A novel approach to fake news detection in social networks using genetic algorithm applying machine learning classifiers
Now-a-days fake news have become part and parcel of our everyday life due to its quick spreading in different social media. Fake news identification has been emerging as an important research subject due to the widespread dissemination of fake news on social and news media. Current fake news identif...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 6; pp. 9029 - 9045 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Now-a-days fake news have become part and parcel of our everyday life due to its quick spreading in different social media. Fake news identification has been emerging as an important research subject due to the widespread dissemination of fake news on social and news media. Current fake news identification techniques primarily rely on the analysis of natural languages and machine learning models to assess the validity of news information in order to detect whether it is real or fake. Many traditional approaches including machine learning applications have been observed yet to detect fake news but the evolutionary based algorithms have gained lot of popularity because of their ability to converge to near optima and have low computational complexity. This motivated us to adopt a new approach with genetic algorithm to solve the fake news detection problem. In this paper, a comparative analysis is presented among SVM, Naïve Bayes, Random Forest and Logistic Regression classifiers to detect fake news applying on different datasets. SVM classifier has achieved the highest accuracy with 61%, 97% and 96% in Liar, Fake Job Posting and Fake News datasets respectively. Again, SVM, Naïve Bayes, Random Forest and Logistic Regression are considered as the fitness function in our novel GA based fake news detection algorithm. In our proposed algorithm, SVM and LR classifiers both achieved 61% accuracy in LIAR dataset and SVM and RF attained the highest accuracy as 97% in the fake job posting dataset. |
---|---|
AbstractList | Now-a-days fake news have become part and parcel of our everyday life due to its quick spreading in different social media. Fake news identification has been emerging as an important research subject due to the widespread dissemination of fake news on social and news media. Current fake news identification techniques primarily rely on the analysis of natural languages and machine learning models to assess the validity of news information in order to detect whether it is real or fake. Many traditional approaches including machine learning applications have been observed yet to detect fake news but the evolutionary based algorithms have gained lot of popularity because of their ability to converge to near optima and have low computational complexity. This motivated us to adopt a new approach with genetic algorithm to solve the fake news detection problem. In this paper, a comparative analysis is presented among SVM, Naïve Bayes, Random Forest and Logistic Regression classifiers to detect fake news applying on different datasets. SVM classifier has achieved the highest accuracy with 61%, 97% and 96% in Liar, Fake Job Posting and Fake News datasets respectively. Again, SVM, Naïve Bayes, Random Forest and Logistic Regression are considered as the fitness function in our novel GA based fake news detection algorithm. In our proposed algorithm, SVM and LR classifiers both achieved 61% accuracy in LIAR dataset and SVM and RF attained the highest accuracy as 97% in the fake job posting dataset. |
Author | Choudhury, Deepjyoti Acharjee, Tapodhir |
Author_xml | – sequence: 1 givenname: Deepjyoti orcidid: 0000-0001-7288-2207 surname: Choudhury fullname: Choudhury, Deepjyoti email: deepjyotichoudhury05@gmail.com organization: Research Scholar, Department of CSE, Assam University – sequence: 2 givenname: Tapodhir surname: Acharjee fullname: Acharjee, Tapodhir organization: Assistant Professor, Department of CSE, Assam University |
BookMark | eNp9kE1LAzEQhoNUsFX_gKeA59V87G52j0X8AsGLnsM0nW2j26QmqbX_3qwVBA89Jbwz7zszz4SMnHdIyAVnV5wxdR05Z6UomBAFF6ppCn5ExrxSslBK8FH-y4YVqmL8hExifGOM15Uox-RrSp3_xJ7Ceh08mCVNnnbwjtThNtI5JjTJeketo9EbC30upK0P75FuonULusAsWEOhX_hg03I1RPW7obTKedYh7RGCGwTTQ4y2sxjiGTnuoI94_vuekte725ebh-Lp-f7xZvpUGMnbVLRdbQwYAKlaZSosZ22LWegkiMYINm-lkrwuAaUpZ7XAuq4A5x2HWSlVyeUpudzn5vM-NhiTfvOb4PJILZRqVC3ass1dYt9lgo8xYKfXwa4g7DRneiCs94R1Jqx_COshuvlnMjbBQCsFsP1hq9xbY57jFhj-tjrg-gY3PpUI |
CitedBy_id | crossref_primary_10_3390_s24186062 crossref_primary_10_4108_eetsis_5069 crossref_primary_10_1109_ACCESS_2023_3303321 crossref_primary_10_1177_21582440231217724 crossref_primary_10_3390_app15073457 crossref_primary_10_1007_s11042_023_17377_4 crossref_primary_10_3390_math12213405 crossref_primary_10_3390_technologies12110222 crossref_primary_10_1007_s11227_023_05531_6 crossref_primary_10_1007_s13278_024_01214_z crossref_primary_10_7717_peerj_cs_1612 crossref_primary_10_1007_s42979_024_03562_1 crossref_primary_10_1109_ACCESS_2024_3462151 crossref_primary_10_1145_3708536 crossref_primary_10_1016_j_jksuci_2023_101571 crossref_primary_10_1016_j_neucom_2024_128263 crossref_primary_10_1080_0952813X_2024_2440665 crossref_primary_10_1109_ACCESS_2024_3354165 crossref_primary_10_1109_ACCESS_2024_3381038 crossref_primary_10_1007_s11042_024_18499_z crossref_primary_10_1109_ACCESS_2024_3382832 crossref_primary_10_1038_s41598_024_56567_4 crossref_primary_10_1007_s11042_023_16198_9 |
Cites_doi | 10.1257/jep.31.2.211 10.3390/info10120390 10.1177/0093650212453600 10.1016/j.eswa.2019.03.036 10.1142/S1469026803000987 10.1021/ci034160g 10.1007/BF00175354 10.1145/3161603 10.1073/pnas.1517441113 10.1016/j.procs.2018.10.171 10.1126/science.aao2998 10.1002/pra2.2015.145052010082 10.1145/3137597.3137600 10.1109/MC.2011.222 10.4018/978-1-7998-2460-2.ch082 10.1145/3184558.3191577 10.1145/2487788.2488033 10.1007/978-3-030-42699-6_2 10.1109/ICDM.2013.61 10.1109/ASONAM.2016.7752287 10.1109/ASONAM.2016.7752207 10.18653/v1/P17-2067 10.1007/978-3-540-69432-8_2 10.1109/ICDM.2014.141 10.14445/22315381/IJETT-V68I4P209S 10.1145/1835449.1835522 10.1145/2350190.2350203 10.1109/ICDE48307.2020.00180 10.1137/1.9781611974973.12 10.5121/ijnlc.2019.8302 10.1109/MIPR.2019.00031 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-022-12788-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 9045 |
ExternalDocumentID | 10_1007_s11042_022_12788_1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-9f6ccacaa3797c5e4b99ecacf3a28c20d9373164ae3c4b62e665aedf1ab437413 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:03:33 EDT 2025 Tue Jul 01 04:13:15 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Fri Feb 21 02:45:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Genetic algorithm Fake news Social media Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9f6ccacaa3797c5e4b99ecacf3a28c20d9373164ae3c4b62e665aedf1ab437413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7288-2207 |
PQID | 2778762949 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2778762949 crossref_primary_10_1007_s11042_022_12788_1 crossref_citationtrail_10_1007_s11042_022_12788_1 springer_journals_10_1007_s11042_022_12788_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Murphy (CR31) 2006; 18 Zahedi, Abbasi, Chen (CR47) 2015; 16 CR36 CR35 CR34 CR33 CR30 Soll (CR38) 2016; 18 Conroy, Rubin, Chen (CR11) 2015; 52 CR2 CR4 Whitley (CR44) 1994; 4 CR8 CR7 CR9 CR49 CR48 Del Vicario, Bessi, Zollo, Petroni, Scala, Caldarelli, Stanley, Quattrociocchi (CR13) 2016; 113 CR46 CR45 CR43 CR42 CR40 Zubiaga, Aker, Bontcheva, Liakata, Procter (CR50) 2018; 51 Mustafa (CR32) 2003; 3 CR16 CR15 CR14 Gravanis, Vakali, Diamantaras, Karadais (CR18) 2019; 128 CR12 CR10 Thota, Tilak, Ahluwalia, Lohia (CR41) 2018; 1 Shu, Sliva, Wang, Tang, Liu (CR37) 2017; 19 Aldwairi, Alwahedi (CR3) 2018; 141 CR29 CR27 Lazer, Baum, Benkler, Berinsky, Greenhill, Menczer, Metzger, Nyhan, Pennycook, Rothschild (CR28) 2018; 359 Allcott, Gentzkow (CR5) 2017; 31 CR25 CR24 CR23 CR22 CR20 Balmas (CR6) 2014; 41 Gorbach (CR17) 2018; 35 Abu-Nimeh, Chen, Alzubi (CR1) 2011; 44 Gunn (CR19) 1998; 14 Hassanat, Almohammadi, Alkafaween, Abunawas, Hammouri, Prasath (CR21) 2019; 10 Kleinbaum, Dietz, Gail, Klein, Klein (CR26) 2002 Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (CR39) 2003; 43 J Gorbach (12788_CR17) 2018; 35 12788_CR43 12788_CR42 DG Kleinbaum (12788_CR26) 2002 12788_CR40 12788_CR46 12788_CR45 12788_CR49 12788_CR48 FM Zahedi (12788_CR47) 2015; 16 M Aldwairi (12788_CR3) 2018; 141 V Svetnik (12788_CR39) 2003; 43 12788_CR10 W Mustafa (12788_CR32) 2003; 3 12788_CR14 J Soll (12788_CR38) 2016; 18 M Balmas (12788_CR6) 2014; 41 12788_CR12 12788_CR16 12788_CR15 A Hassanat (12788_CR21) 2019; 10 G Gravanis (12788_CR18) 2019; 128 12788_CR2 12788_CR7 12788_CR20 S Abu-Nimeh (12788_CR1) 2011; 44 12788_CR4 12788_CR25 12788_CR24 12788_CR23 A Zubiaga (12788_CR50) 2018; 51 M Del Vicario (12788_CR13) 2016; 113 12788_CR22 12788_CR29 12788_CR27 D Whitley (12788_CR44) 1994; 4 KP Murphy (12788_CR31) 2006; 18 H Allcott (12788_CR5) 2017; 31 A Thota (12788_CR41) 2018; 1 K Shu (12788_CR37) 2017; 19 SR Gunn (12788_CR19) 1998; 14 12788_CR30 12788_CR36 12788_CR35 12788_CR34 12788_CR33 NK Conroy (12788_CR11) 2015; 52 DM Lazer (12788_CR28) 2018; 359 12788_CR9 12788_CR8 |
References_xml | – volume: 31 start-page: 211 issue: 2 year: 2017 end-page: 36 ident: CR5 article-title: Social media and fake news in the 2016 election publication-title: Journal of Economic Perspectives doi: 10.1257/jep.31.2.211 – volume: 14 start-page: 5 issue: 1 year: 1998 end-page: 16 ident: CR19 article-title: Support vector machines for classification and regression publication-title: ISIS Technical Report – ident: CR45 – ident: CR22 – ident: CR49 – volume: 10 start-page: 390 issue: 12 year: 2019 ident: CR21 article-title: Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach publication-title: Information doi: 10.3390/info10120390 – volume: 41 start-page: 430 issue: 3 year: 2014 end-page: 454 ident: CR6 article-title: When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism publication-title: Communication Research doi: 10.1177/0093650212453600 – volume: 16 start-page: 2 issue: 6 year: 2015 ident: CR47 article-title: Fake-website detection tools: Identifying elements that promote individuals’ use and enhance their performance publication-title: J Assoc Inf Syst – ident: CR4 – ident: CR16 – ident: CR12 – ident: CR35 – ident: CR29 – ident: CR8 – volume: 1 start-page: 10 issue: 3 year: 2018 ident: CR41 article-title: Fake news detection: a deep learning approach publication-title: SMU Data Science Review – volume: 128 start-page: 201 year: 2019 end-page: 213 ident: CR18 article-title: Behind the cues: a benchmarking study for fake news detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.036 – ident: CR25 – ident: CR42 – ident: CR46 – ident: CR15 – volume: 18 start-page: 1 issue: 60 year: 2006 end-page: 8 ident: CR31 article-title: Naive bayes classifiers publication-title: University of British Columbia – volume: 3 start-page: 233 issue: 03 year: 2003 end-page: 248 ident: CR32 article-title: Optimization of production systems using genetic algorithms publication-title: Int J Comput Intell Appl doi: 10.1142/S1469026803000987 – volume: 43 start-page: 1947 issue: 6 year: 2003 end-page: 1958 ident: CR39 article-title: Random forest: a classification and regression tool for compound classification and qsar modeling publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci034160g – volume: 4 start-page: 65 issue: 2 year: 1994 end-page: 85 ident: CR44 article-title: A genetic algorithm tutorial publication-title: Statistics and Computing doi: 10.1007/BF00175354 – ident: CR9 – volume: 51 start-page: 1 issue: 2 year: 2018 end-page: 36 ident: CR50 article-title: Detection and resolution of rumours in social media: a survey publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3161603 – ident: CR36 – volume: 113 start-page: 554 issue: 3 year: 2016 end-page: 559 ident: CR13 article-title: The spreading of misinformation online publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1517441113 – volume: 141 start-page: 215 year: 2018 end-page: 222 ident: CR3 article-title: Detecting fake news in social media networks publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.10.171 – ident: CR43 – ident: CR14 – ident: CR2 – ident: CR30 – ident: CR10 – ident: CR33 – year: 2002 ident: CR26 publication-title: Logistic regression – ident: CR40 – ident: CR27 – volume: 359 start-page: 1094 issue: 6380 year: 2018 end-page: 1096 ident: CR28 article-title: The science of fake news publication-title: Science doi: 10.1126/science.aao2998 – volume: 52 start-page: 1 issue: 1 year: 2015 end-page: 4 ident: CR11 article-title: Automatic deception detection: Methods for finding fake news publication-title: Proceedings of the Association for Information Science and Technology doi: 10.1002/pra2.2015.145052010082 – ident: CR23 – ident: CR48 – volume: 19 start-page: 22 issue: 1 year: 2017 end-page: 36 ident: CR37 article-title: Fake news detection on social media: a data mining perspective publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/3137597.3137600 – volume: 44 start-page: 23 issue: 9 year: 2011 end-page: 28 ident: CR1 article-title: Malicious and spam posts in online social networks publication-title: Computer doi: 10.1109/MC.2011.222 – volume: 18 start-page: 2016 issue: 12 year: 2016 ident: CR38 article-title: The long and brutal history of fake news publication-title: Politico Magazine – volume: 35 start-page: 236 issue: 2 year: 2018 end-page: 249 ident: CR17 article-title: Not your grandpa’s hoax: a comparative history of fake news publication-title: Am J – ident: CR34 – ident: CR7 – ident: CR24 – ident: CR20 – volume: 18 start-page: 1 issue: 60 year: 2006 ident: 12788_CR31 publication-title: University of British Columbia – ident: 12788_CR4 doi: 10.4018/978-1-7998-2460-2.ch082 – volume: 128 start-page: 201 year: 2019 ident: 12788_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.036 – volume: 44 start-page: 23 issue: 9 year: 2011 ident: 12788_CR1 publication-title: Computer doi: 10.1109/MC.2011.222 – volume: 113 start-page: 554 issue: 3 year: 2016 ident: 12788_CR13 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1517441113 – ident: 12788_CR2 – ident: 12788_CR8 doi: 10.1145/3184558.3191577 – volume: 52 start-page: 1 issue: 1 year: 2015 ident: 12788_CR11 publication-title: Proceedings of the Association for Information Science and Technology doi: 10.1002/pra2.2015.145052010082 – ident: 12788_CR20 doi: 10.1145/2487788.2488033 – ident: 12788_CR24 doi: 10.1007/978-3-030-42699-6_2 – volume: 3 start-page: 233 issue: 03 year: 2003 ident: 12788_CR32 publication-title: Int J Comput Intell Appl doi: 10.1142/S1469026803000987 – volume: 14 start-page: 5 issue: 1 year: 1998 ident: 12788_CR19 publication-title: ISIS Technical Report – ident: 12788_CR9 – volume: 18 start-page: 2016 issue: 12 year: 2016 ident: 12788_CR38 publication-title: Politico Magazine – ident: 12788_CR34 – ident: 12788_CR27 doi: 10.1109/ICDM.2013.61 – ident: 12788_CR30 doi: 10.1109/ASONAM.2016.7752287 – volume-title: Logistic regression year: 2002 ident: 12788_CR26 – ident: 12788_CR10 doi: 10.1109/ASONAM.2016.7752207 – ident: 12788_CR42 doi: 10.18653/v1/P17-2067 – ident: 12788_CR49 – ident: 12788_CR15 doi: 10.1007/978-3-540-69432-8_2 – volume: 359 start-page: 1094 issue: 6380 year: 2018 ident: 12788_CR28 publication-title: Science doi: 10.1126/science.aao2998 – volume: 141 start-page: 215 year: 2018 ident: 12788_CR3 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.10.171 – ident: 12788_CR23 doi: 10.1109/ICDM.2014.141 – ident: 12788_CR14 doi: 10.14445/22315381/IJETT-V68I4P209S – ident: 12788_CR35 – ident: 12788_CR16 – ident: 12788_CR29 doi: 10.1145/1835449.1835522 – ident: 12788_CR12 – volume: 35 start-page: 236 issue: 2 year: 2018 ident: 12788_CR17 publication-title: Am J – volume: 19 start-page: 22 issue: 1 year: 2017 ident: 12788_CR37 publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/3137597.3137600 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 12788_CR39 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci034160g – ident: 12788_CR46 doi: 10.1145/2350190.2350203 – ident: 12788_CR25 – volume: 41 start-page: 430 issue: 3 year: 2014 ident: 12788_CR6 publication-title: Communication Research doi: 10.1177/0093650212453600 – ident: 12788_CR40 – ident: 12788_CR48 doi: 10.1109/ICDE48307.2020.00180 – volume: 10 start-page: 390 issue: 12 year: 2019 ident: 12788_CR21 publication-title: Information doi: 10.3390/info10120390 – ident: 12788_CR45 doi: 10.1137/1.9781611974973.12 – volume: 51 start-page: 1 issue: 2 year: 2018 ident: 12788_CR50 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3161603 – ident: 12788_CR36 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 12788_CR44 publication-title: Statistics and Computing doi: 10.1007/BF00175354 – volume: 1 start-page: 10 issue: 3 year: 2018 ident: 12788_CR41 publication-title: SMU Data Science Review – ident: 12788_CR22 – ident: 12788_CR43 – ident: 12788_CR7 doi: 10.5121/ijnlc.2019.8302 – ident: 12788_CR33 doi: 10.1109/MIPR.2019.00031 – volume: 31 start-page: 211 issue: 2 year: 2017 ident: 12788_CR5 publication-title: Journal of Economic Perspectives doi: 10.1257/jep.31.2.211 – volume: 16 start-page: 2 issue: 6 year: 2015 ident: 12788_CR47 publication-title: J Assoc Inf Syst |
SSID | ssj0016524 |
Score | 2.4688287 |
Snippet | Now-a-days fake news have become part and parcel of our everyday life due to its quick spreading in different social media. Fake news identification has been... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9029 |
SubjectTerms | 1209: Recent Advances on Social Media Analytics and Multimedia Systems: Issues and Challenges Accuracy Classifiers Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Evolutionary algorithms Genetic algorithms Machine learning Multimedia Information Systems News media Regression analysis Social networks Special Purpose and Application-Based Systems Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eXvTBy1ScTjkPvmlwbdq0fRIVZQiKiIJvJU3TOey66ar48z2nTTcV3GvTppAvl-_kXD7Gjsi5k2au5lqKjHtJ5PNEyi4PUtJGUkoalxKcb-9k78m7efaf7YXbxIZVNntitVGnI0135KduENDCjbzobPzGSTWKvKtWQmORLeMWHKLxtXxxdXf_MPUjSN_K2ob4e7_r2LSZOnnOodQUimZ3XDQEufP7aJrxzT8u0urkud5ga5YywnmN8SZbMEWLrTdyDGBXZ4ut_qgtuMW-zqEYfZocmqrhUI4gU68GiEhDasoqCKuAQQH1xTk2VCHhE6Bg-D7g1KIMR1B5HweifBlSVzmlRcGwCsE0YDUn-qCJhA8y0tXeZk_XV4-XPW5lFrjG9VfyKJMIo1ZKBFGgfYOARQYfZEK5oXa7KTIYgVaVMkJ7iXSNlL4yaeaoxBNISMQOWypGhdllIJRjhMjIpvE9NHZUgnQzDJA1qDAIfbfNnGaEY21rkJMURh7PqicTKjGiEleoxE6bHU-_GdcVOOa-3WmAi-1qnMSzudNmJw2Ys-b_e9ub39s-WyH1-TokrcOWyvcPc4AcpUwO7UT8BiiZ42g priority: 102 providerName: ProQuest |
Title | A novel approach to fake news detection in social networks using genetic algorithm applying machine learning classifiers |
URI | https://link.springer.com/article/10.1007/s11042-022-12788-1 https://www.proquest.com/docview/2778762949 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BeimHAn2ogTSaAzewFO961_YxQUkrEBFCjdSerPV6nUZNnaoxiJ_PjLNu2ooicbLkXa8lf_v4xvP4AD6wc6cohQ2slmUQ5akKcq0HQVywNpIx2glOcP421Wez6MuFuvBJYes22r11STY79TbZLeRUEo4-DwUZbgHZPDuKbXeaxTMxvPcdaOWlbBN6pRqEPlXm72M8Po62HPOJW7Q5bSZvYM_TRBxucH0LL1y1D69bCQb0K3IfXj2oJ3gAv4dYrX65JbaVwrFeYWmuHTJ5xsLVTeBVhYsKNz_LqaEJA18jB8DPkaYTZzWiWc5Xd4v66oaHWnIqFN40YZcOvc7EHC0T70XJWtqHMJuMzz-fBV5aIbC05uogLTVBZ42RcRpb5Qik1NGNUhqRWDEoiLVIsqSMkzbKtXBaK-OKMjR5JImEyCPoVKvKHQNKEzopS7ZjVEQGjsmJYiYxMQWTxIkSXQjbL5xZX3ec5S-W2bZiMqOSESpZg0oWduHj_TO3m6ob_-zda4HL_ApcZyKOeaNPo7QLn1owt83Pj_bu_7q_h11WoN-EpfWgU9_9dCfEU-q8Dy-TyWkfdoaT0WjK19PLr2O6jsbT7z_6zaT9AyWS5Es |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAO5dGiLq_OAU6t1Y2dOMmhQgjYLs8TSNxSx3EW1CULbNrSP9Xf2Jk8WKhUblzjZOR4ZuwZz-MD2OTgTpZLK6xWufDTOBCp1l0RZoyNZIx2kgucT051_9w_vAgupuBPWwvDaZXtnlht1NnI8h35ZxmGrLixH2_f3ApGjeLoaguhUYvFkfv9i1y28ZeDPeLvlpS9_bPdvmhQBYQlcStFnGuatTVGhXFoA0fzix09yJWRkZXdjA5sRU6Eccr6qZZO68C4LPdM6is6fxXRfQUzvlIxa1TU-_oQtdBBA6Ib0c8GXa8p0qlL9TwuhOHceU-S2ym8pwfhxLr9JyBbnXO9BXjTGKi4U0vUIky5YgnmW_AHbPaCJZh71MnwLdzvYDH66YbY9ijHcoS5-e6QzXbMXFmlfBV4VWB9TU8DVQL6GDn1foAkyFxPiWY4oGUvL6-Z1JCLsPC6Svh02CBcDNCyyX-VM4r3Ozh_keVfhuliVLj3gMp4TqmcPajAJ9fKpGTcRiHZKCYKo0B2wGtXOLFNx3MG3hgmk17NzJWEuJJUXEm8Dnx8-Oam7vfx7NtrLeOSRvfHyURSO_CpZeZk-P_UVp6n9gFm-2cnx8nxwenRKrxm3Ps6GW4Npsu7H26drKMy3ahEEuHbS-vAXw5NIJc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOAWCgwBziB1Y2dOMkBoUK7aimsKkSl3oLj2EvVbbZlw-uv8euYSZwuINFbr3Eyij3j8Yzn8QE85eBO5aUVVisv4jJPRKn1SKQVYyMZo53kAuf3E71zEL89TA5X4FdfC8Nplb1ObBV1Nbd8R74h05Q3bh7nGz6kRexvjV-dnglGkOJIaw-n0YnInvv5ndy3xcvdLeL1MynH2x_f7IiAMCAsiV4jcq9pBtYYleapTRz9a-7ogVdGZlaOKjq8FTkUxikbl1o6rRPjKh-ZMlZ0FiuiewVWU_KKRgNYfb092f9wHsPQSYDUzWjqySgKJTtd4V7EZTGcSR9JckJF9PexuLR1_wnPtqfe-BbcCOYqbnbydRtWXL0GN3soCAyaYQ2u_9HX8A782MR6_s3NsO9Yjs0cvTl2yEY8Vq5pE8BqPKqxu7SngTYdfYGciD9FEmuurkQzm9LCN59PmNSMS7LwpE3_dBjwLqZo2QE48ozpfRcOLoUB92BQz2t3H1CZyCnl2Z9KYnK0TEmmbpaSxWKyNEvkEKJ-hQsb-p8zDMesWHZuZq4UxJWi5UoRDeH5-TenXfePC99e7xlXBE2wKJZyO4QXPTOXw_-n9uBiak_gKsl_8W53svcQrkkyvbrMuHUYNF--ukdkKjXl4yCTCJ8uexv8BkoKJik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+to+fake+news+detection+in+social+networks+using+genetic+algorithm+applying+machine+learning+classifiers&rft.jtitle=Multimedia+tools+and+applications&rft.au=Choudhury%2C+Deepjyoti&rft.au=Acharjee%2C+Tapodhir&rft.date=2023-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=6&rft.spage=9029&rft.epage=9045&rft_id=info:doi/10.1007%2Fs11042-022-12788-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_12788_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |