifically for blind image deblurring, we obtain significant improvements over the state of the art.
AbstractList In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts. Poisson noise often occurs when photon counting is involved in such imaging modalities as X-ray, positron emission tomography, and fluorescence microscopy. Meanwhile, blurring is also inevitable due to the physical mechanism of an imaging system, which can be modeled as a convolution of the image with a point spread function. In this paper, we consider both non-blind and blind image deblurring models that deal with Poisson noise. In the pursuit of high-order smoothness of a restored image, we propose a fractional-order total variation regularization to remove the blur and Poisson noise simultaneously. We develop two efficient algorithms based on the alternating direction method of multipliers, while an expectation-maximization algorithm is adopted only in the blind case. A variety of numerical experiments have demonstrated that the proposed algorithms can efficiently reconstruct piecewise smooth images degraded by Poisson noise and various types of blurring, including Gaussian and motion blurs. Specifically for blind image deblurring, we obtain significant improvements over the state of the art.
Author Chowdhury, Mujibur Rahman
Qin, Jing
Lou, Yifei
Author_xml – sequence: 1
  givenname: Mujibur Rahman
  surname: Chowdhury
  fullname: Chowdhury, Mujibur Rahman
  organization: Department of Mathematical Sciences, The University of Texas at Dallas
– sequence: 2
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
  organization: Department of Mathematics, University of Kentucky
– sequence: 3
  givenname: Yifei
  orcidid: 0000-0003-1973-5704
  surname: Lou
  fullname: Lou, Yifei
  email: Yifei.Lou@utdallas.edu
  organization: Department of Mathematical Sciences, The University of Texas at Dallas
BookMark eNp9kMFLwzAUxoNMcJv-A54KnqMvTdukR51OBdk8bJ6EkKbJ6KjJTDrB_950FQQPO4SXPL7fy_e-CRpZZzVClwSuCQC7CQR4TjCkgAFKzjCcoDHJGcWs4HSExlCmGS5LYGdoEsIWAHhK2Bi9L5zFVdvYOpHx3B1u91o5--Xafdc4m6xtrX3y6poQ4msRq07WobGbZO6l6iWyxUvfi1auk23yJn0j-_45OjWyDfrit07Rev6wmj3hl-Xj8-z2BStKyg5LUIqbiiieGslIER0XmZKGK01yVaW0IobVRLG6TAtZUMgrWgNoZYqaa2boFF0Nc3fefe516MTW7X20FUSa5ZABg4xEVTqolHcheG3Ezjcf0n8LAqJPUQwpipiiOKQoIEL8H6Sa7rBc52XTHkfpgIb4j91o_-fqCPUDRFKJbw
CitedBy_id crossref_primary_10_1007_s43069_025_00438_9
crossref_primary_10_15388_24_INFOR573
crossref_primary_10_1016_j_sigpro_2021_108407
crossref_primary_10_3934_ipi_2022007
crossref_primary_10_1007_s11042_023_17733_4
crossref_primary_10_1007_s11042_023_14359_4
crossref_primary_10_1007_s44007_023_00077_8
crossref_primary_10_1016_j_cam_2024_116289
crossref_primary_10_3389_fcomp_2023_1131317
crossref_primary_10_1016_j_pacs_2021_100314
crossref_primary_10_12677_aam_2024_137294
crossref_primary_10_3390_axioms11030101
crossref_primary_10_15388_22_INFOR480
crossref_primary_10_1109_TCSVT_2024_3385468
crossref_primary_10_1088_1361_6560_acaeef
crossref_primary_10_4103_jmp_jmp_127_23
crossref_primary_10_1016_j_apm_2024_04_040
crossref_primary_10_3934_ipi_2024039
crossref_primary_10_1007_s10915_024_02657_4
crossref_primary_10_3390_atmos13111842
crossref_primary_10_1016_j_cam_2022_114615
crossref_primary_10_1137_22M1489228
crossref_primary_10_1016_j_sigpro_2023_109226
crossref_primary_10_3390_mca28050097
crossref_primary_10_1016_j_jvcir_2024_104248
crossref_primary_10_1038_s41598_023_44511_x
crossref_primary_10_1016_j_anucene_2024_110706
crossref_primary_10_1016_j_acha_2024_101746
crossref_primary_10_1109_TCI_2024_3369414
crossref_primary_10_1097_MNM_0000000000001642
crossref_primary_10_12677_JISP_2022_113017
crossref_primary_10_1109_TIP_2023_3244417
crossref_primary_10_1007_s11760_024_03246_6
crossref_primary_10_1016_j_ijleo_2022_169630
crossref_primary_10_1364_OE_550290
crossref_primary_10_3390_math11132869
crossref_primary_10_1016_j_physd_2024_134248
crossref_primary_10_1177_01617346221096840
crossref_primary_10_3390_jimaging9100229
crossref_primary_10_3390_fractalfract7100756
crossref_primary_10_1016_j_vrih_2023_06_008
crossref_primary_10_3934_era_2024228
crossref_primary_10_1007_s00530_024_01585_5
crossref_primary_10_3390_sym15030678
Cites_doi 10.1364/JOSA.62.000055
10.1007/978-3-642-24028-7_1
10.1016/j.apm.2017.07.009
10.1364/JOSAA.12.000058
10.1109/TPAMI.2015.2481418
10.1109/ICASSP.2019.8683031
10.1109/CVPR.2016.188
10.1364/AO.57.010243
10.1109/ICASSP.2019.8683575
10.1109/83.661187
10.1109/TMI.2013.2255883
10.1007/s11263-018-01146-0
10.1109/TIP.2013.2258354
10.1364/AO.36.001766
10.1016/j.cam.2018.11.028
10.1007/978-3-030-01234-2_41
10.1109/CVPR.2011.5995308
10.1137/1.9780898718874
10.1109/TMI.1982.4307558
10.1137/110860185
10.1109/TIP.2010.2053941
10.1088/0266-5611/22/6/008
10.1109/79.489268
10.1109/83.748894
10.1109/CVPR.2011.5995521
10.1007/s10915-009-9320-2
10.1109/TPAMI.2011.148
10.1145/1661412.1618491
10.1561/2200000016
10.1016/j.compmedimag.2011.07.002
10.1007/978-3-319-01712-9_2
10.1016/0898-1221(76)90003-1
10.1016/0167-2789(92)90242-F
10.1088/0266-5611/25/12/123006
10.1109/ISBI.2016.7493226
10.1007/s10851-011-0285-z
10.3934/ipi.2019064
10.1109/83.491316
10.1109/TIP.2008.2007354
10.1109/CVPR.2015.7298677
10.1016/0030-4018(90)90236-M
10.1137/141002165
10.1109/TPAMI.2015.2477819
10.1002/jemt.20294
10.1016/j.jvcir.2009.10.006
10.1016/j.cam.2014.03.030
10.1525/9780520411586-036
10.1002/cpa.21432
10.1109/ISBI.2017.7950622
10.1111/j.2517-6161.1977.tb01600.x
10.1145/1360612.1360672
10.1109/ICASSP.2008.4517721
10.1109/ICIP.2017.8296329
10.1109/83.791976
10.1109/TIP.2003.819861
10.1017/S096249291600009X
10.1198/0003130042836
10.1109/TIP.2009.2028250
10.1109/ICInfA.2016.7832137
10.1145/1141911.1141956
10.1016/j.dsp.2015.04.012
10.1109/CVPR.2018.00854
10.1088/1742-6596/542/1/012006
10.1109/TC.1973.5009169
10.1007/s10851-007-0652-y
10.1137/S0036139999362592
10.1109/ISBI.2018.8363611
10.1007/978-3-642-15549-9_12
10.1109/CVPR.2019.01048
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10851-020-00987-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 1255
ExternalDocumentID 10_1007_s10851_020_00987_0
GrantInformation_xml – fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1941197; 1846690
  funderid: http://dx.doi.org/10.13039/100000086
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-a0cc8fb1c82fa71668364caf8ce15cb23b1f7d1c7d926a6305b3d00ecf6d8e7f3
IEDL.DBID U2A
ISSN 0924-9907
IngestDate Fri Jul 25 10:52:52 EDT 2025
Tue Jul 01 03:20:34 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Fri Feb 21 02:35:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 68U10
Expectation-maximization
52A41
65F22
Fractional-order total variation
Blind deconvolution
Poisson noise
49N45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a0cc8fb1c82fa71668364caf8ce15cb23b1f7d1c7d926a6305b3d00ecf6d8e7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1973-5704
PQID 2450407041
PQPubID 2043734
PageCount 18
ParticipantIDs proquest_journals_2450407041
crossref_primary_10_1007_s10851_020_00987_0
crossref_citationtrail_10_1007_s10851_020_00987_0
springer_journals_10_1007_s10851_020_00987_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChambolleAPockTAn introduction to continuous optimization for imagingActa Numer.20162516131935092091343.65064
LangeKMM Optimization Algorithms2016PhiladelphiaSIAM1357.90002
Yan, M., Chen, J., Vese, L.A., Villasenor, J., Bui, A., Cong, J.: EM + TV based reconstruction for cone-beam ct with reduced radiation. In: International Symposium on Visual Computing, pp. 1–10. Springer (2011)
Karush, W.: Minima of functions of several variables with inequalities as side constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago (1939)
RuizPZhouXMateosJMolinaRKatsaggelosAKVariational Bayesian blind image deconvolution: A reviewDig. Sig. Process.2015471161273425321
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, E. (ed.) Berkeley Symposium on Mathematics of Stats and Probability, pp. 481–492. University of California Press, Berkeley (1951)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics, vol. 25, pp. 787–794. ACM (2006)
MaLMoisanLYuJZengTA dictionary learning approach for Poisson image deblurringIEEE Trans. Med. Imaging201332712771289
BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl. Opt.199736817661775
Sawatzky, A., Brune, C., Kosters, T., Wubbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics (2090), pp. 71–142 (2013)
Azzari, L., Foi, A.: Variance stabilization in Poisson image deblurring. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 728–731. IEEE (2017)
Lai, W., Huang, J., Hu, Z., Ahuja, N., Yang, M.: A comparative study for single image blind deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2016)
LucyLBAn iterative technique for the rectification of observed distributionsAstrophys. J.197479745
BahmaniSRombergJLifting for blind deconvolution in random mask imaging: identifiability and convex relaxationSIAM J. Imaging Sci.2015842203223834046811330.94006
Bajić, B., Lindblad, J., Sladoje, N.: Blind restoration of images degraded with mixed Poisson–Gaussian noise with application in transmission electron microscopy. In: International Symposium on Biomedical Imaging, pp. 123–127. IEEE (2016)
YouYKavehMA regularization approach to joint blur identification and image restorationIEEE Trans. Image Process.199653416428
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
KundurDHatzinakosDBlind image deconvolutionIEEE Signal Process. Mag.19961334364
Aljadaany, R., Pal, D.K., Savvides, M.: Douglas–Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.2004134600612
CandèsEJStrohmerTVoroninskiVPhaselift: exact and stable signal recovery from magnitude measurements via convex programmingCommun. Pure Appl. Math.20136681241127430699581335.94013
PerroneDFavaroPA clearer picture of total variation blind deconvolutionIEEE Trans. Pattern Anal. Mach. Intell.201538610411055
FishDBrinicombeAPikeEWalkerJBlind deconvolution by means of the Richardson–Lucy algorithmJ. Opt. Soc. Am. A19951215865
SetzerSSteidlGTeuberTDeblurring Poissonian images by split Bregman techniquesJ. Vis. Commun. Image R.2010213193199
RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D19926025926833634010780.49028
GlowinskiRMarrocoASur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéairesESAIM Math. Model. Numer. Anal.19759R241760368.65053
CarassoASDirect blind deconvolutionSIAM J. Appl. Math.20016161980200718568790980.68123
Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision, pp. 668–684 (2018)
LeTChartrandRAsakiTJA variational approach to reconstructing images corrupted by Poisson noiseJ. Math. Imaging Vis.20072732572632325852
Dupé, F.X., Fadili, M.J., Starck, J.L.: Image deconvolution under Poisson noise using sparse representations and proximal thresholding iteration. In: International Conference on Acquisition , Speech Signal Process, pp. 761–764. IEEE (2008)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657–2664 (2011)
ZhouLTangJFraction-order total variation blind image restoration based on l1-normAppl. Math. Model.201751469476369454507166272
BerteroMBoccacciPDesideràGVicidominiGImage deblurring with Poisson data: from cells to galaxiesInverse Probl.2009251212300625655721186.85001
HuangJHuangTZA nonstationary accelerating alternating direction method for frame-based Poissonian image deblurringJ. Comput. Appl. Math.2019352181193389426507042019
BabacanSDMolinaRKatsaggelosAKVariational Bayesian blind deconvolution using a total variation priorIEEE Trans. Image Process.2008181122627224071371.94479
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 769–777 (2015)
YouYKavehMBlind image restoration by anisotropic regularizationIEEE Trans. Image Process.199983396407
McCallumBCBlind deconvolution by simulated annealingOpt. Commun.1990752101105
Ljubenović, M., Figueiredo, M.A.: Blind image deblurring using class-adapted image priors. In: IEEE International Conference on Image Processing (ICIP), pp. 490–494 (2017)
LevinAWeissYDurandFFreemanWTUnderstanding blind deconvolution algorithmsIEEE Trans. Pattern Anal. Mach. Intell.2011331223542367
ZhangJWeiZXiaoLAdaptive fractional-order multi-scale method for image denoisingJ. Math. Imaging Vis.2012431394929108721255.68278
LiLPanJLaiWSGaoCSangNYangMHBlind image deblurring via deep discriminative priorsInt. J. Comput. Vis.2019127810251043
BeckATeboulleMFast gradient-based algorithms for constrained total variation image denoising and deblurring problemsIEEE Trans. Image Process.200918112419243427223121371.94049
ShanQJiaJAgarwalaAHigh-quality motion deblurring from a single imageACM Trans. Graph.200827373
ChanRHTaoMYuanXConstrained total variation deblurring models and fast algorithms based on alternating direction method of multipliersSIAM J. Imaging Sci.20136168069730369921279.68322
ChowdhuryMRZhangJQinJLouYPoisson image denoising based on fractional-order total variationInverse Probl. Imaging202014177404312507170241
DonatelliMEstaticoCMartinelliASerra-CapizzanoSImproved image deblurring with anti-reflective boundary conditions and re-blurringInverse Probl.2006226203522775281167.65474
GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite element approximationComput. Math. Appl.19762117400352.65034
DeyNBlanc-FeraudLZimmerCRouxPKamZOlivo-MarinJZerubiaJRichardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolutionMicrosoft Res. Technol.2006694260266
Prato, M., La Camera, A., Bonettini, S.: An alternating minimization method for blind deconvolution from poisson data. In: Journal of Physics: Conference Series, vol. 542, p. 012006. IOP Publishing (2014)
Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 Papers, pp. 1–8 (2009)
HuntBRThe application of constrained least squares estimation to image restoration by digital computerIEEE Trans. Comput.19731009805812
HeTHuJHuangHHybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolutionAppl. Opt.201857351024310256
LandiGPiccolominiELAn efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noiseComput. Med. Imaging Graph.20123613846
SheppLAVardiYMaximum likelihood reconstruction for emission tomographyIEEE Trans. Med. Imaging198212113122
DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ. R. Stat. Soc. Ser. B (Methodol.)19773911225015370364.62022
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 157–170. Springer (2010)
ChanTFWongCTotal variation blind deconvolutionIEEE Trans. Image Process.199873370375
Liu, H., Gu, J., Huang, C.: Image deblurring by generalized total variation regularization and least squares fidelity. In: International Conference on Information and Automation, pp. 1945–1949. IEEE (2016)
Qin, J., Yi, X., Weiss, S.: A novel fluorescence microscopy image deconvolution approach. In: IEEE Intrnational Symposium Biomedical Imaging, pp. 441–444 (2018)
XuJChangHBQinJDomain decomposition method for image deblurringJ. Comput. Appl. Math.201427140141432099371334.68287
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240. IEEE (2011)
LouYZhangXOsherSJBertozziALImage recovery via nonlocal operatorsJ. Sci. Comput.201042218519725780331203.65088
Li, S., Tang, G., Wakin, M.B.: Simultaneous blind deconvolution and phase retrieval with tensor iterative hard thresholding. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 2977–2981. IEEE (2019)
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122
RichardsonWHBayesian-based iterative method of image restorationJ. Opt. Soc. Am. A197262155592226550
SchulerCJHirschMHarmelingSSchölkopfBLearning to deblurIEEE Trans. Pattern
Y You (987_CR72) 1996; 5
DR Hunter (987_CR32) 2004; 58
987_CR54
987_CR55
987_CR56
MS Almeida (987_CR2) 2013; 22
L Zhou (987_CR75) 2017; 51
J Xu (987_CR69) 2014; 271
987_CR17
P Ruiz (987_CR59) 2015; 47
Y You (987_CR73) 1999; 8
G Landi (987_CR40) 2012; 36
K Lange (987_CR41) 2016
A Chambolle (987_CR13) 2016; 25
S Bahmani (987_CR5) 2015; 8
PC Hansen (987_CR28) 2006
RH Chan (987_CR14) 1999; 8
987_CR43
Q Shan (987_CR63) 2008; 27
BC McCallum (987_CR52) 1990; 75
987_CR46
987_CR47
987_CR48
L Rudin (987_CR58) 1992; 60
L Ma (987_CR51) 2013; 32
R Glowinski (987_CR27) 1975; 9
BR Hunt (987_CR31) 1973; 100
AS Carasso (987_CR12) 2001; 61
LA Shepp (987_CR64) 1982; 1
S Boyd (987_CR10) 2011; 3
D Kundur (987_CR37) 1996; 13
CJ Schuler (987_CR61) 2015; 38
987_CR33
M Donatelli (987_CR21) 2006; 22
987_CR34
S Setzer (987_CR62) 2010; 21
987_CR71
L Li (987_CR45) 2019; 127
987_CR39
987_CR35
DS Biggs (987_CR9) 1997; 36
987_CR36
987_CR38
AP Dempster (987_CR19) 1977; 39
D Perrone (987_CR53) 2015; 38
N Dey (987_CR20) 2006; 69
EJ Candès (987_CR11) 2013; 66
987_CR3
A Beck (987_CR7) 2009; 18
D Gabay (987_CR26) 1976; 2
987_CR70
TF Chan (987_CR16) 1998; 7
J Huang (987_CR30) 2019; 352
987_CR1
M Bertero (987_CR8) 2009; 25
987_CR65
987_CR22
T He (987_CR29) 2018; 57
987_CR23
987_CR67
987_CR60
987_CR6
AN Tikhonov (987_CR66) 2013
Z Wang (987_CR68) 2004; 13
SD Babacan (987_CR4) 2008; 18
T Le (987_CR42) 2007; 27
A Levin (987_CR44) 2011; 33
D Fish (987_CR25) 1995; 12
Y Lou (987_CR49) 2010; 42
LB Lucy (987_CR50) 1974; 79
MR Chowdhury (987_CR18) 2020; 14
RH Chan (987_CR15) 2013; 6
M Figueiredo (987_CR24) 2010; 19
J Zhang (987_CR74) 2012; 43
WH Richardson (987_CR57) 1972; 62
References_xml – reference: Liu, H., Gu, J., Huang, C.: Image deblurring by generalized total variation regularization and least squares fidelity. In: International Conference on Information and Automation, pp. 1945–1949. IEEE (2016)
– reference: Qin, J., Yi, X., Weiss, S.: A novel fluorescence microscopy image deconvolution approach. In: IEEE Intrnational Symposium Biomedical Imaging, pp. 441–444 (2018)
– reference: BeckATeboulleMFast gradient-based algorithms for constrained total variation image denoising and deblurring problemsIEEE Trans. Image Process.200918112419243427223121371.94049
– reference: LeTChartrandRAsakiTJA variational approach to reconstructing images corrupted by Poisson noiseJ. Math. Imaging Vis.20072732572632325852
– reference: BahmaniSRombergJLifting for blind deconvolution in random mask imaging: identifiability and convex relaxationSIAM J. Imaging Sci.2015842203223834046811330.94006
– reference: LiLPanJLaiWSGaoCSangNYangMHBlind image deblurring via deep discriminative priorsInt. J. Comput. Vis.2019127810251043
– reference: Azzari, L., Foi, A.: Variance stabilization in Poisson image deblurring. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 728–731. IEEE (2017)
– reference: XuJChangHBQinJDomain decomposition method for image deblurringJ. Comput. Appl. Math.201427140141432099371334.68287
– reference: YouYKavehMA regularization approach to joint blur identification and image restorationIEEE Trans. Image Process.199653416428
– reference: LouYZhangXOsherSJBertozziALImage recovery via nonlocal operatorsJ. Sci. Comput.201042218519725780331203.65088
– reference: Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics, vol. 25, pp. 787–794. ACM (2006)
– reference: HuntBRThe application of constrained least squares estimation to image restoration by digital computerIEEE Trans. Comput.19731009805812
– reference: ShanQJiaJAgarwalaAHigh-quality motion deblurring from a single imageACM Trans. Graph.200827373
– reference: GabayDMercierBA dual algorithm for the solution of nonlinear variational problems via finite element approximationComput. Math. Appl.19762117400352.65034
– reference: BerteroMBoccacciPDesideràGVicidominiGImage deblurring with Poisson data: from cells to galaxiesInverse Probl.2009251212300625655721186.85001
– reference: FigueiredoMBioucas-DiasJRestoration of Poissonian images using alternating direction optimizationIEEE Trans. Image Process.201019123133314527897061371.94128
– reference: RichardsonWHBayesian-based iterative method of image restorationJ. Opt. Soc. Am. A197262155592226550
– reference: SchulerCJHirschMHarmelingSSchölkopfBLearning to deblurIEEE Trans. Pattern Anal. Mach. Intell.201538714391451
– reference: SheppLAVardiYMaximum likelihood reconstruction for emission tomographyIEEE Trans. Med. Imaging198212113122
– reference: ChanRHTaoMYuanXConstrained total variation deblurring models and fast algorithms based on alternating direction method of multipliersSIAM J. Imaging Sci.20136168069730369921279.68322
– reference: PerroneDFavaroPA clearer picture of total variation blind deconvolutionIEEE Trans. Pattern Anal. Mach. Intell.201538610411055
– reference: RuizPZhouXMateosJMolinaRKatsaggelosAKVariational Bayesian blind image deconvolution: A reviewDig. Sig. Process.2015471161273425321
– reference: Karush, W.: Minima of functions of several variables with inequalities as side constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago (1939)
– reference: ChanRHChanTFWongCCosine transform based preconditioners for total variation deblurringIEEE Trans. Image Process.199981014721478
– reference: Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, E. (ed.) Berkeley Symposium on Mathematics of Stats and Probability, pp. 481–492. University of California Press, Berkeley (1951)
– reference: Bajić, B., Lindblad, J., Sladoje, N.: Blind restoration of images degraded with mixed Poisson–Gaussian noise with application in transmission electron microscopy. In: International Symposium on Biomedical Imaging, pp. 123–127. IEEE (2016)
– reference: DonatelliMEstaticoCMartinelliASerra-CapizzanoSImproved image deblurring with anti-reflective boundary conditions and re-blurringInverse Probl.2006226203522775281167.65474
– reference: HansenPCNagyJO’learyDPDeblurring Images: Matrices, Spectra, and Filtering2006PhiladelphiaSIAM1112.68127
– reference: MaLMoisanLYuJZengTA dictionary learning approach for Poisson image deblurringIEEE Trans. Med. Imaging201332712771289
– reference: FishDBrinicombeAPikeEWalkerJBlind deconvolution by means of the Richardson–Lucy algorithmJ. Opt. Soc. Am. A19951215865
– reference: McCallumBCBlind deconvolution by simulated annealingOpt. Commun.1990752101105
– reference: Dupé, F.X., Fadili, M.J., Starck, J.L.: Image deconvolution under Poisson noise using sparse representations and proximal thresholding iteration. In: International Conference on Acquisition , Speech Signal Process, pp. 761–764. IEEE (2008)
– reference: RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D19926025926833634010780.49028
– reference: GlowinskiRMarrocoASur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéairesESAIM Math. Model. Numer. Anal.19759R241760368.65053
– reference: LandiGPiccolominiELAn efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noiseComput. Med. Imaging Graph.20123613846
– reference: Prato, M., La Camera, A., Bonettini, S.: An alternating minimization method for blind deconvolution from poisson data. In: Journal of Physics: Conference Series, vol. 542, p. 012006. IOP Publishing (2014)
– reference: AlmeidaMSFigueiredoMDeconvolving images with unknown boundaries using the alternating direction method of multipliersIEEE Trans. Image process.20132283074308630683201373.94019
– reference: Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 157–170. Springer (2010)
– reference: Sawatzky, A., Brune, C., Kosters, T., Wubbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics (2090), pp. 71–142 (2013)
– reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ. R. Stat. Soc. Ser. B (Methodol.)19773911225015370364.62022
– reference: HeTHuJHuangHHybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolutionAppl. Opt.201857351024310256
– reference: Yan, M., Chen, J., Vese, L.A., Villasenor, J., Bui, A., Cong, J.: EM + TV based reconstruction for cone-beam ct with reduced radiation. In: International Symposium on Visual Computing, pp. 1–10. Springer (2011)
– reference: Vono, M., Dobigeon, N., Chainais, P.: Bayesian image restoration under Poisson noise and log-concave prior. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 1712–1716. IEEE (2019)
– reference: SetzerSSteidlGTeuberTDeblurring Poissonian images by split Bregman techniquesJ. Vis. Commun. Image R.2010213193199
– reference: YouYKavehMBlind image restoration by anisotropic regularizationIEEE Trans. Image Process.199983396407
– reference: ZhouLTangJFraction-order total variation blind image restoration based on l1-normAppl. Math. Model.201751469476369454507166272
– reference: Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 Papers, pp. 1–8 (2009)
– reference: CandèsEJStrohmerTVoroninskiVPhaselift: exact and stable signal recovery from magnitude measurements via convex programmingCommun. Pure Appl. Math.20136681241127430699581335.94013
– reference: ChambolleAPockTAn introduction to continuous optimization for imagingActa Numer.20162516131935092091343.65064
– reference: DeyNBlanc-FeraudLZimmerCRouxPKamZOlivo-MarinJZerubiaJRichardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolutionMicrosoft Res. Technol.2006694260266
– reference: Li, S., Tang, G., Wakin, M.B.: Simultaneous blind deconvolution and phase retrieval with tensor iterative hard thresholding. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 2977–2981. IEEE (2019)
– reference: CarassoASDirect blind deconvolutionSIAM J. Appl. Math.20016161980200718568790980.68123
– reference: ChowdhuryMRZhangJQinJLouYPoisson image denoising based on fractional-order total variationInverse Probl. Imaging202014177404312507170241
– reference: Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240. IEEE (2011)
– reference: BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl. Opt.199736817661775
– reference: Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
– reference: HunterDRLangeKA tutorial on MM algorithmsAm. Stat.200458130372055509
– reference: Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657–2664 (2011)
– reference: TikhonovANGoncharskyAVStepanovVYagolaAGNumerical Methods for the Solution of Ill-Posed Problems2013BerlinSpringer0831.65059
– reference: ChanTFWongCTotal variation blind deconvolutionIEEE Trans. Image Process.199873370375
– reference: Lai, W., Huang, J., Hu, Z., Ahuja, N., Yang, M.: A comparative study for single image blind deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2016)
– reference: Qin, J., Yi, X., Weiss, S., Osher, S.: Shearlet-TGV based fluorescence microscopy image deconvolution. UCLA CAM Report (14-32) (2014)
– reference: HuangJHuangTZA nonstationary accelerating alternating direction method for frame-based Poissonian image deblurringJ. Comput. Appl. Math.2019352181193389426507042019
– reference: LangeKMM Optimization Algorithms2016PhiladelphiaSIAM1357.90002
– reference: Aljadaany, R., Pal, D.K., Savvides, M.: Douglas–Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.2004134600612
– reference: Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 769–777 (2015)
– reference: ZhangJWeiZXiaoLAdaptive fractional-order multi-scale method for image denoisingJ. Math. Imaging Vis.2012431394929108721255.68278
– reference: Ljubenović, M., Figueiredo, M.A.: Blind image deblurring using class-adapted image priors. In: IEEE International Conference on Image Processing (ICIP), pp. 490–494 (2017)
– reference: LucyLBAn iterative technique for the rectification of observed distributionsAstrophys. J.197479745
– reference: KundurDHatzinakosDBlind image deconvolutionIEEE Signal Process. Mag.19961334364
– reference: LevinAWeissYDurandFFreemanWTUnderstanding blind deconvolution algorithmsIEEE Trans. Pattern Anal. Mach. Intell.2011331223542367
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.20113111221229.90122
– reference: BabacanSDMolinaRKatsaggelosAKVariational Bayesian blind deconvolution using a total variation priorIEEE Trans. Image Process.2008181122627224071371.94479
– reference: Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision, pp. 668–684 (2018)
– volume: 62
  start-page: 55
  issue: 1
  year: 1972
  ident: 987_CR57
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSA.62.000055
– ident: 987_CR71
  doi: 10.1007/978-3-642-24028-7_1
– volume: 51
  start-page: 469
  year: 2017
  ident: 987_CR75
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.07.009
– volume: 12
  start-page: 58
  issue: 1
  year: 1995
  ident: 987_CR25
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.12.000058
– volume: 38
  start-page: 1439
  issue: 7
  year: 2015
  ident: 987_CR61
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2481418
– ident: 987_CR67
  doi: 10.1109/ICASSP.2019.8683031
– ident: 987_CR39
  doi: 10.1109/CVPR.2016.188
– volume: 57
  start-page: 10243
  issue: 35
  year: 2018
  ident: 987_CR29
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.010243
– ident: 987_CR46
  doi: 10.1109/ICASSP.2019.8683575
– volume: 7
  start-page: 370
  issue: 3
  year: 1998
  ident: 987_CR16
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661187
– volume: 32
  start-page: 1277
  issue: 7
  year: 2013
  ident: 987_CR51
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2255883
– volume: 127
  start-page: 1025
  issue: 8
  year: 2019
  ident: 987_CR45
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-01146-0
– volume: 22
  start-page: 3074
  issue: 8
  year: 2013
  ident: 987_CR2
  publication-title: IEEE Trans. Image process.
  doi: 10.1109/TIP.2013.2258354
– volume: 36
  start-page: 1766
  issue: 8
  year: 1997
  ident: 987_CR9
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.001766
– volume: 352
  start-page: 181
  year: 2019
  ident: 987_CR30
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.11.028
– ident: 987_CR33
  doi: 10.1007/978-3-030-01234-2_41
– ident: 987_CR43
  doi: 10.1109/CVPR.2011.5995308
– volume-title: Deblurring Images: Matrices, Spectra, and Filtering
  year: 2006
  ident: 987_CR28
  doi: 10.1137/1.9780898718874
– volume: 1
  start-page: 113
  issue: 2
  year: 1982
  ident: 987_CR64
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.1982.4307558
– volume: 6
  start-page: 680
  issue: 1
  year: 2013
  ident: 987_CR15
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/110860185
– volume: 19
  start-page: 3133
  issue: 12
  year: 2010
  ident: 987_CR24
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2053941
– volume: 22
  start-page: 2035
  issue: 6
  year: 2006
  ident: 987_CR21
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/6/008
– volume: 79
  start-page: 745
  year: 1974
  ident: 987_CR50
  publication-title: Astrophys. J.
– volume: 13
  start-page: 43
  issue: 3
  year: 1996
  ident: 987_CR37
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.489268
– volume: 8
  start-page: 396
  issue: 3
  year: 1999
  ident: 987_CR73
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.748894
– ident: 987_CR35
  doi: 10.1109/CVPR.2011.5995521
– volume: 42
  start-page: 185
  issue: 2
  year: 2010
  ident: 987_CR49
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9320-2
– volume: 33
  start-page: 2354
  issue: 12
  year: 2011
  ident: 987_CR44
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.148
– ident: 987_CR56
– volume-title: MM Optimization Algorithms
  year: 2016
  ident: 987_CR41
– ident: 987_CR17
  doi: 10.1145/1661412.1618491
– volume: 9
  start-page: 41
  issue: R2
  year: 1975
  ident: 987_CR27
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 987_CR10
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 36
  start-page: 38
  issue: 1
  year: 2012
  ident: 987_CR40
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2011.07.002
– ident: 987_CR60
  doi: 10.1007/978-3-319-01712-9_2
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  ident: 987_CR26
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 60
  start-page: 259
  year: 1992
  ident: 987_CR58
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 25
  start-page: 123006
  issue: 12
  year: 2009
  ident: 987_CR8
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/12/123006
– ident: 987_CR6
  doi: 10.1109/ISBI.2016.7493226
– volume: 43
  start-page: 39
  issue: 1
  year: 2012
  ident: 987_CR74
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-011-0285-z
– volume: 14
  start-page: 77
  issue: 1
  year: 2020
  ident: 987_CR18
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2019064
– volume: 5
  start-page: 416
  issue: 3
  year: 1996
  ident: 987_CR72
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.491316
– volume: 18
  start-page: 12
  issue: 1
  year: 2008
  ident: 987_CR4
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2007354
– ident: 987_CR65
  doi: 10.1109/CVPR.2015.7298677
– volume: 75
  start-page: 101
  issue: 2
  year: 1990
  ident: 987_CR52
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(90)90236-M
– volume: 8
  start-page: 2203
  issue: 4
  year: 2015
  ident: 987_CR5
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/141002165
– volume: 38
  start-page: 1041
  issue: 6
  year: 2015
  ident: 987_CR53
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2477819
– volume: 69
  start-page: 260
  issue: 4
  year: 2006
  ident: 987_CR20
  publication-title: Microsoft Res. Technol.
  doi: 10.1002/jemt.20294
– volume: 21
  start-page: 193
  issue: 3
  year: 2010
  ident: 987_CR62
  publication-title: J. Vis. Commun. Image R.
  doi: 10.1016/j.jvcir.2009.10.006
– volume: 271
  start-page: 401
  year: 2014
  ident: 987_CR69
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.03.030
– ident: 987_CR36
  doi: 10.1525/9780520411586-036
– volume: 66
  start-page: 1241
  issue: 8
  year: 2013
  ident: 987_CR11
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21432
– ident: 987_CR3
  doi: 10.1109/ISBI.2017.7950622
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 987_CR19
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 27
  start-page: 73
  issue: 3
  year: 2008
  ident: 987_CR63
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1360612.1360672
– ident: 987_CR22
  doi: 10.1109/ICASSP.2008.4517721
– ident: 987_CR48
  doi: 10.1109/ICIP.2017.8296329
– volume: 8
  start-page: 1472
  issue: 10
  year: 1999
  ident: 987_CR14
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.791976
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 987_CR68
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 25
  start-page: 161
  year: 2016
  ident: 987_CR13
  publication-title: Acta Numer.
  doi: 10.1017/S096249291600009X
– volume: 58
  start-page: 30
  issue: 1
  year: 2004
  ident: 987_CR32
  publication-title: Am. Stat.
  doi: 10.1198/0003130042836
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: 987_CR7
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2028250
– ident: 987_CR47
  doi: 10.1109/ICInfA.2016.7832137
– ident: 987_CR23
  doi: 10.1145/1141911.1141956
– volume: 47
  start-page: 116
  year: 2015
  ident: 987_CR59
  publication-title: Dig. Sig. Process.
  doi: 10.1016/j.dsp.2015.04.012
– volume-title: Numerical Methods for the Solution of Ill-Posed Problems
  year: 2013
  ident: 987_CR66
– ident: 987_CR38
  doi: 10.1109/CVPR.2018.00854
– ident: 987_CR54
  doi: 10.1088/1742-6596/542/1/012006
– ident: 987_CR34
– volume: 100
  start-page: 805
  issue: 9
  year: 1973
  ident: 987_CR31
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1973.5009169
– volume: 27
  start-page: 257
  issue: 3
  year: 2007
  ident: 987_CR42
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-007-0652-y
– volume: 61
  start-page: 1980
  issue: 6
  year: 2001
  ident: 987_CR12
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139999362592
– ident: 987_CR55
  doi: 10.1109/ISBI.2018.8363611
– ident: 987_CR70
  doi: 10.1007/978-3-642-15549-9_12
– ident: 987_CR1
  doi: 10.1109/CVPR.2019.01048
SSID ssj0008217
Score 2.4683533
Snippet In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1238
SubjectTerms Algorithms
Applications of Mathematics
Astronomy
Blurring
Computer Science
Convolution
Data acquisition
Fluorescence
Image acquisition
Image Processing and Computer Vision
Image reconstruction
Image restoration
Mathematical Methods in Physics
Medical imaging
Noise
Point spread functions
Positron emission
Regularization
Signal,Image and Speech Processing
Smoothness
X ray imagery
Title Non-blind and Blind Deconvolution Under Poisson Noise Using Fractional-Order Total Variation
URI https://link.springer.com/article/10.1007/s10851-020-00987-0
https://www.proquest.com/docview/2450407041
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_iLnrwYypO58jBmwbSrzQ7bro6FKuHTSYIJU3S02hlm_79vmTppqKCh5I2bQPt772890je7yF0bjjAjekjYaE1CQWlhAvaJSzWXWPeVaws22fKhuPwdhJNXFLYvN7tXi9J2pn6U7IbeAfEhDuGBDMmEKg3IhO7gxSP_d5q_uW-rbNLIbIgMNfGLlXm5zG-mqO1j_ltWdRam2QP7Tg3EfeWuO6jDV020a5zGbFTyDl01VUZ6r4m2r5fMbHOD9BLWpUkh-9VWMDRt2fXJgp-d0KHbekj_FgBBHCVQqux3UmAk9ky7UFMyYOh6MSjCnx1_ATxtQX0EI2TwehqSFxFBSJB1RZEUCl5kXuS-4WASInxgIVSFFxqL5K5H-ReEStPxqrrMwEoRnmgKNWyYIrruAiO0GZZlfoY4YApAJOHIAMQZHg510wpFmlQ8SIPqWohr_6xmXR046bqxTRbEyUbMDIAI7NgZLSFLlbvvC7JNv58ul3jlTnFm2d-GMG0FNPQa6HLGsP17d9HO_nf46doyzeVgO1uszbaXMze9Bm4J4u8gxq9pN9PTXvzfDfoWOn8AMhc3L0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDABpacxHHcsTyqAm1gaFEHpCixnalKUFP4_ZxdpwUESAxREsexlHx3vjvZ9x1C54YD3Jg-wnKtCUspJSKlbcIj3TbmXUXKsn3GvDdi9-Nw7JLCqnq3e70kaWfqT8lu4B0QE-4YEsyIQKC-Bs6AMBu5Rn5nMf8K39bZpRBZEJhrI5cq8_MYX83R0sf8tixqrU13B205NxF35rjuohVdNNC2cxmxU8gKmuqqDHVbA20OFkys1R56icuCZPC9CqdwXNmrGxMFvzuhw7b0EX4qAQK4i-Gssd1JgLvTedpDOiGPhqITD0vw1fEzxNcW0H006t4Or3vEVVQgElRtRlIqpcgzTwo_TyFS4iLgTKa5kNoLZeYHmZdHypORavs8BRTDLFCUaplzJXSUBwdotSgLfYhwwBWAKRjIAAQZXiY0V4qHGlQ8zxhVTeTVPzaRjm7cVL2YJEuiZANGAmAkFoyENtHF4p3XOdnGn71bNV6JU7wq8VkI01JEmddElzWGy8e_j3b0v-5naL03HPST_l38cIw2fCNSNkOxhVZn0zd9Aq7KLDu1kvkBf6DclA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgOLAVEoYAP3MCqsznusVCisoUeWtQDUpR4OVVp1Qa-n7GbtAUBEocoiZNYit94FtnzBqFLwwFuTB_xtVLETyklPKUtwkLVMuZdhtKyfcasO_AfhsFwJYvf7navliTnOQ2GpSkvmhOpmyuJb-ApEBP6GELMkEDQvgHq2DFyPXDbC13MXVtzl0KUQUDvhmXazM99fDVNS3_z2xKptTzRHtopXUbcnmO8j9ZUXkO7pfuIy8k5g6aqQkPVVkPbzwtW1tkBeovHOcng3yVO4bixVx0TEX-UAohtGSTcGwMccBfDWWG7qwBH03kKRDoiL4auE_fH4LfjV4i1LbiHaBDd9W-7pKyuQASMU0FSKgTXmSO4q1OImhj3mC9SzYVyApG5XuboUDoilC2XpYBokHmSUiU0k1yF2jtC6_k4V8cIe0wCsNwHeYCAw8m4YlKyQMF015lPZR051cAmoqQeNxUwRsmSNNmAkQAYiQUjoXV0tfhmMife-PPtRoVXUk7CWeL6AaiokPpOHV1XGC4f_97byf9ev0CbvU6UPN3Hj6doyzUSZZMVG2i9mL6rM_BaiuzcCuYnah3g0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-blind+and+Blind+Deconvolution+Under+Poisson+Noise+Using+Fractional-Order+Total+Variation&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Chowdhury+Mujibur+Rahman&rft.au=Qin+Jing&rft.au=Lou+Yifei&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=62&rft.issue=9&rft.spage=1238&rft.epage=1255&rft_id=info:doi/10.1007%2Fs10851-020-00987-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon