Anomaly recognition from surveillance videos using 3D convolution neural network
Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 12; pp. 18693 - 18716 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1) There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation. The proposed study extracted 3D features by providing frame level information and spatial augmentation to a fine-tuned pre-trained model, namely 3DConvNets. Besides, the learned features are compact enough and the proposed approach outperforms significantly from state of art approaches in terms of accuracy on anomalous activity recognition having 82% AUC. |
---|---|
AbstractList | Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence of anomalous events, anomalous activity recognition from surveillance videos is a challenging research task. The approaches reported can be generally categorized as handcrafted and deep learning-based. Most of the reported studies address binary classification i.e. anomaly detection from surveillance videos. But these reported approaches did not address other anomalous events e.g. abuse, fight, road accidents, shooting, stealing, vandalism, and robbery, etc. from surveillance videos. Therefore, this paper aims to provide an effective framework for the recognition of different real-world anomalies from videos. This study provides a simple, yet effective approach for learning spatiotemporal features using deep 3-dimensional convolutional networks (3D ConvNets) trained on the University of Central Florida (UCF) Crime video dataset. Firstly, the frame-level labels of the UCF Crime dataset are provided, and then to extract anomalous spatiotemporal features more efficiently a fine-tuned 3D ConvNets is proposed. Findings of the proposed study are twofold 1) There exist specific, detectable, and quantifiable features in UCF Crime video feed that associate with each other 2) Multiclass learning can improve generalizing competencies of the 3D ConvNets by effectively learning frame-level information of dataset and can be leveraged in terms of better results by applying spatial augmentation. The proposed study extracted 3D features by providing frame level information and spatial augmentation to a fine-tuned pre-trained model, namely 3DConvNets. Besides, the learned features are compact enough and the proposed approach outperforms significantly from state of art approaches in terms of accuracy on anomalous activity recognition having 82% AUC. |
Author | Bajwa, Usama Ijaz Anwar, Muhammad Waqas Maqsood, Ramna Saleem, Gulshan Raza, Rana Hammad |
Author_xml | – sequence: 1 givenname: Ramna orcidid: 0000-0001-9551-8926 surname: Maqsood fullname: Maqsood, Ramna organization: Department of Computer Science, COMSATS University Islamabad – sequence: 2 givenname: Usama Ijaz orcidid: 0000-0001-5755-1194 surname: Bajwa fullname: Bajwa, Usama Ijaz email: usamabajwa@cuilahore.edu.pk organization: Department of Computer Science, COMSATS University Islamabad – sequence: 3 givenname: Gulshan orcidid: 0000-0003-2761-8399 surname: Saleem fullname: Saleem, Gulshan organization: Department of Computer Science, COMSATS University Islamabad – sequence: 4 givenname: Rana Hammad orcidid: 0000-0002-4883-7446 surname: Raza fullname: Raza, Rana Hammad organization: National University of Sciences and Technology (NUST) NUST-PNEC – sequence: 5 givenname: Muhammad Waqas orcidid: 0000-0002-7822-8983 surname: Anwar fullname: Anwar, Muhammad Waqas organization: Department of Computer Science, COMSATS University Islamabad |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP53DTHUj-hoAc9hzSdLanbpCa7lf57t11B8NDTO4f3mRmeERqEGACha0puKSHqLlNKBMOEUUyJVATzMzSkUnGsFKODbuYTgpUk9AKNcl4TQkvJxBC9TUPc2HpfJHBxFXzjYyiqFDdFbtMOfF3b4KDY-SXEXLTZh1XB7wsXwy7W7bEdoE227qL5junzEp1Xts5w9Ztj9PH48D57xvPXp5fZdI4dp7rBlghQE2tdBaVVE10JW1oqBOFMV5JJUS60okvLOTBw2qpKUKs0aKUWwBeSj9FNv3eb4lcLuTHr2KbQnTRMMl0SUUretSZ9y6WYc4LKON_Yw9tNsr42lJiDP9P7M50_c_RnDij7h26T39i0Pw3xHspdOawg_X11gvoB1iiFVg |
CitedBy_id | crossref_primary_10_1007_s11042_022_13954_1 crossref_primary_10_1016_j_aej_2023_11_017 crossref_primary_10_3390_fi16030083 crossref_primary_10_1016_j_entcom_2024_100723 crossref_primary_10_3390_electronics11162538 crossref_primary_10_1007_s12046_025_02686_1 crossref_primary_10_1016_j_engappai_2023_107218 crossref_primary_10_1016_j_cviu_2024_104163 crossref_primary_10_59782_sidr_v5i1_156 crossref_primary_10_7717_peerj_cs_1117 crossref_primary_10_1007_s11063_022_11120_0 crossref_primary_10_1007_s11042_023_14425_x crossref_primary_10_1016_j_measen_2022_100510 crossref_primary_10_3390_math10091555 crossref_primary_10_3233_JIFS_221925 crossref_primary_10_32604_csse_2023_035732 crossref_primary_10_1109_ACCESS_2023_3284472 crossref_primary_10_1109_ACCESS_2024_3491868 crossref_primary_10_1016_j_eswa_2024_123197 crossref_primary_10_1007_s00521_024_10416_7 crossref_primary_10_1016_j_ipm_2023_103289 crossref_primary_10_1016_j_imavis_2022_104406 crossref_primary_10_1016_j_eswa_2024_125504 crossref_primary_10_1007_s13369_024_09873_y crossref_primary_10_1093_comjnl_bxae005 crossref_primary_10_3390_s23239616 crossref_primary_10_1109_TCE_2024_3440520 crossref_primary_10_1007_s00371_023_03210_4 crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_1007_s11042_023_14508_9 crossref_primary_10_21015_vtse_v13i1_2023 crossref_primary_10_1155_2022_3454167 crossref_primary_10_3390_smartcities7030050 crossref_primary_10_1016_j_isatra_2023_05_024 crossref_primary_10_3390_electronics12224661 crossref_primary_10_1007_s13369_023_08038_7 |
Cites_doi | 10.1109/ICCV.2015.510 10.1016/j.cviu.2018.02.006 10.1109/CVPR.2018.00678 10.5391/IJFIS.2018.18.4.245 10.1109/TPAMI.2018.2849374 10.1007/s11042-016-3768-5 10.1016/j.autcon.2018.06.007 10.1109/ICCV.2015.522 10.1109/TII.2018.2822828 10.1109/TCSVT.2016.2637778 10.1109/ICCV.2017.235 10.1109/ICCVW.2017.369 10.1109/TASLP.2015.2438544 10.1109/TIP.2017.2670780 10.1109/ACCESS.2020.2970497 10.1007/s11042-015-2648-8 10.1109/5.726791 10.3233/JIFS-169908 10.1109/TGRS.2019.2945591 10.23919/FUSION43075.2019.9011329 10.1109/TII.2019.2910876 10.1109/CVPR.2010.5539872 10.1109/TIFS.2018.2871746 10.1109/TSMCC.2012.2215319 10.1007/978-981-15-1084-7_32 10.1007/978-3-030-04375-9_25 10.1145/3136755.3136817 10.1007/978-981-13-9683-0_5 10.1007/s10586-017-0974-5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-021-10570-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 18716 |
ExternalDocumentID | 10_1007_s11042_021_10570_3 |
GrantInformation_xml | – fundername: Higher Education Commision, Pakistan grantid: National Center of Big Data and Cloud Computing (NCBC) funderid: http://dx.doi.org/10.13039/501100010221 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-a04e78aacfe6a789f4a6a1440329f52546b971da33e2ec9a7f41a79e977be3b53 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:04:21 EDT 2025 Tue Jul 01 04:13:08 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Fri Feb 21 02:48:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Spatial annotation 3DConvNets Anomalous activity recognition Spatial augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a04e78aacfe6a789f4a6a1440329f52546b971da33e2ec9a7f41a79e977be3b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2761-8399 0000-0001-5755-1194 0000-0002-7822-8983 0000-0001-9551-8926 0000-0002-4883-7446 |
PQID | 2529604653 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2529604653 crossref_citationtrail_10_1007_s11042_021_10570_3 crossref_primary_10_1007_s11042_021_10570_3 springer_journals_10_1007_s11042_021_10570_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210500 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Andrei Z, Richard W (2020) Anomalous behavior data set. Department of Computer Science and Engineering and Centre for Vision Research York University, Toronto, ON, Canada, [Online]. Available: http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/. [Accessed 27 September 2020]. LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 MohammadiSKianiHPerinaAMurinoVViolence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance2015AVSSIEEE16 SodemannAARossMPBorghettiBJA review of anomaly detection in automated surveillanceIEEE Trans Syst Man Cybern Part C Appl Rev20124261257127210.1109/TSMCC.2012.2215319 SabokrouMFayyazMFathyMKletteRCascading 3d deep neural networks for fast anomaly detection and localization in crowded scenesIEEE Trans Image Process201726419922004363624610.1109/TIP.2017.2670780 Sigurdsson G, Russakovsky O, Gupta A (2017) What actions are needed for understanding human actions in videos? in Proceedings of the IEEE international conference on computer vision, pp. 2137-2146. VishnuVMRajalakshmiMNedunchezhianRIntelligent traffic video surveillance and accident detection system with dynamic traffic signal controlClust Comput201821113514710.1007/s10586-017-0974-5 LiZLiYGaoZSpatiotemporal representation learning for video anomaly detectionIEEE Access20208255312554210.1109/ACCESS.2020.2970497 Um TT, Pfister FM, Pichler DE, Satoshi LM, Hirche SF, Urban KD (2017) Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks, in Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216-220. CaiWZhangoWPiiGAN: Generative adversial networks for pluralistic image inpaintingIEEE Access Remote sensing image recognition201084845148463 SighDMohanCKDeep spatio-temporal representation for detection of road accidents using stacked autoencoderIEEE Trans Intell Transp Syst2018203879887 Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV:4489–4497 Zhang LZ, Guangming S, Peiyi S, Juan AS, Bennamoun M (2017) Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. in Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops. Zhu Y, Newsam S (2019) Motion-aware feature for improved video anomaly detection. in British Machine Vision Conference. BMVC. GaoHChengBWangJLiKZhaoJLiDObjeobject classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environmentIEEE Transactions on Industrial Informatics20181494224423110.1109/TII.2018.2822828 Huynh-TheTHua-CamHKimDSEncoding pose features to images with data augmentation for 3D Action recognitionIEEE Transactions on Industrial Informatics20191653100311110.1109/TII.2019.2910876April ChongYSTayYHAbnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo2017Hakodate, and MuroranSpringer189196 Sun L, Jia K, Yeung DY, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV, pp. 4597-4605. University of Central Florida (2020) Abnormal crowd behavior detection using social force model," CVCR, 2011. [Online]. Available: https://www.crcv.ucf.edu/projects/Abnormal_Crowd/. [Accessed 20 April 2020]. YouHTianSYuLPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591 SabokrouMFayyazMFathyMMoayedZKletteRFully convolutional neural network for fast anomaly detection in crowded sceneComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006 FarooqMKhanNAliMUnsupervised video surveillance for anomaly detection of street trafficInternational Journal of Advanced Computer Science and Applications (IJACSA)2017128270275 SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenesComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006 Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1975-1981. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press Koppikar U, Sujatha C, Patil P, Mudenagudi U (2019) Real-world anomaly detection using deep learning. In: International Conference on Intelligent Computing and Communication. Springer, pp 333–342 KimBLeeJA deep-learning based model for emotional evaluation of video clipsInternational Journal of Fuzzy Logic and Intelligent Systems2018184245253383899310.5391/IJFIS.2018.18.4.245 ShahAPLamareJBNguyen-AnhTHauptmannACADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance2018AVSSIEEE19 YangZ-LGuoX-QChenZ-MHuangY-FZhangY-JRNN-stega: Linguistic stenography based on recurrent neural networksIEEE Transaction on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746 YuSCYunSSongzhiCGuorongLSStratified pooling based deep convolutional neural networks for human action recognitionMultimed Tools Appl20177611133671338210.1007/s11042-016-3768-5 NarkhedeSUnderstanding AUC-ROC curveTowards Data Science201826220227 Jamadandi A, Kotturshettar S, Mudenagudi U (2020) Two stream convolutional neural networks for anomaly detection in surveillance videos. In: Smart Computing Paradigms: New Progresses and Challenges. Springer, pp 41–48 CuiXGeolVKingsburyBData augmentation for deep neural network acoustic modelingIEEE/ACM Transactions on Audio, Speech, and Language Processing20152391469147710.1109/TASLP.2015.2438544 Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479-6488. Vilamala MR, Hiley L, Hicks YP, Alun CF (2019) A pilot study on detecting violence in Videos Fusing Proxy Models, vilamala2019pilot Varghese E, Thampi SM (2018) A deep learning approach to predict crowd behavior based on emotion," in International Conference on Smart Multimedia, Springer, pp. 296--307. BansodSNandedhakATransfer learning for video anomaly detectionJ Intell Fuzzy Syst20193631967197510.3233/JIFS-169908 ColqueRCaetanoCde AndradeMSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201627367368210.1109/TCSVT.2016.2637778 University of Central Florida (2011) Real-world anomaly detection in surveillance videos. CVCR. [Online]. Available: https://www.crcv.ucf.edu/projects/real-world/. [Accessed 20 April 2020]. ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl201675127327734910.1007/s11042-015-2648-8 ColqueRCaetanoCAndradeMSchwartzWHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201727367368210.1109/TCSVT.2016.2637778 LouHXiongCFangWLovePEZhangBOuyangXConvolutional neural networks: Computer vision-based workforce activity assessment in constructionAutom Constr20189428228910.1016/j.autcon.2018.06.007 SVCL (2013) UCSD anomaly detection dataset. Svcl. [Online]. Available: http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. [Accessed 20 April 2020]. TianYDehghanAShahMOn detection, data association and segmentation for multi-target trackingIEEE Transaction on patren analysis and machine inteligence20184192146216010.1109/TPAMI.2018.2849374 W Cai (10570_CR3) 2010; 8 R Colque (10570_CR6) 2017; 27 10570_CR33 10570_CR10 10570_CR32 H You (10570_CR40) 2019; 58 10570_CR30 AA Sodemann (10570_CR27) 2012; 42 H Gao (10570_CR9) 2018; 14 Z Li (10570_CR16) 2020; 8 M Sabokrou (10570_CR21) 2017; 26 R Colque (10570_CR5) 2016; 27 SC Yu (10570_CR41) 2017; 76 S Bansod (10570_CR2) 2019; 36 10570_CR1 YS Chong (10570_CR4) 2017 B Kim (10570_CR13) 2018; 18 D Sigh (10570_CR25) 2018; 20 H Lou (10570_CR17) 2018; 94 AP Shah (10570_CR24) 2018 10570_CR26 M Sabokrou (10570_CR23) 2018; 172 S Narkhede (10570_CR20) 2018; 26 T Huynh-The (10570_CR11) 2019; 16 10570_CR29 10570_CR28 M Farooq (10570_CR8) 2017; 12 VM Vishnu (10570_CR38) 2018; 21 Y Tian (10570_CR31) 2018; 41 10570_CR44 10570_CR43 Y LeCun (10570_CR15) 1998; 86 X Cui (10570_CR7) 2015; 23 M Sabokrou (10570_CR22) 2018; 172 10570_CR37 10570_CR14 S Mohammadi (10570_CR19) 2015 10570_CR36 10570_CR35 10570_CR12 10570_CR34 Z-L Yang (10570_CR39) 2018; 14 T Zhang (10570_CR42) 2016; 75 10570_CR18 |
References_xml | – reference: FarooqMKhanNAliMUnsupervised video surveillance for anomaly detection of street trafficInternational Journal of Advanced Computer Science and Applications (IJACSA)2017128270275 – reference: KimBLeeJA deep-learning based model for emotional evaluation of video clipsInternational Journal of Fuzzy Logic and Intelligent Systems2018184245253383899310.5391/IJFIS.2018.18.4.245 – reference: YangZ-LGuoX-QChenZ-MHuangY-FZhangY-JRNN-stega: Linguistic stenography based on recurrent neural networksIEEE Transaction on Information Forensics and Security20181451280129510.1109/TIFS.2018.2871746 – reference: MohammadiSKianiHPerinaAMurinoVViolence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance2015AVSSIEEE16 – reference: Vilamala MR, Hiley L, Hicks YP, Alun CF (2019) A pilot study on detecting violence in Videos Fusing Proxy Models, vilamala2019pilot – reference: Huynh-TheTHua-CamHKimDSEncoding pose features to images with data augmentation for 3D Action recognitionIEEE Transactions on Industrial Informatics20191653100311110.1109/TII.2019.2910876April – reference: ZhangTYangZJiaWYangBYangJHeXA new method for violence detection in surveillance scenesMultimed Tools Appl201675127327734910.1007/s11042-015-2648-8 – reference: TianYDehghanAShahMOn detection, data association and segmentation for multi-target trackingIEEE Transaction on patren analysis and machine inteligence20184192146216010.1109/TPAMI.2018.2849374 – reference: LiZLiYGaoZSpatiotemporal representation learning for video anomaly detectionIEEE Access20208255312554210.1109/ACCESS.2020.2970497 – reference: University of Central Florida (2020) Abnormal crowd behavior detection using social force model," CVCR, 2011. [Online]. Available: https://www.crcv.ucf.edu/projects/Abnormal_Crowd/. [Accessed 20 April 2020]. – reference: NarkhedeSUnderstanding AUC-ROC curveTowards Data Science201826220227 – reference: SighDMohanCKDeep spatio-temporal representation for detection of road accidents using stacked autoencoderIEEE Trans Intell Transp Syst2018203879887 – reference: ChongYSTayYHAbnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo2017Hakodate, and MuroranSpringer189196 – reference: SabokrouMFayyazMFathyMKletteRCascading 3d deep neural networks for fast anomaly detection and localization in crowded scenesIEEE Trans Image Process201726419922004363624610.1109/TIP.2017.2670780 – reference: SVCL (2013) UCSD anomaly detection dataset. Svcl. [Online]. Available: http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. [Accessed 20 April 2020]. – reference: Sun L, Jia K, Yeung DY, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV, pp. 4597-4605. – reference: SodemannAARossMPBorghettiBJA review of anomaly detection in automated surveillanceIEEE Trans Syst Man Cybern Part C Appl Rev20124261257127210.1109/TSMCC.2012.2215319 – reference: Jamadandi A, Kotturshettar S, Mudenagudi U (2020) Two stream convolutional neural networks for anomaly detection in surveillance videos. In: Smart Computing Paradigms: New Progresses and Challenges. Springer, pp 41–48 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 – reference: ShahAPLamareJBNguyen-AnhTHauptmannACADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance2018AVSSIEEE19 – reference: CuiXGeolVKingsburyBData augmentation for deep neural network acoustic modelingIEEE/ACM Transactions on Audio, Speech, and Language Processing20152391469147710.1109/TASLP.2015.2438544 – reference: Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press – reference: YuSCYunSSongzhiCGuorongLSStratified pooling based deep convolutional neural networks for human action recognitionMultimed Tools Appl20177611133671338210.1007/s11042-016-3768-5 – reference: ColqueRCaetanoCde AndradeMSchwartzWRHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201627367368210.1109/TCSVT.2016.2637778 – reference: ColqueRCaetanoCAndradeMSchwartzWHistograms of optical flow orientation and magnitude and entropy to detect anomalous events in videosIEEE Transactions on Circuits and Systems for Video Technology201727367368210.1109/TCSVT.2016.2637778 – reference: LouHXiongCFangWLovePEZhangBOuyangXConvolutional neural networks: Computer vision-based workforce activity assessment in constructionAutom Constr20189428228910.1016/j.autcon.2018.06.007 – reference: CaiWZhangoWPiiGAN: Generative adversial networks for pluralistic image inpaintingIEEE Access Remote sensing image recognition201084845148463 – reference: Sigurdsson G, Russakovsky O, Gupta A (2017) What actions are needed for understanding human actions in videos? in Proceedings of the IEEE international conference on computer vision, pp. 2137-2146. – reference: Zhu Y, Newsam S (2019) Motion-aware feature for improved video anomaly detection. in British Machine Vision Conference. BMVC. – reference: SabokrouMFayyazMFathyMMoayedZKletteRDeep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenesComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006 – reference: Um TT, Pfister FM, Pichler DE, Satoshi LM, Hirche SF, Urban KD (2017) Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks, in Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216-220. – reference: Varghese E, Thampi SM (2018) A deep learning approach to predict crowd behavior based on emotion," in International Conference on Smart Multimedia, Springer, pp. 296--307. – reference: University of Central Florida (2011) Real-world anomaly detection in surveillance videos. CVCR. [Online]. Available: https://www.crcv.ucf.edu/projects/real-world/. [Accessed 20 April 2020]. – reference: GaoHChengBWangJLiKZhaoJLiDObjeobject classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environmentIEEE Transactions on Industrial Informatics20181494224423110.1109/TII.2018.2822828 – reference: Koppikar U, Sujatha C, Patil P, Mudenagudi U (2019) Real-world anomaly detection using deep learning. In: International Conference on Intelligent Computing and Communication. Springer, pp 333–342 – reference: Zhang LZ, Guangming S, Peiyi S, Juan AS, Bennamoun M (2017) Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. in Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops. – reference: Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479-6488. – reference: Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1975-1981. – reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. in Proceedings of the IEEE international conference on computer vision, ICCV:4489–4497 – reference: Andrei Z, Richard W (2020) Anomalous behavior data set. Department of Computer Science and Engineering and Centre for Vision Research York University, Toronto, ON, Canada, [Online]. Available: http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/. [Accessed 27 September 2020]. – reference: VishnuVMRajalakshmiMNedunchezhianRIntelligent traffic video surveillance and accident detection system with dynamic traffic signal controlClust Comput201821113514710.1007/s10586-017-0974-5 – reference: SabokrouMFayyazMFathyMMoayedZKletteRFully convolutional neural network for fast anomaly detection in crowded sceneComput Vis Image Underst2018172889710.1016/j.cviu.2018.02.006 – reference: BansodSNandedhakATransfer learning for video anomaly detectionJ Intell Fuzzy Syst20193631967197510.3233/JIFS-169908 – reference: YouHTianSYuLPixel-level remote sensing image recognition based on bidirectional word vectorsIEEE Trans Geosci Remote Sens20195821281129310.1109/TGRS.2019.2945591 – volume: 12 start-page: 270 issue: 8 year: 2017 ident: 10570_CR8 publication-title: International Journal of Advanced Computer Science and Applications (IJACSA) – ident: 10570_CR32 doi: 10.1109/ICCV.2015.510 – ident: 10570_CR44 – volume: 172 start-page: 88 year: 2018 ident: 10570_CR22 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.02.006 – ident: 10570_CR28 doi: 10.1109/CVPR.2018.00678 – volume: 18 start-page: 245 issue: 4 year: 2018 ident: 10570_CR13 publication-title: International Journal of Fuzzy Logic and Intelligent Systems doi: 10.5391/IJFIS.2018.18.4.245 – volume: 41 start-page: 2146 issue: 9 year: 2018 ident: 10570_CR31 publication-title: IEEE Transaction on patren analysis and machine inteligence doi: 10.1109/TPAMI.2018.2849374 – volume: 76 start-page: 13367 issue: 11 year: 2017 ident: 10570_CR41 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-3768-5 – volume: 94 start-page: 282 year: 2018 ident: 10570_CR17 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.06.007 – start-page: 1 volume-title: CADP: A novel dataset for CCTV traffic camera based accident analysis, in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance year: 2018 ident: 10570_CR24 – ident: 10570_CR10 – ident: 10570_CR29 doi: 10.1109/ICCV.2015.522 – volume: 14 start-page: 4224 issue: 9 year: 2018 ident: 10570_CR9 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2822828 – volume: 20 start-page: 879 issue: 3 year: 2018 ident: 10570_CR25 publication-title: IEEE Trans Intell Transp Syst – volume: 27 start-page: 673 issue: 3 year: 2016 ident: 10570_CR5 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2016.2637778 – ident: 10570_CR26 doi: 10.1109/ICCV.2017.235 – ident: 10570_CR35 – ident: 10570_CR43 doi: 10.1109/ICCVW.2017.369 – volume: 23 start-page: 1469 issue: 9 year: 2015 ident: 10570_CR7 publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2015.2438544 – start-page: 1 volume-title: Violence detection in crowded scenes using substantial derivative, in 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance year: 2015 ident: 10570_CR19 – volume: 26 start-page: 1992 issue: 4 year: 2017 ident: 10570_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2670780 – volume: 8 start-page: 25531 year: 2020 ident: 10570_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970497 – volume: 8 start-page: 48451 year: 2010 ident: 10570_CR3 publication-title: IEEE Access Remote sensing image recognition – volume: 75 start-page: 7327 issue: 12 year: 2016 ident: 10570_CR42 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2648-8 – volume: 27 start-page: 673 issue: 3 year: 2017 ident: 10570_CR6 publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2016.2637778 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10570_CR15 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 26 start-page: 220 year: 2018 ident: 10570_CR20 publication-title: Towards Data Science – volume: 36 start-page: 1967 issue: 3 year: 2019 ident: 10570_CR2 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-169908 – ident: 10570_CR1 – ident: 10570_CR30 – volume: 58 start-page: 1281 issue: 2 year: 2019 ident: 10570_CR40 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2945591 – ident: 10570_CR37 doi: 10.23919/FUSION43075.2019.9011329 – volume: 16 start-page: 3100 issue: 5 year: 2019 ident: 10570_CR11 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2910876 – ident: 10570_CR18 doi: 10.1109/CVPR.2010.5539872 – volume: 14 start-page: 1280 issue: 5 year: 2018 ident: 10570_CR39 publication-title: IEEE Transaction on Information Forensics and Security doi: 10.1109/TIFS.2018.2871746 – volume: 172 start-page: 88 year: 2018 ident: 10570_CR23 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.02.006 – volume: 42 start-page: 1257 issue: 6 year: 2012 ident: 10570_CR27 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2012.2215319 – ident: 10570_CR34 – ident: 10570_CR14 doi: 10.1007/978-981-15-1084-7_32 – ident: 10570_CR36 doi: 10.1007/978-3-030-04375-9_25 – ident: 10570_CR33 doi: 10.1145/3136755.3136817 – ident: 10570_CR12 doi: 10.1007/978-981-13-9683-0_5 – volume: 21 start-page: 135 issue: 1 year: 2018 ident: 10570_CR38 publication-title: Clust Comput doi: 10.1007/s10586-017-0974-5 – start-page: 189 volume-title: Abnormal event detection in videos using spatiotemporal autoencoder, in In Advances in Neural Networks - ISNN 2017 14th International Symposium, Sapporo year: 2017 ident: 10570_CR4 |
SSID | ssj0016524 |
Score | 2.518343 |
Snippet | Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18693 |
SubjectTerms | Activity recognition Anomalies Artificial neural networks Augmentation Computer Communication Networks Computer Science Convolution Crime Data Structures and Information Theory Datasets Feature extraction Machine learning Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Surveillance Traffic accidents Vandalism Video |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpEaP-JkrHioQgIxUKlbZKcXlpKipkXi3-NLnQYQIDHHdqTznX3Wfd93AOfcWDk2cRRIq2zgTj8V2BBJEMCidE8im0niDt8_RIOhvBupkSeFlTXavS5JVid1Q3YLiUpCkALqTetOj3XYUPR2d1485P1V7SBSvpVt3AvcfRh6qszPa3y9jpoc81tZtLptbndh26eJrL_c1z1Yw6INO3ULBuYjsg1bn_QE9-HRPeZfzOSdrWBB04IRgYSVi9kbUoMhN4sR9W5aMoK8PzNxzQh57j2Qkb6l-3GxRIcfwPD25ulqEPiWCUHmYmkemJ5EHRuT5RgZHSe5NJGh-q3gSa5I-94mOhwbIZBjlhidy9DoBF0WaFFYJQ6hVUwLPAKmbBLpCG1uQiu15XHG8yS32Ri1kFJhB8Lacmnm9cSprcUkbZSQydqps3ZaWTsVHbhYzXldqmn8Obpbb0jqI6tMORWKe6QK14HLepOaz7-vdvy_4SewyclPKmxjF1rz2QJPXf4xt2eVu30A24nQyg priority: 102 providerName: Springer Nature |
Title | Anomaly recognition from surveillance videos using 3D convolution neural network |
URI | https://link.springer.com/article/10.1007/s11042-021-10570-3 https://www.proquest.com/docview/2529604653 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoEDjwFiMKYcuEHF2qZNe0ID9hCIaUJMGqcq6VIuox3rhsS_J27TFZDYtW1SyXYcJ7a_D-DC4oJOuecaVDjCUN7PMYQpERBASKqORCKk2Dv8NHQHY_owcSb6wi3VZZWFT8wc9TQJ8Y782sIEYRvRwG7mHwayRmF2VVNoVKCmXLCnDl-12-5w9LzOI7iOprX12obaG03dNpM3z5nYmoIlCsh1q7zR762pjDf_pEiznae3D7s6ZCSdXMcHsCXjOuwVdAxEr8467PzAFjyEkTrYv_PZF1mXCCUxwWYSkq4WnxLJhtQogm14SUqw_P2N2PcEq9C1NRLEulQ_jvNK8SMY97ovdwND0ycYoVpXS4O3qWQe52EkXc48P6Lc5ZjLtS0_chAHX_jMnHLblpYMfc4ianLmSxURCmkLxz6GapzE8gSII3yXuVJE3BSUCcsLrciPRDiVzKbUkQ0wC8kFocYWR4qLWVCiIqO0AyXtIJN2YDfgcj1mniNrbPy6WSgk0KssDUqbaMBVoaTy9f-znW6e7Qy2LbSLrK6xCdXlYiXPVeyxFC2oeL1-C2qd_utjt6XNTT0dW51vgy7YzA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPagHH6gRRd2DnrSRbrevgzFERJBHPEDCre6WrRdskYeGP-VvdKcPUBO5cW67TWe_nZ3tzHwfwAXlgvW5Y2lMmEJT3s_UhC6REEBIpo5EwmfYO9xqW7Uue-qZvRx8Zb0wWFaZ-cTYUfcjH_-R31BMEJaQDexu-K6hahRmVzMJjQQWDTn7VEe28W29oub3ktLqQ-e-pqWqApqv4DbReIlJ2-HcD6TFbccNGLc4pjgN6gYm0sML19b73DAklb7L7YDp3HalCpSENASqRCiXv64-xMUV5VQf51kLy0xFdJ2SpnZiPW3SSVr1dGyEwYIIVNZVvu_3RriIbv8kZON9rroL22mASsoJovYgJ8M87GTiDyT1BXnY-sFkuA_P5TB644MZmRckRSHB1hUyno4-JEobqacINv1FY4LF9q_EqBCseU-xT5BZU704TOrSD6C7ErMewloYhfIIiClcy7akCLgumC2o49PADYTfl7bBmCkLoGeW8_yUyRwFNQbegoMZre0pa3uxtT2jAFfzZ4YJj8fSu4vZhHjpmh57CwQW4DqbpMXl_0c7Xj7aOWzUOq2m16y3GyewSREjcUVlEdYmo6k8VVHPRJzFUCPwsmpsfwNkwRE- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VRUJwYCkgyuoDnCCicZw4OSAEtBWlUFWISr0FO3W4QAJdQPwaX4encVpAglvPiR1p_DweZ2beAzigQrKe8D2LSVda2vu5lrQVEgJIxfSVSEYMe4dvW95Vh1133W4BPvNeGCyrzH3i2FH30gj_kZ9QTBBWkA3sJDZlEe1q_ezl1UIFKcy05nIaGUSa6uNdX98Gp42qXutDSuu1-8sryygMWJGG3tASFaa4L0QUK09wP4iZ8ASmOx0axC5SxcuA2z3hOIqqKBA8ZrbggdJBk1SORMUI7f7nuL4VVYowd1Frte8mOQzPNZK6fsXS57JtWnayxj0b22KwPAJ1drUn_HksTmPdX-nZ8alXX4ElE66S8wxfq1BQSQmWcykIYjxDCRa_8RquQfs8SZ_F0weZlCelCcFGFjIY9d8UCh3pUQRbANMBwdL7R-JUCVbAm51AkGdTfzjJqtTXoTMTw25AMUkTtQnElYHHPSVjYUvGJfUjGgexjHqKO4y5qgx2brkwMrzmKK_xFE4ZmdHaobZ2OLZ26JThaDLmJWP1-PftnXxBQrPDB-EUj2U4zhdp-vjv2bb-n20f5jWuw5tGq7kNCxQhMi6v3IHisD9SuzoEGso9gzUCD7OG9xe_uxbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+recognition+from+surveillance+videos+using+3D+convolution+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ramna%2C+Maqsood&rft.au=Bajwa%2C+Usama+Ijaz&rft.au=Saleem+Gulshan&rft.au=Raza+Rana+Hammad&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=12&rft.spage=18693&rft.epage=18716&rft_id=info:doi/10.1007%2Fs11042-021-10570-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |