Anomaly recognition from surveillance videos using 3D convolution neural network

Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 12; pp. 18693 - 18716
Main Authors Maqsood, Ramna, Bajwa, Usama Ijaz, Saleem, Gulshan, Raza, Rana Hammad, Anwar, Muhammad Waqas
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1) There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation. The proposed study extracted 3D features by providing frame level information and spatial augmentation to a fine-tuned pre-trained model, namely 3DConvNets. Besides, the learned features are compact enough and the proposed approach outperforms significantly from state of art approaches in terms of accuracy on anomalous activity recognition having 82% AUC.
AbstractList Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1) There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation. The proposed study extracted 3D features by providing frame level information and spatial augmentation to a fine-tuned pre-trained model, namely 3DConvNets. Besides, the learned features are compact enough and the proposed approach outperforms significantly from state of art approaches in terms of accuracy on anomalous activity recognition having 82% AUC.
Author Bajwa, Usama Ijaz
Anwar, Muhammad Waqas
Maqsood, Ramna
Saleem, Gulshan
Raza, Rana Hammad
Author_xml – sequence: 1
  givenname: Ramna
  orcidid: 0000-0001-9551-8926
  surname: Maqsood
  fullname: Maqsood, Ramna
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 2
  givenname: Usama Ijaz
  orcidid: 0000-0001-5755-1194
  surname: Bajwa
  fullname: Bajwa, Usama Ijaz
  email: usamabajwa@cuilahore.edu.pk
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 3
  givenname: Gulshan
  orcidid: 0000-0003-2761-8399
  surname: Saleem
  fullname: Saleem, Gulshan
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 4
  givenname: Rana Hammad
  orcidid: 0000-0002-4883-7446
  surname: Raza
  fullname: Raza, Rana Hammad
  organization: National University of Sciences and Technology (NUST) NUST-PNEC
– sequence: 5
  givenname: Muhammad Waqas
  orcidid: 0000-0002-7822-8983
  surname: Anwar
  fullname: Anwar, Muhammad Waqas
  organization: Department of Computer Science, COMSATS University Islamabad
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP53DTHUj-hoAc9hzSdLanbpCa7lf57t11B8NDTO4f3mRmeERqEGACha0puKSHqLlNKBMOEUUyJVATzMzSkUnGsFKODbuYTgpUk9AKNcl4TQkvJxBC9TUPc2HpfJHBxFXzjYyiqFDdFbtMOfF3b4KDY-SXEXLTZh1XB7wsXwy7W7bEdoE227qL5junzEp1Xts5w9Ztj9PH48D57xvPXp5fZdI4dp7rBlghQE2tdBaVVE10JW1oqBOFMV5JJUS60okvLOTBw2qpKUKs0aKUWwBeSj9FNv3eb4lcLuTHr2KbQnTRMMl0SUUretSZ9y6WYc4LKON_Yw9tNsr42lJiDP9P7M50_c_RnDij7h26T39i0Pw3xHspdOawg_X11gvoB1iiFVg
CitedBy_id crossref_primary_10_1007_s11042_022_13954_1
crossref_primary_10_1016_j_aej_2023_11_017
crossref_primary_10_3390_fi16030083
crossref_primary_10_1016_j_entcom_2024_100723
crossref_primary_10_3390_electronics11162538
crossref_primary_10_1007_s12046_025_02686_1
crossref_primary_10_1016_j_engappai_2023_107218
crossref_primary_10_1016_j_cviu_2024_104163
crossref_primary_10_59782_sidr_v5i1_156
crossref_primary_10_7717_peerj_cs_1117
crossref_primary_10_1007_s11063_022_11120_0
crossref_primary_10_1007_s11042_023_14425_x
crossref_primary_10_1016_j_measen_2022_100510
crossref_primary_10_3390_math10091555
crossref_primary_10_3233_JIFS_221925
crossref_primary_10_32604_csse_2023_035732
crossref_primary_10_1109_ACCESS_2023_3284472
crossref_primary_10_1109_ACCESS_2024_3491868
crossref_primary_10_1016_j_eswa_2024_123197
crossref_primary_10_1007_s00521_024_10416_7
crossref_primary_10_1016_j_ipm_2023_103289
crossref_primary_10_1016_j_imavis_2022_104406
crossref_primary_10_1016_j_eswa_2024_125504
crossref_primary_10_1007_s13369_024_09873_y
crossref_primary_10_1093_comjnl_bxae005
crossref_primary_10_3390_s23239616
crossref_primary_10_1109_TCE_2024_3440520
crossref_primary_10_1007_s00371_023_03210_4
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_1007_s11042_023_14508_9
crossref_primary_10_21015_vtse_v13i1_2023
crossref_primary_10_1155_2022_3454167
crossref_primary_10_3390_smartcities7030050
crossref_primary_10_1016_j_isatra_2023_05_024
crossref_primary_10_3390_electronics12224661
crossref_primary_10_1007_s13369_023_08038_7
Cites_doi 10.1109/ICCV.2015.510
10.1016/j.cviu.2018.02.006
10.1109/CVPR.2018.00678
10.5391/IJFIS.2018.18.4.245
10.1109/TPAMI.2018.2849374
10.1007/s11042-016-3768-5
10.1016/j.autcon.2018.06.007
10.1109/ICCV.2015.522
10.1109/TII.2018.2822828
10.1109/TCSVT.2016.2637778
10.1109/ICCV.2017.235
10.1109/ICCVW.2017.369
10.1109/TASLP.2015.2438544
10.1109/TIP.2017.2670780
10.1109/ACCESS.2020.2970497
10.1007/s11042-015-2648-8
10.1109/5.726791
10.3233/JIFS-169908
10.1109/TGRS.2019.2945591
10.23919/FUSION43075.2019.9011329
10.1109/TII.2019.2910876
10.1109/CVPR.2010.5539872
10.1109/TIFS.2018.2871746
10.1109/TSMCC.2012.2215319
10.1007/978-981-15-1084-7_32
10.1007/978-3-030-04375-9_25
10.1145/3136755.3136817
10.1007/978-981-13-9683-0_5
10.1007/s10586-017-0974-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-10570-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 18716
ExternalDocumentID 10_1007_s11042_021_10570_3
GrantInformation_xml – fundername: Higher Education Commision, Pakistan
  grantid: National Center of Big Data and Cloud Computing (NCBC)
  funderid: http://dx.doi.org/10.13039/501100010221
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-a04e78aacfe6a789f4a6a1440329f52546b971da33e2ec9a7f41a79e977be3b53
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Sat Jul 26 00:04:21 EDT 2025
Tue Jul 01 04:13:08 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 21 02:48:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Spatial annotation
3DConvNets
Anomalous activity recognition
Spatial augmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a04e78aacfe6a789f4a6a1440329f52546b971da33e2ec9a7f41a79e977be3b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2761-8399
0000-0001-5755-1194
0000-0002-7822-8983
0000-0001-9551-8926
0000-0002-4883-7446
PQID 2529604653
PQPubID 54626
PageCount 24
ParticipantIDs proquest_journals_2529604653
crossref_citationtrail_10_1007_s11042_021_10570_3
crossref_primary_10_1007_s11042_021_10570_3
springer_journals_10_1007_s11042_021_10570_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Andrei Z, Richard W (2020) Anomalous behavior data set. Department of Computer Science and Engineering and Centre for Vision Research York University, Toronto, ON, Canada, [Online]. Available: http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/. [Accessed 27 September 2020].
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
MohammadiSKianiHPerinaAMurinoVViolence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance2015AVSSIEEE16
SodemannAARossMPBorghettiBJA review of anomaly detection in automated surveillanceIEEE Trans Syst Man Cybern Part C Appl Rev20124261257127210.1109/TSMCC.2012.2215319
SabokrouMFayyazMFathyMKletteRCascading 3d deep neural networks for fast anomaly detection and localization in crowded scenesIEEE Trans Image Process201726419922004363624610.1109/TIP.2017.2670780
Sigurdsson G, Russakovsky O, Gupta A (2017) What actions are needed for understanding human actions in videos? in Proceedings of the IEEE international conference on computer vision, pp. 2137-2146.
VishnuVMRajalakshmiMNedunchezhianRIntelligent traffic video surveillance and accident detection system with dynamic traffic signal controlClust Comput201821113514710.1007/s10586-017-0974-5
LiZLiYGaoZSpatiotemporal representation learning for video anomaly detectionIEEE Access20208255312554210.1109/ACCESS.2020.2970497
Um TT, Pfister FM, Pichler DE, Satoshi LM, Hirche SF, Urban KD (2017) Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks, in Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216-220.
CaiWZhangoWPiiGAN: Generative adversial networks for pluralistic image inpaintingIEEE Access Remote sensing image recognition201084845148463
SighDMohanCKDeep spatio-temporal representation for detection of road accidents using stacked autoencoderIEEE Trans Intell Transp Syst2018203879887
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV:4489–4497
Zhang LZ, Guangming S, Peiyi S, Juan AS, Bennamoun M (2017) Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. in Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops.
Zhu Y, Newsam S (2019) Motion-aware feature for improved video anomaly detection. in British Machine Vision Conference. BMVC.
GaoHChengBWangJLiKZhaoJLiDObjeobject classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environmentIEEE Transactions on Industrial Informatics20181494224423110.1109/TII.2018.2822828
Huynh-TheTHua-CamHKimDSEncoding pose features to images with data augmentation for 3D Action recognitionIEEE Transactions on Industrial Informatics20191653100311110.1109/TII.2019.2910876April
ChongYSTayYHAbnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo2017Hakodate, and MuroranSpringer189196
Sun L, Jia K, Yeung DY, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV, pp. 4597-4605.
University of Central Florida (2020) Abnormal crowd behavior detection using social force model," CVCR, 2011. [Online]. Available: https://www.crcv.ucf.edu/projects/Abnormal_Crowd/. [Accessed 20 April 2020].
YouHTianSYuLPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591
SabokrouMFayyazMFathyMMoayedZKletteRFully convolutional neural network for fast anomaly detection in crowded sceneComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006
FarooqMKhanNAliMUnsupervised video surveillance for anomaly detection of street trafficInternational Journal of Advanced Computer Science and Applications (IJACSA)2017128270275
SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenesComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006
Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1975-1981.
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
Koppikar U, Sujatha C, Patil P, Mudenagudi U (2019) Real-world anomaly detection using deep learning. In: International Conference on Intelligent Computing and Communication. Springer, pp 333–342
KimBLeeJA deep-learning based model for emotional evaluation of video clipsInternational Journal of Fuzzy Logic and Intelligent Systems2018184245253383899310.5391/IJFIS.2018.18.4.245
ShahAPLamareJBNguyen-AnhTHauptmannACADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance2018AVSSIEEE19
YangZ-LGuoX-QChenZ-MHuangY-FZhangY-JRNN-stega: Linguistic stenography based on recurrent neural networksIEEE Transaction on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746
YuSCYunSSongzhiCGuorongLSStratified pooling based deep convolutional neural networks for human action recognitionMultimed Tools Appl20177611133671338210.1007/s11042-016-3768-5
NarkhedeSUnderstanding AUC-ROC curveTowards Data Science201826220227
Jamadandi A, Kotturshettar S, Mudenagudi U (2020) Two stream convolutional neural networks for anomaly detection in surveillance videos. In: Smart Computing Paradigms: New Progresses and Challenges. Springer, pp 41–48
CuiXGeolVKingsburyBData augmentation for deep neural network acoustic modelingIEEE/ACM Transactions on Audio, Speech, and Language Processing20152391469147710.1109/TASLP.2015.2438544
Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479-6488.
Vilamala MR, Hiley L, Hicks YP, Alun CF (2019) A pilot study on detecting violence in Videos Fusing Proxy Models, vilamala2019pilot
Varghese E, Thampi SM (2018) A deep learning approach to predict crowd behavior based on emotion," in International Conference on Smart Multimedia, Springer, pp. 296--307.
BansodSNandedhakATransfer learning for video anomaly detectionJ Intell Fuzzy Syst20193631967197510.3233/JIFS-169908
ColqueRCaetanoCde AndradeMSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201627367368210.1109/TCSVT.2016.2637778
University of Central Florida (2011) Real-world anomaly detection in surveillance videos. CVCR. [Online]. Available: https://www.crcv.ucf.edu/projects/real-world/. [Accessed 20 April 2020].
ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl201675127327734910.1007/s11042-015-2648-8
ColqueRCaetanoCAndradeMSchwartzWHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201727367368210.1109/TCSVT.2016.2637778
LouHXiongCFangWLovePEZhangBOuyangXConvolutional neural networks: Computer vision-based workforce activity assessment in constructionAutom Constr20189428228910.1016/j.autcon.2018.06.007
SVCL (2013) UCSD anomaly detection dataset. Svcl. [Online]. Available: http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. [Accessed 20 April 2020].
TianYDehghanAShahMOn detection, data association and segmentation for multi-target trackingIEEE Transaction on patren analysis and machine inteligence20184192146216010.1109/TPAMI.2018.2849374
W Cai (10570_CR3) 2010; 8
R Colque (10570_CR6) 2017; 27
10570_CR33
10570_CR10
10570_CR32
H You (10570_CR40) 2019; 58
10570_CR30
AA Sodemann (10570_CR27) 2012; 42
H Gao (10570_CR9) 2018; 14
Z Li (10570_CR16) 2020; 8
M Sabokrou (10570_CR21) 2017; 26
R Colque (10570_CR5) 2016; 27
SC Yu (10570_CR41) 2017; 76
S Bansod (10570_CR2) 2019; 36
10570_CR1
YS Chong (10570_CR4) 2017
B Kim (10570_CR13) 2018; 18
D Sigh (10570_CR25) 2018; 20
H Lou (10570_CR17) 2018; 94
AP Shah (10570_CR24) 2018
10570_CR26
M Sabokrou (10570_CR23) 2018; 172
S Narkhede (10570_CR20) 2018; 26
T Huynh-The (10570_CR11) 2019; 16
10570_CR29
10570_CR28
M Farooq (10570_CR8) 2017; 12
VM Vishnu (10570_CR38) 2018; 21
Y Tian (10570_CR31) 2018; 41
10570_CR44
10570_CR43
Y LeCun (10570_CR15) 1998; 86
X Cui (10570_CR7) 2015; 23
M Sabokrou (10570_CR22) 2018; 172
10570_CR37
10570_CR14
S Mohammadi (10570_CR19) 2015
10570_CR36
10570_CR35
10570_CR12
10570_CR34
Z-L Yang (10570_CR39) 2018; 14
T Zhang (10570_CR42) 2016; 75
10570_CR18
References_xml – reference: FarooqMKhanNAliMUnsupervised video surveillance for anomaly detection of street trafficInternational Journal of Advanced Computer Science and Applications (IJACSA)2017128270275
– reference: KimBLeeJA deep-learning based model for emotional evaluation of video clipsInternational Journal of Fuzzy Logic and Intelligent Systems2018184245253383899310.5391/IJFIS.2018.18.4.245
– reference: YangZ-LGuoX-QChenZ-MHuangY-FZhangY-JRNN-stega: Linguistic stenography based on recurrent neural networksIEEE Transaction on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746
– reference: MohammadiSKianiHPerinaAMurinoVViolence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance2015AVSSIEEE16
– reference: Vilamala MR, Hiley L, Hicks YP, Alun CF (2019) A pilot study on detecting violence in Videos Fusing Proxy Models, vilamala2019pilot
– reference: Huynh-TheTHua-CamHKimDSEncoding pose features to images with data augmentation for 3D Action recognitionIEEE Transactions on Industrial Informatics20191653100311110.1109/TII.2019.2910876April
– reference: ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl201675127327734910.1007/s11042-015-2648-8
– reference: TianYDehghanAShahMOn detection, data association and segmentation for multi-target trackingIEEE Transaction on patren analysis and machine inteligence20184192146216010.1109/TPAMI.2018.2849374
– reference: LiZLiYGaoZSpatiotemporal representation learning for video anomaly detectionIEEE Access20208255312554210.1109/ACCESS.2020.2970497
– reference: University of Central Florida (2020) Abnormal crowd behavior detection using social force model," CVCR, 2011. [Online]. Available: https://www.crcv.ucf.edu/projects/Abnormal_Crowd/. [Accessed 20 April 2020].
– reference: NarkhedeSUnderstanding AUC-ROC curveTowards Data Science201826220227
– reference: SighDMohanCKDeep spatio-temporal representation for detection of road accidents using stacked autoencoderIEEE Trans Intell Transp Syst2018203879887
– reference: ChongYSTayYHAbnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo2017Hakodate, and MuroranSpringer189196
– reference: SabokrouMFayyazMFathyMKletteRCascading 3d deep neural networks for fast anomaly detection and localization in crowded scenesIEEE Trans Image Process201726419922004363624610.1109/TIP.2017.2670780
– reference: SVCL (2013) UCSD anomaly detection dataset. Svcl. [Online]. Available: http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. [Accessed 20 April 2020].
– reference: Sun L, Jia K, Yeung DY, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV, pp. 4597-4605.
– reference: SodemannAARossMPBorghettiBJA review of anomaly detection in automated surveillanceIEEE Trans Syst Man Cybern Part C Appl Rev20124261257127210.1109/TSMCC.2012.2215319
– reference: Jamadandi A, Kotturshettar S, Mudenagudi U (2020) Two stream convolutional neural networks for anomaly detection in surveillance videos. In: Smart Computing Paradigms: New Progresses and Challenges. Springer, pp 41–48
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
– reference: ShahAPLamareJBNguyen-AnhTHauptmannACADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance2018AVSSIEEE19
– reference: CuiXGeolVKingsburyBData augmentation for deep neural network acoustic modelingIEEE/ACM Transactions on Audio, Speech, and Language Processing20152391469147710.1109/TASLP.2015.2438544
– reference: Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
– reference: YuSCYunSSongzhiCGuorongLSStratified pooling based deep convolutional neural networks for human action recognitionMultimed Tools Appl20177611133671338210.1007/s11042-016-3768-5
– reference: ColqueRCaetanoCde AndradeMSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201627367368210.1109/TCSVT.2016.2637778
– reference: ColqueRCaetanoCAndradeMSchwartzWHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201727367368210.1109/TCSVT.2016.2637778
– reference: LouHXiongCFangWLovePEZhangBOuyangXConvolutional neural networks: Computer vision-based workforce activity assessment in constructionAutom Constr20189428228910.1016/j.autcon.2018.06.007
– reference: CaiWZhangoWPiiGAN: Generative adversial networks for pluralistic image inpaintingIEEE Access Remote sensing image recognition201084845148463
– reference: Sigurdsson G, Russakovsky O, Gupta A (2017) What actions are needed for understanding human actions in videos? in Proceedings of the IEEE international conference on computer vision, pp. 2137-2146.
– reference: Zhu Y, Newsam S (2019) Motion-aware feature for improved video anomaly detection. in British Machine Vision Conference. BMVC.
– reference: SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenesComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006
– reference: Um TT, Pfister FM, Pichler DE, Satoshi LM, Hirche SF, Urban KD (2017) Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks, in Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216-220.
– reference: Varghese E, Thampi SM (2018) A deep learning approach to predict crowd behavior based on emotion," in International Conference on Smart Multimedia, Springer, pp. 296--307.
– reference: University of Central Florida (2011) Real-world anomaly detection in surveillance videos. CVCR. [Online]. Available: https://www.crcv.ucf.edu/projects/real-world/. [Accessed 20 April 2020].
– reference: GaoHChengBWangJLiKZhaoJLiDObjeobject classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environmentIEEE Transactions on Industrial Informatics20181494224423110.1109/TII.2018.2822828
– reference: Koppikar U, Sujatha C, Patil P, Mudenagudi U (2019) Real-world anomaly detection using deep learning. In: International Conference on Intelligent Computing and Communication. Springer, pp 333–342
– reference: Zhang LZ, Guangming S, Peiyi S, Juan AS, Bennamoun M (2017) Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. in Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops.
– reference: Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479-6488.
– reference: Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1975-1981.
– reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV:4489–4497
– reference: Andrei Z, Richard W (2020) Anomalous behavior data set. Department of Computer Science and Engineering and Centre for Vision Research York University, Toronto, ON, Canada, [Online]. Available: http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/. [Accessed 27 September 2020].
– reference: VishnuVMRajalakshmiMNedunchezhianRIntelligent traffic video surveillance and accident detection system with dynamic traffic signal controlClust Comput201821113514710.1007/s10586-017-0974-5
– reference: SabokrouMFayyazMFathyMMoayedZKletteRFully convolutional neural network for fast anomaly detection in crowded sceneComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006
– reference: BansodSNandedhakATransfer learning for video anomaly detectionJ Intell Fuzzy Syst20193631967197510.3233/JIFS-169908
– reference: YouHTianSYuLPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591
– volume: 12
  start-page: 270
  issue: 8
  year: 2017
  ident: 10570_CR8
  publication-title: International Journal of Advanced Computer Science and Applications (IJACSA)
– ident: 10570_CR32
  doi: 10.1109/ICCV.2015.510
– ident: 10570_CR44
– volume: 172
  start-page: 88
  year: 2018
  ident: 10570_CR22
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.02.006
– ident: 10570_CR28
  doi: 10.1109/CVPR.2018.00678
– volume: 18
  start-page: 245
  issue: 4
  year: 2018
  ident: 10570_CR13
  publication-title: International Journal of Fuzzy Logic and Intelligent Systems
  doi: 10.5391/IJFIS.2018.18.4.245
– volume: 41
  start-page: 2146
  issue: 9
  year: 2018
  ident: 10570_CR31
  publication-title: IEEE Transaction on patren analysis and machine inteligence
  doi: 10.1109/TPAMI.2018.2849374
– volume: 76
  start-page: 13367
  issue: 11
  year: 2017
  ident: 10570_CR41
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3768-5
– volume: 94
  start-page: 282
  year: 2018
  ident: 10570_CR17
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.06.007
– start-page: 1
  volume-title: CADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance
  year: 2018
  ident: 10570_CR24
– ident: 10570_CR10
– ident: 10570_CR29
  doi: 10.1109/ICCV.2015.522
– volume: 14
  start-page: 4224
  issue: 9
  year: 2018
  ident: 10570_CR9
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2822828
– volume: 20
  start-page: 879
  issue: 3
  year: 2018
  ident: 10570_CR25
  publication-title: IEEE Trans Intell Transp Syst
– volume: 27
  start-page: 673
  issue: 3
  year: 2016
  ident: 10570_CR5
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2016.2637778
– ident: 10570_CR26
  doi: 10.1109/ICCV.2017.235
– ident: 10570_CR35
– ident: 10570_CR43
  doi: 10.1109/ICCVW.2017.369
– volume: 23
  start-page: 1469
  issue: 9
  year: 2015
  ident: 10570_CR7
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2015.2438544
– start-page: 1
  volume-title: Violence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance
  year: 2015
  ident: 10570_CR19
– volume: 26
  start-page: 1992
  issue: 4
  year: 2017
  ident: 10570_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2670780
– volume: 8
  start-page: 25531
  year: 2020
  ident: 10570_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970497
– volume: 8
  start-page: 48451
  year: 2010
  ident: 10570_CR3
  publication-title: IEEE Access Remote sensing image recognition
– volume: 75
  start-page: 7327
  issue: 12
  year: 2016
  ident: 10570_CR42
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2648-8
– volume: 27
  start-page: 673
  issue: 3
  year: 2017
  ident: 10570_CR6
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2016.2637778
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10570_CR15
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 26
  start-page: 220
  year: 2018
  ident: 10570_CR20
  publication-title: Towards Data Science
– volume: 36
  start-page: 1967
  issue: 3
  year: 2019
  ident: 10570_CR2
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-169908
– ident: 10570_CR1
– ident: 10570_CR30
– volume: 58
  start-page: 1281
  issue: 2
  year: 2019
  ident: 10570_CR40
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2945591
– ident: 10570_CR37
  doi: 10.23919/FUSION43075.2019.9011329
– volume: 16
  start-page: 3100
  issue: 5
  year: 2019
  ident: 10570_CR11
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2910876
– ident: 10570_CR18
  doi: 10.1109/CVPR.2010.5539872
– volume: 14
  start-page: 1280
  issue: 5
  year: 2018
  ident: 10570_CR39
  publication-title: IEEE Transaction on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2871746
– volume: 172
  start-page: 88
  year: 2018
  ident: 10570_CR23
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.02.006
– volume: 42
  start-page: 1257
  issue: 6
  year: 2012
  ident: 10570_CR27
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2012.2215319
– ident: 10570_CR34
– ident: 10570_CR14
  doi: 10.1007/978-981-15-1084-7_32
– ident: 10570_CR36
  doi: 10.1007/978-3-030-04375-9_25
– ident: 10570_CR33
  doi: 10.1145/3136755.3136817
– ident: 10570_CR12
  doi: 10.1007/978-981-13-9683-0_5
– volume: 21
  start-page: 135
  issue: 1
  year: 2018
  ident: 10570_CR38
  publication-title: Clust Comput
  doi: 10.1007/s10586-017-0974-5
– start-page: 189
  volume-title: Abnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo
  year: 2017
  ident: 10570_CR4
SSID ssj0016524
Score 2.518343
Snippet Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18693
SubjectTerms Activity recognition
Anomalies
Artificial neural networks
Augmentation
Computer Communication Networks
Computer Science
Convolution
Crime
Data Structures and Information Theory
Datasets
Feature extraction
Machine learning
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Surveillance
Traffic accidents
Vandalism
Video
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpEaP-JkrHioQgIxUKlbZKcXlpKipkXi3-NLnQYQIDHHdqTznX3Wfd93AOfcWDk2cRRIq2zgTj8V2BBJEMCidE8im0niDt8_RIOhvBupkSeFlTXavS5JVid1Q3YLiUpCkALqTetOj3XYUPR2d1485P1V7SBSvpVt3AvcfRh6qszPa3y9jpoc81tZtLptbndh26eJrL_c1z1Yw6INO3ULBuYjsg1bn_QE9-HRPeZfzOSdrWBB04IRgYSVi9kbUoMhN4sR9W5aMoK8PzNxzQh57j2Qkb6l-3GxRIcfwPD25ulqEPiWCUHmYmkemJ5EHRuT5RgZHSe5NJGh-q3gSa5I-94mOhwbIZBjlhidy9DoBF0WaFFYJQ6hVUwLPAKmbBLpCG1uQiu15XHG8yS32Ri1kFJhB8Lacmnm9cSprcUkbZSQydqps3ZaWTsVHbhYzXldqmn8Obpbb0jqI6tMORWKe6QK14HLepOaz7-vdvy_4SewyclPKmxjF1rz2QJPXf4xt2eVu30A24nQyg
  priority: 102
  providerName: Springer Nature
Title Anomaly recognition from surveillance videos using 3D convolution neural network
URI https://link.springer.com/article/10.1007/s11042-021-10570-3
https://www.proquest.com/docview/2529604653
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoEDjwFiMKYcuEHF2qZNe0ID9hCIaUJMGqcq6VIuox3rhsS_J27TFZDYtW1SyXYcJ7a_D-DC4oJOuecaVDjCUN7PMYQpERBASKqORCKk2Dv8NHQHY_owcSb6wi3VZZWFT8wc9TQJ8Y782sIEYRvRwG7mHwayRmF2VVNoVKCmXLCnDl-12-5w9LzOI7iOprX12obaG03dNpM3z5nYmoIlCsh1q7zR762pjDf_pEiznae3D7s6ZCSdXMcHsCXjOuwVdAxEr8467PzAFjyEkTrYv_PZF1mXCCUxwWYSkq4WnxLJhtQogm14SUqw_P2N2PcEq9C1NRLEulQ_jvNK8SMY97ovdwND0ycYoVpXS4O3qWQe52EkXc48P6Lc5ZjLtS0_chAHX_jMnHLblpYMfc4ianLmSxURCmkLxz6GapzE8gSII3yXuVJE3BSUCcsLrciPRDiVzKbUkQ0wC8kFocYWR4qLWVCiIqO0AyXtIJN2YDfgcj1mniNrbPy6WSgk0KssDUqbaMBVoaTy9f-znW6e7Qy2LbSLrK6xCdXlYiXPVeyxFC2oeL1-C2qd_utjt6XNTT0dW51vgy7YzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPagHH6gRRd2DnrSRbrevgzFERJBHPEDCre6WrRdskYeGP-VvdKcPUBO5cW67TWe_nZ3tzHwfwAXlgvW5Y2lMmEJT3s_UhC6REEBIpo5EwmfYO9xqW7Uue-qZvRx8Zb0wWFaZ-cTYUfcjH_-R31BMEJaQDexu-K6hahRmVzMJjQQWDTn7VEe28W29oub3ktLqQ-e-pqWqApqv4DbReIlJ2-HcD6TFbccNGLc4pjgN6gYm0sML19b73DAklb7L7YDp3HalCpSENASqRCiXv64-xMUV5VQf51kLy0xFdJ2SpnZiPW3SSVr1dGyEwYIIVNZVvu_3RriIbv8kZON9rroL22mASsoJovYgJ8M87GTiDyT1BXnY-sFkuA_P5TB644MZmRckRSHB1hUyno4-JEobqacINv1FY4LF9q_EqBCseU-xT5BZU704TOrSD6C7ErMewloYhfIIiClcy7akCLgumC2o49PADYTfl7bBmCkLoGeW8_yUyRwFNQbegoMZre0pa3uxtT2jAFfzZ4YJj8fSu4vZhHjpmh57CwQW4DqbpMXl_0c7Xj7aOWzUOq2m16y3GyewSREjcUVlEdYmo6k8VVHPRJzFUCPwsmpsfwNkwRE-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VRUJwYCkgyuoDnCCicZw4OSAEtBWlUFWISr0FO3W4QAJdQPwaX4encVpAglvPiR1p_DweZ2beAzigQrKe8D2LSVda2vu5lrQVEgJIxfSVSEYMe4dvW95Vh1133W4BPvNeGCyrzH3i2FH30gj_kZ9QTBBWkA3sJDZlEe1q_ezl1UIFKcy05nIaGUSa6uNdX98Gp42qXutDSuu1-8sryygMWJGG3tASFaa4L0QUK09wP4iZ8ASmOx0axC5SxcuA2z3hOIqqKBA8ZrbggdJBk1SORMUI7f7nuL4VVYowd1Frte8mOQzPNZK6fsXS57JtWnayxj0b22KwPAJ1drUn_HksTmPdX-nZ8alXX4ElE66S8wxfq1BQSQmWcykIYjxDCRa_8RquQfs8SZ_F0weZlCelCcFGFjIY9d8UCh3pUQRbANMBwdL7R-JUCVbAm51AkGdTfzjJqtTXoTMTw25AMUkTtQnElYHHPSVjYUvGJfUjGgexjHqKO4y5qgx2brkwMrzmKK_xFE4ZmdHaobZ2OLZ26JThaDLmJWP1-PftnXxBQrPDB-EUj2U4zhdp-vjv2bb-n20f5jWuw5tGq7kNCxQhMi6v3IHisD9SuzoEGso9gzUCD7OG9xe_uxbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+recognition+from+surveillance+videos+using+3D+convolution+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ramna%2C+Maqsood&rft.au=Bajwa%2C+Usama+Ijaz&rft.au=Saleem+Gulshan&rft.au=Raza+Rana+Hammad&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=12&rft.spage=18693&rft.epage=18716&rft_id=info:doi/10.1007%2Fs11042-021-10570-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon