Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation
In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Math...
Saved in:
Published in | Nonlinear dynamics Vol. 99; no. 1; pp. 283 - 298 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-019-05082-7 |
Cover
Loading…
Abstract | In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Mathieu–Duffing equation. The dynamics are analyzed using the singular perturbation theory and the Melnikov method. It is shown that invariant slow manifolds of the averaged system, over the fast dynamics, are slaving the dynamics of the system under the condition of non-hyperbolicity of the undeformed state of the arch. These manifolds correspond to the buckled, the unbuckled and the undeformed solutions of the arch. Various kinds of quasi-periodic and chaotic bursters relating these slow manifolds are obtained, and quasi-periodic bursters doubling and tripling sequences leading to hysteretic chaos are observed. Using the Melnikov method and the Lyapunov exponents computations, it was demonstrated that chaos induced by the slow excitation can be suppressed by the fast harmonic excitation in large domains of the control parameters space, especially in the regions where the undeformed configuration of the arch is not hyperbolic. |
---|---|
AbstractList | In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its support that is composed of slow and fast harmonic motions. The corresponding mathematical model consists of a nonlinear quasi-periodic Mathieu–Duffing equation. The dynamics are analyzed using the singular perturbation theory and the Melnikov method. It is shown that invariant slow manifolds of the averaged system, over the fast dynamics, are slaving the dynamics of the system under the condition of non-hyperbolicity of the undeformed state of the arch. These manifolds correspond to the buckled, the unbuckled and the undeformed solutions of the arch. Various kinds of quasi-periodic and chaotic bursters relating these slow manifolds are obtained, and quasi-periodic bursters doubling and tripling sequences leading to hysteretic chaos are observed. Using the Melnikov method and the Lyapunov exponents computations, it was demonstrated that chaos induced by the slow excitation can be suppressed by the fast harmonic excitation in large domains of the control parameters space, especially in the regions where the undeformed configuration of the arch is not hyperbolic. |
Author | Lakrad, F. Belhaq, M. Chtouki, A. |
Author_xml | – sequence: 1 givenname: A. surname: Chtouki fullname: Chtouki, A. organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca – sequence: 2 givenname: F. surname: Lakrad fullname: Lakrad, F. email: lakrad@hotmail.com organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca – sequence: 3 givenname: M. surname: Belhaq fullname: Belhaq, M. organization: Laboratory of Renewable Energy and Dynamics of Systems, Faculty of Sciences Ain Chock, University Hassan II-Casablanca |
BookMark | eNp9kMtqWzEQhkVxoY7bF-hKkLXS0eVctAwhNzCEQAvZiTk6OrWMfeRIOjTe5R36hn2SynVCIYusBmb-b2b-_4TMxjA6Qr5yOOMAzbfEOTScAdcMKmgFaz6QOa8ayUStH2ZkDlooBhoePpGTlNYAIAW0c7K9nzB5tnPRh95b2k0xZRcTxbGndoUhl2a_H3HrbaJ-pEjTCjeb8ItitCuapm7tbKY5lMmAKf95_p0O0x1G3LocC-6erM-YfRg_k48DbpL78lIX5MfV5feLG7a8u769OF8yK7nOTA9aoeqHvhO1UtjVbSVV7RB4Jw6msIfWgVK6qeoOeQ0Oh15bropukGDlgpwe9-5ieJxcymYdpjiWk0ZIJaWoq0oXlTiqbAwpRTeYXfRbjHvDwRxiNcdYTYnV_IvVNAVq30Cv5nJEv3kflUc0lTvjTxf_f_UO9RcJcJCg |
CitedBy_id | crossref_primary_10_1016_j_apm_2020_06_055 crossref_primary_10_3390_math11071690 crossref_primary_10_1007_s11071_021_06622_w crossref_primary_10_1007_s11071_020_05849_3 crossref_primary_10_1007_s11071_021_06976_1 crossref_primary_10_1016_j_cnsns_2022_106897 crossref_primary_10_1063_5_0256876 crossref_primary_10_1016_j_amc_2021_126522 crossref_primary_10_1155_2021_5556021 crossref_primary_10_1088_1402_4896_acfce1 crossref_primary_10_2139_ssrn_4151713 crossref_primary_10_1016_j_jsv_2021_116138 crossref_primary_10_1016_j_tws_2023_111099 crossref_primary_10_1063_5_0112529 |
Cites_doi | 10.1016/0020-7462(94)90008-6 10.1137/16M1067202 10.1137/0148013 10.1016/j.chaos.2004.03.029 10.1007/s11012-016-0470-7 10.1142/4116 10.1115/1.4041771 10.1103/PhysRevE.61.3641 10.1007/s11071-014-1471-5 10.1115/DETC2001/VIB-21613 10.1016/0020-7462(94)90007-8 10.1016/0167-2789(85)90011-9 10.1007/BF02429848 10.1512/iumj.1972.21.21017 10.1016/0960-0779(94)E0114-5 10.1088/0960-1317/16/2/021 10.1088/1742-6596/660/1/012127 10.1016/j.cnsns.2008.09.007 10.3233/ISP-1986-3337901 10.1016/j.jsv.2013.09.024 10.1007/978-1-4614-0469-9 10.1115/1.3152389 10.1016/j.measurement.2013.08.053 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-019-05082-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 298 |
ExternalDocumentID | 10_1007_s11071_019_05082_7 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-9f94a4dfdb2644ab685346ea01b21573ad08e0449756ba160eafd9c14853f30c3 |
IEDL.DBID | BENPR |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:06:44 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Tue Jul 01 01:52:02 EDT 2025 Fri Feb 21 02:32:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fast–slow dynamics Invariant slow manifolds Suppression of chaos Shallow arch Quasi-periodic bursters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9f94a4dfdb2644ab685346ea01b21573ad08e0449756ba160eafd9c14853f30c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2343326559 |
PQPubID | 2043746 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2343326559 crossref_primary_10_1007_s11071_019_05082_7 crossref_citationtrail_10_1007_s11071_019_05082_7 springer_journals_10_1007_s11071_019_05082_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | LakradFSchiehlenWEffects of a low frequency parametric excitationChaos Solitons Fractals20042211491164207884010.1016/j.chaos.2004.03.029 KivsharYSSpatschekKHNonlinear dynamics and solitons in the presence of rapidly varying periodic perturbationsChaos Solitons Fractals199551225512569136823410.1016/0960-0779(94)E0114-5 AlfosailFKHajjajAZYounisMITheoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonatorsJ. Comput. Nonlinear Dyn.201814101100110.1115/1.4041771 HeagyJDittoWLDynamics of a two-frequency parametrically driven Duffing oscillatorJ. Nonlinear Sci.19911423455114397710.1007/BF02429848 FiedlerBScheurleJDiscretization of Homoclinic orbits, rapid forcing and invisible chaosMem. Am. Math. Soc.19961195707913420180923.34049 NayfehAHPerturbation Methods1973New YorkWiley-Interscience0265.35002 BlekhmanIIVibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications2000SingaporeWorld Scientific10.1142/4116 LinSMLiauhCTLeeSYHoSHWangWRFrequency shifts and analytical solutions of an AFM curved beamMeasurement20144729630510.1016/j.measurement.2013.08.053 NayfehAHKhdeirAANonlinear rolling of ships in regular beam seasInt. Shipbuild. Prog.198633379404910.3233/ISP-1986-3337901 VenkatesanALakshmananMPrasadARamaswamyRIntermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillatorPhys. Rev. E20006136415110.1103/PhysRevE.61.3641 OuakadHMYounisMIOn using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applicationsJ. Sound Vib.201433355556810.1016/j.jsv.2013.09.024 CardinPTTeixeiraMAFenichel theory for multiple time scale singular perturbation problemsSIAM J. Appl. Dyn. Syst.201716314251452368135910.1137/16M1067202 WigginsSOn the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equationsSIAM J. Appl. Math.198848226228593303410.1137/0148013 LakradFBelhaqMRegaGVestroniFSolutions of a shallow arch under fast and slow excitationsIUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications2005BerlinSpringer233240 FenichelNPersistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J.19712119322628710610.1512/iumj.1972.21.21017 KarnovskyIATheory of Arched Structures: Strength, Stability, Vibration2012New YorkSpringer10.1007/978-1-4614-0469-9 NayfehAHBalachandranBModal interactions in dynamical and structural systemsAppl. Mech. Rev.19894211175202103758710.1115/1.3152389 YuWChenFHomoclinic orbits in a shallow arch subjected to periodic excitationNonlinear Dyn.2014781713727326647310.1007/s11071-014-1471-5 LakradFChtoukiABelhaqMNonlinear vibrations of a shallow arch under a low frequency and a resonant harmonic excitationsMeccanica20165125772587356334610.1007/s11012-016-0470-7 IzhikevichEMDynamical Systems in Neuroscience: The Geometry of Excitability and Bursting2007CambridgeMIT Press YamamotoKFujitaTBadelAFormosaFKandaKMaenakaKVibration energy harvester with bi-stable curved beam spring offset by gravitational accelerationJ. Phys. Conf. Ser.201566001212710.1088/1742-6596/660/1/012127 TienWMSri NamachchivayaNMalhotraNNonlinear dynamics of a shallow arch under periodic excitation-II. 1:1 internal resonanceInt. J. Non-linear Mech.19942933673810.1016/0020-7462(94)90008-6 ChtoukiALakradFBelhaqMBelhaqMNonlinear vibrations of a shallow arch subject to resonant and low harmonic frequency excitations under 1:1 internal resonanceRecent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics2018BerlinSpringer153170 WolfASwiftJBSwinneyHLVastanoJADetermining exponents from a time seriesPhysica D19851628531780570610.1016/0167-2789(85)90011-9 LakradFBelhaqMQuasi-periodic solutions and periodic bursters in quasiperiodically driven oscillatorsCommun. Nonlinear Sci. Numer. Simul.200914524262433247448310.1016/j.cnsns.2008.09.007 GolubitskyMJosicKKaperTJBroerHKrauskopfBVegterGAn unfolding theory approach to bursting in fast–slow systemsGlobal Analysis of Dynamical Systems2001BristolIOP1215.34043 Alaggio, R., Benedettini, F.: The use of experimental tests in the formulation of analytical models for the finite forced dynamics of planar arches. In: Proceedings of DETC 01 (2001) LiHPreidikmanSBalachandranBMoteCDJrNonlinear free and forced oscillations of piezoelectric microresonatorsJ. Micromech. Microeng.20061635636710.1088/0960-1317/16/2/021 TienW-MNamachchivayaNSBajajAKNonlinear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonanceInt. J. Non-linear Mech.199429334936610.1016/0020-7462(94)90007-8 FK Alfosail (5082_CR3) 2018; 14 M Golubitsky (5082_CR24) 2001 AH Nayfeh (5082_CR27) 1986; 33 IA Karnovsky (5082_CR1) 2012 SM Lin (5082_CR4) 2014; 47 A Chtouki (5082_CR15) 2018 K Yamamoto (5082_CR5) 2015; 660 II Blekhman (5082_CR22) 2000 W Yu (5082_CR10) 2014; 78 N Fenichel (5082_CR16) 1971; 21 YS Kivshar (5082_CR21) 1995; 5 H Li (5082_CR11) 2006; 16 AH Nayfeh (5082_CR7) 1973 HM Ouakad (5082_CR2) 2014; 333 F Lakrad (5082_CR12) 2004; 22 J Heagy (5082_CR19) 1991; 1 A Wolf (5082_CR17) 1985; 16 S Wiggins (5082_CR28) 1988; 48 PT Cardin (5082_CR26) 2017; 16 AH Nayfeh (5082_CR6) 1989; 42 5082_CR18 A Venkatesan (5082_CR20) 2000; 61 F Lakrad (5082_CR13) 2005 B Fiedler (5082_CR29) 1996; 119 F Lakrad (5082_CR23) 2009; 14 W-M Tien (5082_CR8) 1994; 29 WM Tien (5082_CR9) 1994; 29 EM Izhikevich (5082_CR25) 2007 F Lakrad (5082_CR14) 2016; 51 |
References_xml | – reference: CardinPTTeixeiraMAFenichel theory for multiple time scale singular perturbation problemsSIAM J. Appl. Dyn. Syst.201716314251452368135910.1137/16M1067202 – reference: ChtoukiALakradFBelhaqMBelhaqMNonlinear vibrations of a shallow arch subject to resonant and low harmonic frequency excitations under 1:1 internal resonanceRecent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics2018BerlinSpringer153170 – reference: WolfASwiftJBSwinneyHLVastanoJADetermining exponents from a time seriesPhysica D19851628531780570610.1016/0167-2789(85)90011-9 – reference: NayfehAHBalachandranBModal interactions in dynamical and structural systemsAppl. Mech. Rev.19894211175202103758710.1115/1.3152389 – reference: WigginsSOn the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equationsSIAM J. Appl. Math.198848226228593303410.1137/0148013 – reference: LinSMLiauhCTLeeSYHoSHWangWRFrequency shifts and analytical solutions of an AFM curved beamMeasurement20144729630510.1016/j.measurement.2013.08.053 – reference: YuWChenFHomoclinic orbits in a shallow arch subjected to periodic excitationNonlinear Dyn.2014781713727326647310.1007/s11071-014-1471-5 – reference: FenichelNPersistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J.19712119322628710610.1512/iumj.1972.21.21017 – reference: VenkatesanALakshmananMPrasadARamaswamyRIntermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillatorPhys. Rev. E20006136415110.1103/PhysRevE.61.3641 – reference: HeagyJDittoWLDynamics of a two-frequency parametrically driven Duffing oscillatorJ. Nonlinear Sci.19911423455114397710.1007/BF02429848 – reference: TienWMSri NamachchivayaNMalhotraNNonlinear dynamics of a shallow arch under periodic excitation-II. 1:1 internal resonanceInt. J. Non-linear Mech.19942933673810.1016/0020-7462(94)90008-6 – reference: NayfehAHPerturbation Methods1973New YorkWiley-Interscience0265.35002 – reference: YamamotoKFujitaTBadelAFormosaFKandaKMaenakaKVibration energy harvester with bi-stable curved beam spring offset by gravitational accelerationJ. Phys. Conf. Ser.201566001212710.1088/1742-6596/660/1/012127 – reference: KarnovskyIATheory of Arched Structures: Strength, Stability, Vibration2012New YorkSpringer10.1007/978-1-4614-0469-9 – reference: Alaggio, R., Benedettini, F.: The use of experimental tests in the formulation of analytical models for the finite forced dynamics of planar arches. In: Proceedings of DETC 01 (2001) – reference: IzhikevichEMDynamical Systems in Neuroscience: The Geometry of Excitability and Bursting2007CambridgeMIT Press – reference: AlfosailFKHajjajAZYounisMITheoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonatorsJ. Comput. Nonlinear Dyn.201814101100110.1115/1.4041771 – reference: LakradFBelhaqMQuasi-periodic solutions and periodic bursters in quasiperiodically driven oscillatorsCommun. Nonlinear Sci. Numer. Simul.200914524262433247448310.1016/j.cnsns.2008.09.007 – reference: BlekhmanIIVibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications2000SingaporeWorld Scientific10.1142/4116 – reference: TienW-MNamachchivayaNSBajajAKNonlinear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonanceInt. J. Non-linear Mech.199429334936610.1016/0020-7462(94)90007-8 – reference: NayfehAHKhdeirAANonlinear rolling of ships in regular beam seasInt. Shipbuild. Prog.198633379404910.3233/ISP-1986-3337901 – reference: KivsharYSSpatschekKHNonlinear dynamics and solitons in the presence of rapidly varying periodic perturbationsChaos Solitons Fractals199551225512569136823410.1016/0960-0779(94)E0114-5 – reference: LakradFSchiehlenWEffects of a low frequency parametric excitationChaos Solitons Fractals20042211491164207884010.1016/j.chaos.2004.03.029 – reference: LakradFBelhaqMRegaGVestroniFSolutions of a shallow arch under fast and slow excitationsIUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications2005BerlinSpringer233240 – reference: LiHPreidikmanSBalachandranBMoteCDJrNonlinear free and forced oscillations of piezoelectric microresonatorsJ. Micromech. Microeng.20061635636710.1088/0960-1317/16/2/021 – reference: FiedlerBScheurleJDiscretization of Homoclinic orbits, rapid forcing and invisible chaosMem. Am. Math. Soc.19961195707913420180923.34049 – reference: OuakadHMYounisMIOn using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applicationsJ. Sound Vib.201433355556810.1016/j.jsv.2013.09.024 – reference: GolubitskyMJosicKKaperTJBroerHKrauskopfBVegterGAn unfolding theory approach to bursting in fast–slow systemsGlobal Analysis of Dynamical Systems2001BristolIOP1215.34043 – reference: LakradFChtoukiABelhaqMNonlinear vibrations of a shallow arch under a low frequency and a resonant harmonic excitationsMeccanica20165125772587356334610.1007/s11012-016-0470-7 – volume: 29 start-page: 367 issue: 3 year: 1994 ident: 5082_CR9 publication-title: Int. J. Non-linear Mech. doi: 10.1016/0020-7462(94)90008-6 – volume: 16 start-page: 1425 issue: 3 year: 2017 ident: 5082_CR26 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/16M1067202 – volume: 48 start-page: 262 issue: 2 year: 1988 ident: 5082_CR28 publication-title: SIAM J. Appl. Math. doi: 10.1137/0148013 – volume: 22 start-page: 1149 year: 2004 ident: 5082_CR12 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.03.029 – volume: 51 start-page: 2577 year: 2016 ident: 5082_CR14 publication-title: Meccanica doi: 10.1007/s11012-016-0470-7 – volume-title: Vibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Applications year: 2000 ident: 5082_CR22 doi: 10.1142/4116 – start-page: 153 volume-title: Recent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics year: 2018 ident: 5082_CR15 – volume: 14 start-page: 011001 issue: 1 year: 2018 ident: 5082_CR3 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4041771 – volume: 119 start-page: 79 issue: 570 year: 1996 ident: 5082_CR29 publication-title: Mem. Am. Math. Soc. – volume: 61 start-page: 3641 year: 2000 ident: 5082_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.3641 – volume: 78 start-page: 713 issue: 1 year: 2014 ident: 5082_CR10 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1471-5 – ident: 5082_CR18 doi: 10.1115/DETC2001/VIB-21613 – volume: 29 start-page: 349 issue: 3 year: 1994 ident: 5082_CR8 publication-title: Int. J. Non-linear Mech. doi: 10.1016/0020-7462(94)90007-8 – volume: 16 start-page: 285 year: 1985 ident: 5082_CR17 publication-title: Physica D doi: 10.1016/0167-2789(85)90011-9 – volume-title: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting year: 2007 ident: 5082_CR25 – volume: 1 start-page: 423 year: 1991 ident: 5082_CR19 publication-title: J. Nonlinear Sci. doi: 10.1007/BF02429848 – volume-title: Perturbation Methods year: 1973 ident: 5082_CR7 – volume: 21 start-page: 193 year: 1971 ident: 5082_CR16 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1972.21.21017 – volume: 5 start-page: 2551 issue: 12 year: 1995 ident: 5082_CR21 publication-title: Chaos Solitons Fractals doi: 10.1016/0960-0779(94)E0114-5 – volume: 16 start-page: 356 year: 2006 ident: 5082_CR11 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/2/021 – volume: 660 start-page: 012127 year: 2015 ident: 5082_CR5 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/660/1/012127 – volume-title: Global Analysis of Dynamical Systems year: 2001 ident: 5082_CR24 – volume: 14 start-page: 2426 issue: 5 year: 2009 ident: 5082_CR23 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2008.09.007 – start-page: 233 volume-title: IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and Its Applications year: 2005 ident: 5082_CR13 – volume: 33 start-page: 40 issue: 379 year: 1986 ident: 5082_CR27 publication-title: Int. Shipbuild. Prog. doi: 10.3233/ISP-1986-3337901 – volume: 333 start-page: 555 year: 2014 ident: 5082_CR2 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.09.024 – volume-title: Theory of Arched Structures: Strength, Stability, Vibration year: 2012 ident: 5082_CR1 doi: 10.1007/978-1-4614-0469-9 – volume: 42 start-page: 175 issue: 11 year: 1989 ident: 5082_CR6 publication-title: Appl. Mech. Rev. doi: 10.1115/1.3152389 – volume: 47 start-page: 296 year: 2014 ident: 5082_CR4 publication-title: Measurement doi: 10.1016/j.measurement.2013.08.053 |
SSID | ssj0003208 |
Score | 2.3404844 |
Snippet | In this paper, various nonlinear dynamics of a one-degree-of-freedom shallow arch model are investigated. The arch is subject to an imposed displacement of its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 283 |
SubjectTerms | Automotive Engineering Chaos theory Classical Mechanics Control Duffing equation Dynamical Systems Engineering Harmonic excitation Liapunov exponents Mathematical models Mechanical Engineering Nonlinear dynamics Original Paper Perturbation methods Perturbation theory Sequences Singular perturbation Vibration |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwsSqurpKDNw2kTdrao4giHgTBhb2VNA9ccFsxXfTof_Af-kuc6bZbFRU8Jx1KZpL5vjy-IeSIG2FcaCOG0r1MBjJheWASFiZGcaVEEKv6guxNfDWU16No1DwK8-1t9_ZIsl6pu8duwFSQ-qaMA6oAXLhIliPg7hjXw_Bsvv6KsK5Dx4FZ4C7EqHkq87ONr-mow5jfjkXrbHO5QdYamEjPZn7dJAu26JH1BjLSZkL6Hln9pCe4RSa3U-XHDMWLSzPWFAYMdRA8VYWh-l6VYI2aWQ16T8cFVdRjMZXymWK8Uz_NcVuGViW0OOWr99c3j60oED7B2lua2hfdyHpvk-Hlxd35FWvqKTANE61iqUulksaZHFGQymNI1TK2igc5JP5EKMNPLZcyTaI4V0HMrXIm1UCYIuEE12KHLBVlYXcJDSPDjQSqY8GEA5DpEiucSjR4WwOF6ZOgHdas_SusefGQdTLJ6IoMXJHVrsiSPjmef_M4k9r4s_eg9VbWTDufhQLl2GJgSX1y0nqwa_7d2t7_uu-TlRB5d70VMyBL1dPUHgA4qfLDOhY_ABIV2y4 priority: 102 providerName: Springer Nature |
Title | Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation |
URI | https://link.springer.com/article/10.1007/s11071-019-05082-7 https://www.proquest.com/docview/2343326559 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7gUOfBQQC2XlAzewcGIn2ZzQgnZbgVQBYqXlFDn-ECvRpOCs6LH_gX_YX9KZrNMFJHqNk1HkGdtvxvZ7AC-EldanLuNE3ctVogpeJ7bgaWG10Fomue4PyJ7kx0v1fpWtYsEtxGOVw5zYT9S2NVQjf51KYtrKEQC_OfvBSTWKdlejhMYejHAKnmKEj97OTz5-vp6LZdpr0gnMMqgisYrXZraX5zDzoVS65AJRCuLMv5emHd78Z4u0X3kW9-FuhIxstvXxA7jlmgO4F-Eji4MzHMCdP7gFH8Lpp40Oa05Exq1dG4adR5wIgenGMvNNt2iN2a0efWDrhmkWSFil_cUo9lnY1FSiYV2LLV6H7vLid6BWIgs_JR0uw9y5iRTfj2C5mH95d8yjtgI3OOg6XvpSaWW9rQkR6TrHZVvlToukRhBQSG3F1AmlyiLLa53kwmlvS4PJUya9FEY-hv2mbdwTYGlmhVWY9jg04RFw-sJJrwuDnjeYzowhGbq1Gv6K9C--VzvKZHJFha6oeldUxRheXn9ztqXduPHtw8FbVRyCodoFzBheDR7cNf_f2tObrT2D2ynl3H0Z5hD2u58b9xyBSVdPYG-6OJrAaHb09cN8EmMRny7T2RW4p-MS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeoBRQt5TiA5zAwomdpDkghGiXLS2VkFppb8Hxj1ipm7R1VqU33oH34KF4EmaySReQ6K1nJyPLM5n5Psf-BuC5sNL62CWcpHu5ilTGy8hmPM6sFlrLKNXtAdnDdHSsPo6T8RL87O_C0LHKPie2idrWhvbIX8eSlLZSBMBvT884dY2iv6t9C415WOy7ywukbOHN3g7690UcD3eP3o9411WAGwy3huc-V1pZb0vCArpMsWCp1GkRlVj-Mqmt2HZCqTxL0lJHqXDa29wgbUikl8JItHsLbuNscjpCuD38cJX5Zdx2wBPIaWj_Y9xd0plf1UOeRcQ95wIxEaLavwvhAt3-80O2rXPDVbjXAVT2bh5RD2DJVWtwvwOrrEsFYQ1W_lAyfAjTzzMdJpxkk2s7MQxdRQoMgenKMvNV12iN2ctKTycmsEnFNAvUxqW-YLSkLMxK2hBiTY0jXofm1_cfgUZJmnxKXb8Mc99MJyj-CI5vZM0fw3JVV24dWJxYYRWSLIcmPMJbnznpdWYwzgySpwFE_bIW_ayo28ZJsRBoJlcU6IqidUWRDeDl1Tunc5GPa5_e7L1VdB98KBbhOYBXvQcXw_-3tnG9tWdwZ3T06aA42DvcfwJ3Y2L77QbQJiw35zP3FCFRU261ccjgy00H_m9LoBqS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RkKr2QAst6gItPvRWLJzYScgRtV1RQIhKrLS3yPGHWIlNEM4Kjv0P_Yf8EmayCQsVrdSznVHk8cd79swbgM_CSutjl3CS7uUqUhkvI5vxOLNaaC2jVLcBsqfp4UgdjZPxoyz-Ntq9f5Kc5zSQSlPV7F1Zv7dIfEPWQjQ45wIRBmLEF7CC23FEQV2j-OBhL5ZxW5NOIMugG4lxlzbzvI2nR9MCb_7xRNqePMO3sNpBRnYw9_EaLLlqHd508JF1izOsw-tH2oLvYPpzpsOEk5BxbSeG4eCRJkJgurLMXOgarTE7r0cf2KRimgUqrFLfMJr7LMxKuqJhTY0tXofm7tfvQK0kFj6lOlyGuVvTSXy_h9Hw-_nXQ97VVuAGF13Dc58rray3JSEiXaZ4bKvUaRGVCAIyqa3Yd0KpPEvSUkepcNrb3CB5SqSXwsgNWK7qyn0AFidWWIW0x6EJj4DTZ056nRn0vEE6M4CoH9ai_yuqf3FZLCSTyRUFuqJoXVFkA_jy8M3VXHbjn723e28V3RIMRSxJmi1FxjSA3d6Di-a_W9v8v-478PLs27A4-XF6vAWvYqLj7Q3NNiw31zP3ETFLU35qp-U9fzfiXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-periodic+bursters+and+chaotic+dynamics+in+a+shallow+arch+subject+to+a+fast%E2%80%93slow+parametric+excitation&rft.jtitle=Nonlinear+dynamics&rft.au=Chtouki%2C+A.&rft.au=Lakrad%2C+F.&rft.au=Belhaq%2C+M.&rft.date=2020-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=99&rft.issue=1&rft.spage=283&rft.epage=298&rft_id=info:doi/10.1007%2Fs11071-019-05082-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_019_05082_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |