Estimates for coefficients in Jacobi series for functions with limited regularity by fractional calculus

In this paper, optimal estimates on the decaying rates of Jacobi expansion coefficients are obtained by fractional calculus for functions with algebraic and logarithmic singularities. This is inspired by the fact that integer-order derivatives fail to deal with singularity of fractional-type, while...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 4
Main Authors Liu, Guidong, Liu, Wenjie, Duan, Beiping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, optimal estimates on the decaying rates of Jacobi expansion coefficients are obtained by fractional calculus for functions with algebraic and logarithmic singularities. This is inspired by the fact that integer-order derivatives fail to deal with singularity of fractional-type, while fractional calculus can. To this end, we first introduce new fractional Sobolev spaces defined as the range of the L p -space under the Riemann-Liouville fractional integral. The connection between these new spaces and classical fractional-order Sobolev spaces is then elucidated. Under this framework, the optimal decaying rate of Jacobi expansion coefficients is obtained, based on which the projection errors under different norms are given. This work is expected to introduce fractional calculus into traditional fields in approximation theory and to explore the possibility in solving classical problems by this ‘new’ tool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-024-10159-y