Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation

In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Math...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 99; no. 1; pp. 283 - 298
Main Authors Chtouki, A., Lakrad, F., Belhaq, M.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-019-05082-7

Cover

Loading…
Abstract In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Mathieu–Duffing equation. The dynamics are analyzed using the singular perturbation theory and the Melnikov method. It is shown that invariant slow manifolds of the averaged system, over the fast dynamics, are slaving the dynamics of the system under the condition of non-hyperbolicity of the undeformed state of the arch. These manifolds correspond to the buckled, the unbuckled and the undeformed solutions of the arch. Various kinds of quasi-periodic and chaotic bursters relating these slow manifolds are obtained, and quasi-periodic bursters doubling and tripling sequences leading to hysteretic chaos are observed. Using the Melnikov method and the Lyapunov exponents computations, it was demonstrated that chaos induced by the slow excitation can be suppressed by the fast harmonic excitation in large domains of the control parameters space, especially in the regions where the undeformed configuration of the arch is not hyperbolic.
AbstractList In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Mathieu–Duffing equation. The dynamics are analyzed using the singular perturbation theory and the Melnikov method. It is shown that invariant slow manifolds of the averaged system, over the fast dynamics, are slaving the dynamics of the system under the condition of non-hyperbolicity of the undeformed state of the arch. These manifolds correspond to the buckled, the unbuckled and the undeformed solutions of the arch. Various kinds of quasi-periodic and chaotic bursters relating these slow manifolds are obtained, and quasi-periodic bursters doubling and tripling sequences leading to hysteretic chaos are observed. Using the Melnikov method and the Lyapunov exponents computations, it was demonstrated that chaos induced by the slow excitation can be suppressed by the fast harmonic excitation in large domains of the control parameters space, especially in the regions where the undeformed configuration of the arch is not hyperbolic.
Author Lakrad, F.
Belhaq, M.
Chtouki, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Chtouki
  fullname: Chtouki, A.
  organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca
– sequence: 2
  givenname: F.
  surname: Lakrad
  fullname: Lakrad, F.
  email: lakrad@hotmail.com
  organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca
– sequence: 3
  givenname: M.
  surname: Belhaq
  fullname: Belhaq, M.
  organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca
BookMark eNp9kMtqWzEQhkVxoY7bF-hKkLXS0eVctAwhNzCEQAvZiTk6OrWMfeRIOjTe5R36hn2SynVCIYusBmb-b2b-_4TMxjA6Qr5yOOMAzbfEOTScAdcMKmgFaz6QOa8ayUStH2ZkDlooBhoePpGTlNYAIAW0c7K9nzB5tnPRh95b2k0xZRcTxbGndoUhl2a_H3HrbaJ-pEjTCjeb8ItitCuapm7tbKY5lMmAKf95_p0O0x1G3LocC-6erM-YfRg_k48DbpL78lIX5MfV5feLG7a8u769OF8yK7nOTA9aoeqHvhO1UtjVbSVV7RB4Jw6msIfWgVK6qeoOeQ0Oh15bropukGDlgpwe9-5ieJxcymYdpjiWk0ZIJaWoq0oXlTiqbAwpRTeYXfRbjHvDwRxiNcdYTYnV_IvVNAVq30Cv5nJEv3kflUc0lTvjTxf_f_UO9RcJcJCg
CitedBy_id crossref_primary_10_1016_j_apm_2020_06_055
crossref_primary_10_3390_math11071690
crossref_primary_10_1007_s11071_021_06622_w
crossref_primary_10_1007_s11071_020_05849_3
crossref_primary_10_1007_s11071_021_06976_1
crossref_primary_10_1016_j_cnsns_2022_106897
crossref_primary_10_1063_5_0256876
crossref_primary_10_1016_j_amc_2021_126522
crossref_primary_10_1155_2021_5556021
crossref_primary_10_1088_1402_4896_acfce1
crossref_primary_10_2139_ssrn_4151713
crossref_primary_10_1016_j_jsv_2021_116138
crossref_primary_10_1016_j_tws_2023_111099
crossref_primary_10_1063_5_0112529
Cites_doi 10.1016/0020-7462(94)90008-6
10.1137/16M1067202
10.1137/0148013
10.1016/j.chaos.2004.03.029
10.1007/s11012-016-0470-7
10.1142/4116
10.1115/1.4041771
10.1103/PhysRevE.61.3641
10.1007/s11071-014-1471-5
10.1115/DETC2001/VIB-21613
10.1016/0020-7462(94)90007-8
10.1016/0167-2789(85)90011-9
10.1007/BF02429848
10.1512/iumj.1972.21.21017
10.1016/0960-0779(94)E0114-5
10.1088/0960-1317/16/2/021
10.1088/1742-6596/660/1/012127
10.1016/j.cnsns.2008.09.007
10.3233/ISP-1986-3337901
10.1016/j.jsv.2013.09.024
10.1007/978-1-4614-0469-9
10.1115/1.3152389
10.1016/j.measurement.2013.08.053
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-019-05082-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 298
ExternalDocumentID 10_1007_s11071_019_05082_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-9f94a4dfdb2644ab685346ea01b21573ad08e0449756ba160eafd9c14853f30c3
IEDL.DBID BENPR
ISSN 0924-090X
IngestDate Fri Jul 25 11:06:44 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Tue Jul 01 01:52:02 EDT 2025
Fri Feb 21 02:32:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fast–slow dynamics
Invariant slow manifolds
Suppression of chaos
Shallow arch
Quasi-periodic bursters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9f94a4dfdb2644ab685346ea01b21573ad08e0449756ba160eafd9c14853f30c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2343326559
PQPubID 2043746
PageCount 16
ParticipantIDs proquest_journals_2343326559
crossref_primary_10_1007_s11071_019_05082_7
crossref_citationtrail_10_1007_s11071_019_05082_7
springer_journals_10_1007_s11071_019_05082_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LakradFSchiehlenWEffects of a low frequency parametric excitationChaos Solitons Fractals20042211491164207884010.1016/j.chaos.2004.03.029
KivsharYSSpatschekKHNonlinear dynamics and solitons in the presence of rapidly varying periodic perturbationsChaos Solitons Fractals199551225512569136823410.1016/0960-0779(94)E0114-5
AlfosailFKHajjajAZYounisMITheoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonatorsJ. Comput. Nonlinear Dyn.201814101100110.1115/1.4041771
HeagyJDittoWLDynamics of a two-frequency parametrically driven Duffing oscillatorJ. Nonlinear Sci.19911423455114397710.1007/BF02429848
FiedlerBScheurleJDiscretization of Homoclinic orbits, rapid forcing and invisible chaosMem. Am. Math. Soc.19961195707913420180923.34049
NayfehAHPerturbation Methods1973New YorkWiley-Interscience0265.35002
BlekhmanIIVibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications2000SingaporeWorld Scientific10.1142/4116
LinSMLiauhCTLeeSYHoSHWangWRFrequency shifts and analytical solutions of an AFM curved beamMeasurement20144729630510.1016/j.measurement.2013.08.053
NayfehAHKhdeirAANonlinear rolling of ships in regular beam seasInt. Shipbuild. Prog.198633379404910.3233/ISP-1986-3337901
VenkatesanALakshmananMPrasadARamaswamyRIntermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillatorPhys. Rev. E20006136415110.1103/PhysRevE.61.3641
OuakadHMYounisMIOn using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applicationsJ. Sound Vib.201433355556810.1016/j.jsv.2013.09.024
CardinPTTeixeiraMAFenichel theory for multiple time scale singular perturbation problemsSIAM J. Appl. Dyn. Syst.201716314251452368135910.1137/16M1067202
WigginsSOn the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equationsSIAM J. Appl. Math.198848226228593303410.1137/0148013
LakradFBelhaqMRegaGVestroniFSolutions of a shallow arch under fast and slow excitationsIUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications2005BerlinSpringer233240
FenichelNPersistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J.19712119322628710610.1512/iumj.1972.21.21017
KarnovskyIATheory of Arched Structures: Strength, Stability, Vibration2012New YorkSpringer10.1007/978-1-4614-0469-9
NayfehAHBalachandranBModal interactions in dynamical and structural systemsAppl. Mech. Rev.19894211175202103758710.1115/1.3152389
YuWChenFHomoclinic orbits in a shallow arch subjected to periodic excitationNonlinear Dyn.2014781713727326647310.1007/s11071-014-1471-5
LakradFChtoukiABelhaqMNonlinear vibrations of a shallow arch under a low frequency and a resonant harmonic excitationsMeccanica20165125772587356334610.1007/s11012-016-0470-7
IzhikevichEMDynamical Systems in Neuroscience: The Geometry of Excitability and Bursting2007CambridgeMIT Press
YamamotoKFujitaTBadelAFormosaFKandaKMaenakaKVibration energy harvester with bi-stable curved beam spring offset by gravitational accelerationJ. Phys. Conf. Ser.201566001212710.1088/1742-6596/660/1/012127
TienWMSri NamachchivayaNMalhotraNNonlinear dynamics of a shallow arch under periodic excitation-II. 1:1 internal resonanceInt. J. Non-linear Mech.19942933673810.1016/0020-7462(94)90008-6
ChtoukiALakradFBelhaqMBelhaqMNonlinear vibrations of a shallow arch subject to resonant and low harmonic frequency excitations under 1:1 internal resonanceRecent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics2018BerlinSpringer153170
WolfASwiftJBSwinneyHLVastanoJADetermining exponents from a time seriesPhysica D19851628531780570610.1016/0167-2789(85)90011-9
LakradFBelhaqMQuasi-periodic solutions and periodic bursters in quasiperiodically driven oscillatorsCommun. Nonlinear Sci. Numer. Simul.200914524262433247448310.1016/j.cnsns.2008.09.007
GolubitskyMJosicKKaperTJBroerHKrauskopfBVegterGAn unfolding theory approach to bursting in fast–slow systemsGlobal Analysis of Dynamical Systems2001BristolIOP1215.34043
Alaggio, R., Benedettini, F.: The use of experimental tests in the formulation of analytical models for the finite forced dynamics of planar arches. In: Proceedings of DETC 01 (2001)
LiHPreidikmanSBalachandranBMoteCDJrNonlinear free and forced oscillations of piezoelectric microresonatorsJ. Micromech. Microeng.20061635636710.1088/0960-1317/16/2/021
TienW-MNamachchivayaNSBajajAKNonlinear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonanceInt. J. Non-linear Mech.199429334936610.1016/0020-7462(94)90007-8
FK Alfosail (5082_CR3) 2018; 14
M Golubitsky (5082_CR24) 2001
AH Nayfeh (5082_CR27) 1986; 33
IA Karnovsky (5082_CR1) 2012
SM Lin (5082_CR4) 2014; 47
A Chtouki (5082_CR15) 2018
K Yamamoto (5082_CR5) 2015; 660
II Blekhman (5082_CR22) 2000
W Yu (5082_CR10) 2014; 78
N Fenichel (5082_CR16) 1971; 21
YS Kivshar (5082_CR21) 1995; 5
H Li (5082_CR11) 2006; 16
AH Nayfeh (5082_CR7) 1973
HM Ouakad (5082_CR2) 2014; 333
F Lakrad (5082_CR12) 2004; 22
J Heagy (5082_CR19) 1991; 1
A Wolf (5082_CR17) 1985; 16
S Wiggins (5082_CR28) 1988; 48
PT Cardin (5082_CR26) 2017; 16
AH Nayfeh (5082_CR6) 1989; 42
5082_CR18
A Venkatesan (5082_CR20) 2000; 61
F Lakrad (5082_CR13) 2005
B Fiedler (5082_CR29) 1996; 119
F Lakrad (5082_CR23) 2009; 14
W-M Tien (5082_CR8) 1994; 29
WM Tien (5082_CR9) 1994; 29
EM Izhikevich (5082_CR25) 2007
F Lakrad (5082_CR14) 2016; 51
References_xml – reference: CardinPTTeixeiraMAFenichel theory for multiple time scale singular perturbation problemsSIAM J. Appl. Dyn. Syst.201716314251452368135910.1137/16M1067202
– reference: ChtoukiALakradFBelhaqMBelhaqMNonlinear vibrations of a shallow arch subject to resonant and low harmonic frequency excitations under 1:1 internal resonanceRecent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics2018BerlinSpringer153170
– reference: WolfASwiftJBSwinneyHLVastanoJADetermining exponents from a time seriesPhysica D19851628531780570610.1016/0167-2789(85)90011-9
– reference: NayfehAHBalachandranBModal interactions in dynamical and structural systemsAppl. Mech. Rev.19894211175202103758710.1115/1.3152389
– reference: WigginsSOn the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equationsSIAM J. Appl. Math.198848226228593303410.1137/0148013
– reference: LinSMLiauhCTLeeSYHoSHWangWRFrequency shifts and analytical solutions of an AFM curved beamMeasurement20144729630510.1016/j.measurement.2013.08.053
– reference: YuWChenFHomoclinic orbits in a shallow arch subjected to periodic excitationNonlinear Dyn.2014781713727326647310.1007/s11071-014-1471-5
– reference: FenichelNPersistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J.19712119322628710610.1512/iumj.1972.21.21017
– reference: VenkatesanALakshmananMPrasadARamaswamyRIntermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillatorPhys. Rev. E20006136415110.1103/PhysRevE.61.3641
– reference: HeagyJDittoWLDynamics of a two-frequency parametrically driven Duffing oscillatorJ. Nonlinear Sci.19911423455114397710.1007/BF02429848
– reference: TienWMSri NamachchivayaNMalhotraNNonlinear dynamics of a shallow arch under periodic excitation-II. 1:1 internal resonanceInt. J. Non-linear Mech.19942933673810.1016/0020-7462(94)90008-6
– reference: NayfehAHPerturbation Methods1973New YorkWiley-Interscience0265.35002
– reference: YamamotoKFujitaTBadelAFormosaFKandaKMaenakaKVibration energy harvester with bi-stable curved beam spring offset by gravitational accelerationJ. Phys. Conf. Ser.201566001212710.1088/1742-6596/660/1/012127
– reference: KarnovskyIATheory of Arched Structures: Strength, Stability, Vibration2012New YorkSpringer10.1007/978-1-4614-0469-9
– reference: Alaggio, R., Benedettini, F.: The use of experimental tests in the formulation of analytical models for the finite forced dynamics of planar arches. In: Proceedings of DETC 01 (2001)
– reference: IzhikevichEMDynamical Systems in Neuroscience: The Geometry of Excitability and Bursting2007CambridgeMIT Press
– reference: AlfosailFKHajjajAZYounisMITheoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonatorsJ. Comput. Nonlinear Dyn.201814101100110.1115/1.4041771
– reference: LakradFBelhaqMQuasi-periodic solutions and periodic bursters in quasiperiodically driven oscillatorsCommun. Nonlinear Sci. Numer. Simul.200914524262433247448310.1016/j.cnsns.2008.09.007
– reference: BlekhmanIIVibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications2000SingaporeWorld Scientific10.1142/4116
– reference: TienW-MNamachchivayaNSBajajAKNonlinear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonanceInt. J. Non-linear Mech.199429334936610.1016/0020-7462(94)90007-8
– reference: NayfehAHKhdeirAANonlinear rolling of ships in regular beam seasInt. Shipbuild. Prog.198633379404910.3233/ISP-1986-3337901
– reference: KivsharYSSpatschekKHNonlinear dynamics and solitons in the presence of rapidly varying periodic perturbationsChaos Solitons Fractals199551225512569136823410.1016/0960-0779(94)E0114-5
– reference: LakradFSchiehlenWEffects of a low frequency parametric excitationChaos Solitons Fractals20042211491164207884010.1016/j.chaos.2004.03.029
– reference: LakradFBelhaqMRegaGVestroniFSolutions of a shallow arch under fast and slow excitationsIUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications2005BerlinSpringer233240
– reference: LiHPreidikmanSBalachandranBMoteCDJrNonlinear free and forced oscillations of piezoelectric microresonatorsJ. Micromech. Microeng.20061635636710.1088/0960-1317/16/2/021
– reference: FiedlerBScheurleJDiscretization of Homoclinic orbits, rapid forcing and invisible chaosMem. Am. Math. Soc.19961195707913420180923.34049
– reference: OuakadHMYounisMIOn using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applicationsJ. Sound Vib.201433355556810.1016/j.jsv.2013.09.024
– reference: GolubitskyMJosicKKaperTJBroerHKrauskopfBVegterGAn unfolding theory approach to bursting in fast–slow systemsGlobal Analysis of Dynamical Systems2001BristolIOP1215.34043
– reference: LakradFChtoukiABelhaqMNonlinear vibrations of a shallow arch under a low frequency and a resonant harmonic excitationsMeccanica20165125772587356334610.1007/s11012-016-0470-7
– volume: 29
  start-page: 367
  issue: 3
  year: 1994
  ident: 5082_CR9
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/0020-7462(94)90008-6
– volume: 16
  start-page: 1425
  issue: 3
  year: 2017
  ident: 5082_CR26
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/16M1067202
– volume: 48
  start-page: 262
  issue: 2
  year: 1988
  ident: 5082_CR28
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0148013
– volume: 22
  start-page: 1149
  year: 2004
  ident: 5082_CR12
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.03.029
– volume: 51
  start-page: 2577
  year: 2016
  ident: 5082_CR14
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0470-7
– volume-title: Vibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications
  year: 2000
  ident: 5082_CR22
  doi: 10.1142/4116
– start-page: 153
  volume-title: Recent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics
  year: 2018
  ident: 5082_CR15
– volume: 14
  start-page: 011001
  issue: 1
  year: 2018
  ident: 5082_CR3
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4041771
– volume: 119
  start-page: 79
  issue: 570
  year: 1996
  ident: 5082_CR29
  publication-title: Mem. Am. Math. Soc.
– volume: 61
  start-page: 3641
  year: 2000
  ident: 5082_CR20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.3641
– volume: 78
  start-page: 713
  issue: 1
  year: 2014
  ident: 5082_CR10
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1471-5
– ident: 5082_CR18
  doi: 10.1115/DETC2001/VIB-21613
– volume: 29
  start-page: 349
  issue: 3
  year: 1994
  ident: 5082_CR8
  publication-title: Int. J. Non-linear Mech.
  doi: 10.1016/0020-7462(94)90007-8
– volume: 16
  start-page: 285
  year: 1985
  ident: 5082_CR17
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– volume-title: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
  year: 2007
  ident: 5082_CR25
– volume: 1
  start-page: 423
  year: 1991
  ident: 5082_CR19
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02429848
– volume-title: Perturbation Methods
  year: 1973
  ident: 5082_CR7
– volume: 21
  start-page: 193
  year: 1971
  ident: 5082_CR16
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1972.21.21017
– volume: 5
  start-page: 2551
  issue: 12
  year: 1995
  ident: 5082_CR21
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/0960-0779(94)E0114-5
– volume: 16
  start-page: 356
  year: 2006
  ident: 5082_CR11
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/2/021
– volume: 660
  start-page: 012127
  year: 2015
  ident: 5082_CR5
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/660/1/012127
– volume-title: Global Analysis of Dynamical Systems
  year: 2001
  ident: 5082_CR24
– volume: 14
  start-page: 2426
  issue: 5
  year: 2009
  ident: 5082_CR23
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2008.09.007
– start-page: 233
  volume-title: IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications
  year: 2005
  ident: 5082_CR13
– volume: 33
  start-page: 40
  issue: 379
  year: 1986
  ident: 5082_CR27
  publication-title: Int. Shipbuild. Prog.
  doi: 10.3233/ISP-1986-3337901
– volume: 333
  start-page: 555
  year: 2014
  ident: 5082_CR2
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.09.024
– volume-title: Theory of Arched Structures: Strength, Stability, Vibration
  year: 2012
  ident: 5082_CR1
  doi: 10.1007/978-1-4614-0469-9
– volume: 42
  start-page: 175
  issue: 11
  year: 1989
  ident: 5082_CR6
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3152389
– volume: 47
  start-page: 296
  year: 2014
  ident: 5082_CR4
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.08.053
SSID ssj0003208
Score 2.3404844
Snippet In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Automotive Engineering
Chaos theory
Classical Mechanics
Control
Duffing equation
Dynamical Systems
Engineering
Harmonic excitation
Liapunov exponents
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Original Paper
Perturbation methods
Perturbation theory
Sequences
Singular perturbation
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwsSqurpKDNw2kTdrao4giHgTBhb2VNA9ccFsxXfTof_Af-kuc6bZbFRU8Jx1KZpL5vjy-IeSIG2FcaCOG0r1MBjJheWASFiZGcaVEEKv6guxNfDWU16No1DwK8-1t9_ZIsl6pu8duwFSQ-qaMA6oAXLhIliPg7hjXw_Bsvv6KsK5Dx4FZ4C7EqHkq87ONr-mow5jfjkXrbHO5QdYamEjPZn7dJAu26JH1BjLSZkL6Hln9pCe4RSa3U-XHDMWLSzPWFAYMdRA8VYWh-l6VYI2aWQ16T8cFVdRjMZXymWK8Uz_NcVuGViW0OOWr99c3j60oED7B2lua2hfdyHpvk-Hlxd35FWvqKTANE61iqUulksaZHFGQymNI1TK2igc5JP5EKMNPLZcyTaI4V0HMrXIm1UCYIuEE12KHLBVlYXcJDSPDjQSqY8GEA5DpEiucSjR4WwOF6ZOgHdas_SusefGQdTLJ6IoMXJHVrsiSPjmef_M4k9r4s_eg9VbWTDufhQLl2GJgSX1y0nqwa_7d2t7_uu-TlRB5d70VMyBL1dPUHgA4qfLDOhY_ABIV2y4
  priority: 102
  providerName: Springer Nature
Title Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation
URI https://link.springer.com/article/10.1007/s11071-019-05082-7
https://www.proquest.com/docview/2343326559
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7gUOfBQQC2XlAzewcGIn2ZzQgnZbgVQBYqXlFDn-ECvRpOCs6LH_gX_YX9KZrNMFJHqNk1HkGdtvxvZ7AC-EldanLuNE3ctVogpeJ7bgaWG10Fomue4PyJ7kx0v1fpWtYsEtxGOVw5zYT9S2NVQjf51KYtrKEQC_OfvBSTWKdlejhMYejHAKnmKEj97OTz5-vp6LZdpr0gnMMqgisYrXZraX5zDzoVS65AJRCuLMv5emHd78Z4u0X3kW9-FuhIxstvXxA7jlmgO4F-Eji4MzHMCdP7gFH8Lpp40Oa05Exq1dG4adR5wIgenGMvNNt2iN2a0efWDrhmkWSFil_cUo9lnY1FSiYV2LLV6H7vLid6BWIgs_JR0uw9y5iRTfj2C5mH95d8yjtgI3OOg6XvpSaWW9rQkR6TrHZVvlToukRhBQSG3F1AmlyiLLa53kwmlvS4PJUya9FEY-hv2mbdwTYGlmhVWY9jg04RFw-sJJrwuDnjeYzowhGbq1Gv6K9C--VzvKZHJFha6oeldUxRheXn9ztqXduPHtw8FbVRyCodoFzBheDR7cNf_f2tObrT2D2ynl3H0Z5hD2u58b9xyBSVdPYG-6OJrAaHb09cN8EmMRny7T2RW4p-MS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeoBRQt5TiA5zAwomdpDkghGiXLS2VkFppb8Hxj1ipm7R1VqU33oH34KF4EmaySReQ6K1nJyPLM5n5Psf-BuC5sNL62CWcpHu5ilTGy8hmPM6sFlrLKNXtAdnDdHSsPo6T8RL87O_C0LHKPie2idrWhvbIX8eSlLZSBMBvT884dY2iv6t9C415WOy7ywukbOHN3g7690UcD3eP3o9411WAGwy3huc-V1pZb0vCArpMsWCp1GkRlVj-Mqmt2HZCqTxL0lJHqXDa29wgbUikl8JItHsLbuNscjpCuD38cJX5Zdx2wBPIaWj_Y9xd0plf1UOeRcQ95wIxEaLavwvhAt3-80O2rXPDVbjXAVT2bh5RD2DJVWtwvwOrrEsFYQ1W_lAyfAjTzzMdJpxkk2s7MQxdRQoMgenKMvNV12iN2ctKTycmsEnFNAvUxqW-YLSkLMxK2hBiTY0jXofm1_cfgUZJmnxKXb8Mc99MJyj-CI5vZM0fw3JVV24dWJxYYRWSLIcmPMJbnznpdWYwzgySpwFE_bIW_ayo28ZJsRBoJlcU6IqidUWRDeDl1Tunc5GPa5_e7L1VdB98KBbhOYBXvQcXw_-3tnG9tWdwZ3T06aA42DvcfwJ3Y2L77QbQJiw35zP3FCFRU261ccjgy00H_m9LoBqS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RkKr2QAst6gItPvRWLJzYScgRtV1RQIhKrLS3yPGHWIlNEM4Kjv0P_Yf8EmayCQsVrdSznVHk8cd79swbgM_CSutjl3CS7uUqUhkvI5vxOLNaaC2jVLcBsqfp4UgdjZPxoyz-Ntq9f5Kc5zSQSlPV7F1Zv7dIfEPWQjQ45wIRBmLEF7CC23FEQV2j-OBhL5ZxW5NOIMugG4lxlzbzvI2nR9MCb_7xRNqePMO3sNpBRnYw9_EaLLlqHd508JF1izOsw-tH2oLvYPpzpsOEk5BxbSeG4eCRJkJgurLMXOgarTE7r0cf2KRimgUqrFLfMJr7LMxKuqJhTY0tXofm7tfvQK0kFj6lOlyGuVvTSXy_h9Hw-_nXQ97VVuAGF13Dc58rray3JSEiXaZ4bKvUaRGVCAIyqa3Yd0KpPEvSUkepcNrb3CB5SqSXwsgNWK7qyn0AFidWWIW0x6EJj4DTZ056nRn0vEE6M4CoH9ai_yuqf3FZLCSTyRUFuqJoXVFkA_jy8M3VXHbjn723e28V3RIMRSxJmi1FxjSA3d6Di-a_W9v8v-478PLs27A4-XF6vAWvYqLj7Q3NNiw31zP3ETFLU35qp-U9fzfiXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-periodic+bursters+and+chaotic+dynamics+in+a+shallow+arch+subject+to+a+fast%E2%80%93slow+parametric+excitation&rft.jtitle=Nonlinear+dynamics&rft.au=Chtouki%2C+A.&rft.au=Lakrad%2C+F.&rft.au=Belhaq%2C+M.&rft.date=2020-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=99&rft.issue=1&rft.spage=283&rft.epage=298&rft_id=info:doi/10.1007%2Fs11071-019-05082-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_019_05082_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon