Robust and effective multiple copy-move forgeries detection and localization
Copy-move (or copy-paste or cloning) is one of the most common image forgeries, wherein one or more region are copied and pasted within the same image. The motivations of such forgery include hiding an element in the image or emphasizing a particular object. Copy-move image forgery is more challengi...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 24; no. 3; pp. 1025 - 1046 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Copy-move (or copy-paste or cloning) is one of the most common image forgeries, wherein one or more region are copied and pasted within the same image. The motivations of such forgery include hiding an element in the image or emphasizing a particular object. Copy-move image forgery is more challenging to detect than other types, such as splicing and retouching. In recent years, keypoint based copy-move forgery detection, which extracts image keypoints and uses local visual features to identify duplicated regions, exhibits remarkable performance with respect to memory requirement and robustness against various attacks. However, these approaches usually have poor detection ability when copy-move forgeries only involve small or smooth regions. Moreover, they cannot always effectively deal with multiple copy-move forgeries. To tackle these challenges, we propose a robust and effective multiple copy-move forgeries detection and localization method through adaptive keypoint extraction, robust local feature representation, and offsets clustering based post-processing. Firstly, we develop a new image keypoint detector, named generic features from accelerated segment test, and extract adaptively the uniform distribution keypoints from the forged image by employing the adaptive-thresholding and non-maximum suppression. Then, we introduce fast quaternion polar complex exponential transform to describe the image keypoints compactly and distinctively, and utilize the KD tree based K-nearest neighbor matching to find possible correspondences. Finally, the falsely matched pairs are removed by employing the offsets information based candidate clustering, and the duplicated regions are localized using RANSAC and ZNCC algorithm. We conduct extensive experiments to evaluate the performance of the proposed approach, in which encouraging results validate the effectiveness of the proposed technique, especially for plain/multiple copy-move forgeries, in comparison with the state-of-the-art approaches recently proposed in the literature. |
---|---|
AbstractList | Copy-move (or copy-paste or cloning) is one of the most common image forgeries, wherein one or more region are copied and pasted within the same image. The motivations of such forgery include hiding an element in the image or emphasizing a particular object. Copy-move image forgery is more challenging to detect than other types, such as splicing and retouching. In recent years, keypoint based copy-move forgery detection, which extracts image keypoints and uses local visual features to identify duplicated regions, exhibits remarkable performance with respect to memory requirement and robustness against various attacks. However, these approaches usually have poor detection ability when copy-move forgeries only involve small or smooth regions. Moreover, they cannot always effectively deal with multiple copy-move forgeries. To tackle these challenges, we propose a robust and effective multiple copy-move forgeries detection and localization method through adaptive keypoint extraction, robust local feature representation, and offsets clustering based post-processing. Firstly, we develop a new image keypoint detector, named generic features from accelerated segment test, and extract adaptively the uniform distribution keypoints from the forged image by employing the adaptive-thresholding and non-maximum suppression. Then, we introduce fast quaternion polar complex exponential transform to describe the image keypoints compactly and distinctively, and utilize the KD tree based K-nearest neighbor matching to find possible correspondences. Finally, the falsely matched pairs are removed by employing the offsets information based candidate clustering, and the duplicated regions are localized using RANSAC and ZNCC algorithm. We conduct extensive experiments to evaluate the performance of the proposed approach, in which encouraging results validate the effectiveness of the proposed technique, especially for plain/multiple copy-move forgeries, in comparison with the state-of-the-art approaches recently proposed in the literature. |
Author | Yang, Hong-ying Wang, Xiang-yang Wang, Li Wang, Chao Niu, Pan-pan |
Author_xml | – sequence: 1 givenname: Xiang-yang surname: Wang fullname: Wang, Xiang-yang email: wxy37@126.com organization: School of Computer and Information Technology, Liaoning Normal University – sequence: 2 givenname: Chao surname: Wang fullname: Wang, Chao organization: School of Computer and Information Technology, Liaoning Normal University – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li organization: School of Computer and Information Technology, Liaoning Normal University – sequence: 4 givenname: Hong-ying surname: Yang fullname: Yang, Hong-ying organization: School of Computer and Information Technology, Liaoning Normal University – sequence: 5 givenname: Pan-pan surname: Niu fullname: Niu, Pan-pan email: niupanpan3333@163.com organization: School of Computer and Information Technology, Liaoning Normal University |
BookMark | eNp9kE1LxDAQhoOs4K76BzwVPEcnTdM2R1n8ggVBFLyFNJ1Il25Tk65Qf73ZrSh42EsShvfJzDwLMutch4RcMLhiAMV1iGeWUUgZBZB5SccjMmcZ57QQ4m32-87YCVmEsAbgnKflnKyeXbUNQ6K7OkFr0QzNJyabbTs0fYuJcf1INy6WrPPv6BsMSY3DLua6PdQ6o9vmS-8KZ-TY6jbg-c99Sl7vbl-WD3T1dP-4vFlRw5kcqESRQmEZB4YIRto4Sl4jijKrTAW61lpnPM-x0inXGnkBpbBWS4my4rLgp-Ry-rf37mOLYVBrt_VdbKlSIQrIQUAaU-mUMt6F4NGq3jcb7UfFQO2sqcmaitbU3poaI1T-g0wz7JcbvG7awyif0BD7dFHW31QHqG9ZcIWS |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3397466 crossref_primary_10_3390_app131910980 crossref_primary_10_1007_s13042_024_02370_6 crossref_primary_10_1145_3479428 crossref_primary_10_1007_s11042_023_15475_x crossref_primary_10_1016_j_cie_2021_107733 crossref_primary_10_1016_j_fsidi_2023_301663 crossref_primary_10_1016_j_jvcir_2023_103986 crossref_primary_10_1007_s11042_024_20323_7 crossref_primary_10_1007_s00034_024_02702_5 crossref_primary_10_1007_s11042_022_12311_6 crossref_primary_10_1007_s11042_023_15499_3 crossref_primary_10_1049_ipr2_12578 crossref_primary_10_1016_j_eswa_2024_125056 |
Cites_doi | 10.1007/s10044-017-0678-8 10.1109/TIFS.2016.2585118 10.1016/j.jvcir.2018.03.015 10.1016/j.ins.2018.06.040 10.1109/TPAMI.2008.275 10.1109/TIFS.2015.2455334 10.1109/TIFS.2011.2129512 10.1007/s11042-016-4140-5 10.1016/j.patcog.2006.02.008 10.1109/TIFS.2010.2078506 10.1109/TIFS.2014.2381872 10.1016/j.jvcir.2015.01.016 10.1007/s11263-013-0622-3 10.1109/TPAMI.2009.119 10.1016/j.diin.2012.04.004 10.1007/s11042-014-2431-2 10.1007/s11042-015-2872-2 10.1016/j.neucom.2014.08.003 10.1109/LSP.2013.2247596 10.1109/TIFS.2015.2423261 10.1016/j.compeleceng.2013.11.034 10.1007/s11042-019-08169-w 10.1109/34.735809 10.1016/j.patcog.2007.05.004 10.1016/j.forsciint.2018.12.004 10.1016/j.patcog.2019.107177 10.1049/iet-ipr.2016.0537 10.1109/TIFS.2018.2876837 10.1023/B:VISI.0000029664.99615.94 10.1109/SENSET.2017.8125021 10.1007/s11042-018-6605-1 10.1007/978-3-642-15552-9_14 10.1109/APSIPA.2016.7820758 10.1109/ICASSP.2011.5946873 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-021-00968-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1046 |
ExternalDocumentID | 10_1007_s10044_021_00968_y |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-9e5207f1301ee0c9f3326dee584bcb0adaaa4366eba23aae37085ffa99e9b3973 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 03:11:32 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Fri Feb 21 02:48:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Offsets clustering GFAST FQPCET Copy-move forgery detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9e5207f1301ee0c9f3326dee584bcb0adaaa4366eba23aae37085ffa99e9b3973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2557060502 |
PQPubID | 2043691 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2557060502 crossref_primary_10_1007_s10044_021_00968_y crossref_citationtrail_10_1007_s10044_021_00968_y springer_journals_10_1007_s10044_021_00968_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Li, Wang, Tian, Ding (CR30) 2015; 149 Amerini, Ballan, Caldelli, Del Bimbo, Del Tongo, Serra (CR29) 2013; 28 Silva, Carvalho, Ferreira, Rocha (CR4) 2015; 29 Warif, Idris, Wahab, Salleh (CR18) 2019; 295 Shivakumar, Baboo (CR7) 2011; 8 CR16 CR38 CR15 Zhu, Shen, Chen (CR23) 2016; 75 CR13 CR35 Rosten, Drummond (CR8) 2006 CR12 CR32 Xin, Liao, Pawlak (CR39) 2007; 40 Rakshit, Ghosh, Shankar (CR40) 2007; 40 Jin, Wan (CR27) 2017; 57 Sadeghi, Dadkhah, Jalab, Mazzola (CR1) 2018; 21 Yang, Qi, Wang, Yang, Wang (CR36) 2020; 101 Cozzolino, Poggi, Verdoliva (CR22) 2015; 10 Muhammad, Hussain, Bebis (CR11) 2012; 9 Amerini, Ballan, Caldelli, Del Bimbo, Serra (CR3) 2011; 6 Zandi, Mahmoudi-Aznaveh, Talebpou (CR6) 2016; 11 Liao, Pawlak (CR37) 1998; 20 Yang, Qi, Niu, Niu, Wang (CR24) 2019; 78 Emam, Han, Niu (CR20) 2016; 75 Li (CR9) 2013; 20 CR25 Pun, Yuan, Bi (CR28) 2015; 10 Dixit, Naskar, Mishra (CR14) 2017; 11 Li, Li, Zhu, Wu (CR19) 2014; 40 Pun, Chung (CR17) 2018; 463 Li, Li, Yang, Sun (CR5) 2015; 10 Lowe (CR33) 2004; 60 Wang, Li, Liu, Niu, Yang, Zhou (CR26) 2017; 76 Mahmood, Mehmood, Shah, Saba (CR10) 2018; 53 Yap, Jiang, Kot (CR21) 2010; 32 Mainali, Lafruit, Yang, Geelen, Van Gool, Lauwereins (CR34) 2013; 104 Rosten, Porter, Drummond (CR31) 2010; 32 Pan, Lyu (CR2) 2010; 5 Li, Zhou (CR41) 2019; 14 M Emam (968_CR20) 2016; 75 DG Lowe (968_CR33) 2004; 60 D Cozzolino (968_CR22) 2015; 10 Y Xin (968_CR39) 2007; 40 968_CR16 968_CR38 S Rakshit (968_CR40) 2007; 40 E Rosten (968_CR8) 2006 I Amerini (968_CR3) 2011; 6 M Zandi (968_CR6) 2016; 11 968_CR13 I Amerini (968_CR29) 2013; 28 968_CR35 968_CR12 968_CR15 P Mainali (968_CR34) 2013; 104 968_CR32 YN Li (968_CR9) 2013; 20 Y Li (968_CR30) 2015; 149 CM Pun (968_CR17) 2018; 463 BL Shivakumar (968_CR7) 2011; 8 L Li (968_CR19) 2014; 40 SX Liao (968_CR37) 1998; 20 CM Pun (968_CR28) 2015; 10 T Mahmood (968_CR10) 2018; 53 J Li (968_CR5) 2015; 10 H Yang (968_CR36) 2020; 101 E Rosten (968_CR31) 2010; 32 NBA Warif (968_CR18) 2019; 295 PT Yap (968_CR21) 2010; 32 H Yang (968_CR24) 2019; 78 E Silva (968_CR4) 2015; 29 S Sadeghi (968_CR1) 2018; 21 968_CR25 Y Zhu (968_CR23) 2016; 75 XY Wang (968_CR26) 2017; 76 G Jin (968_CR27) 2017; 57 X Pan (968_CR2) 2010; 5 G Muhammad (968_CR11) 2012; 9 Y Li (968_CR41) 2019; 14 R Dixit (968_CR14) 2017; 11 |
References_xml | – volume: 21 start-page: 291 issue: 2 year: 2018 end-page: 306 ident: CR1 article-title: State of the art in passive digital image forgery detection: copy-move image forgery publication-title: Pattern Anal Appl doi: 10.1007/s10044-017-0678-8 – volume: 11 start-page: 2499 issue: 11 year: 2016 end-page: 2512 ident: CR6 article-title: Iterative copy-move forgery detection based on a new interest point detector publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2016.2585118 – volume: 53 start-page: 202 year: 2018 end-page: 214 ident: CR10 article-title: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.03.015 – volume: 463 start-page: 33 year: 2018 end-page: 55 ident: CR17 article-title: A two-stage localization for copy-move forgery detection publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.040 – volume: 32 start-page: 105 issue: 1 year: 2010 end-page: 119 ident: CR31 article-title: Faster and better: A machine learning approach to corner detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.275 – ident: CR16 – ident: CR12 – volume: 10 start-page: 2284 issue: 11 year: 2015 end-page: 2297 ident: CR22 article-title: Efficient dense-field copy–move forgery detection publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2455334 – volume: 6 start-page: 1099 issue: 3 year: 2011 end-page: 1110 ident: CR3 article-title: A sift-based forensic method for copy–move attack detection and transformation recovery publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2129512 – volume: 76 start-page: 23353 issue: 22 year: 2017 end-page: 23382 ident: CR26 article-title: A new keypoint-based copy-move forgery detection for small smooth regions publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4140-5 – volume: 40 start-page: 890 issue: 3 year: 2007 end-page: 897 ident: CR40 article-title: Fast mean filtering technique (FMFT) publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.02.008 – volume: 5 start-page: 857 issue: 4 year: 2010 end-page: 867 ident: CR2 article-title: Region duplication detection using image feature matching publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2010.2078506 – volume: 10 start-page: 507 issue: 3 year: 2015 end-page: 518 ident: CR5 article-title: Segmentation-based image copy-move forgery detection scheme publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2014.2381872 – volume: 29 start-page: 16 year: 2015 end-page: 32 ident: CR4 article-title: Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2015.01.016 – ident: CR35 – ident: CR25 – volume: 28 start-page: 659 issue: 6 year: 2013 end-page: 669 ident: CR29 article-title: Copy-move forgery detection and localization by means of robust clustering with J-Linkage publication-title: Signal Processing: Image Communication – volume: 104 start-page: 172 issue: 2 year: 2013 end-page: 197 ident: CR34 article-title: SIFER: scale-invariant feature detector with error resilience publication-title: Int J Comput Vision doi: 10.1007/s11263-013-0622-3 – volume: 32 start-page: 1259 issue: 7 year: 2010 end-page: 1270 ident: CR21 article-title: Two-dimensional polar harmonic transforms for invariant image representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.119 – volume: 57 start-page: 113 year: 2017 end-page: 125 ident: CR27 article-title: An improved method for SIFT-based copy–move forgery detection using non-maximum value suppression and optimized J-Linkage publication-title: Signal Processing: Image Communication – volume: 9 start-page: 49 issue: 1 year: 2012 end-page: 57 ident: CR11 article-title: Passive copy move image forgery detection using undecimated dyadic wavelet transform publication-title: Digit Invest doi: 10.1016/j.diin.2012.04.004 – volume: 75 start-page: 3221 issue: 6 year: 2016 end-page: 3233 ident: CR23 article-title: Copy-move forgery detection based on scaled ORB publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-014-2431-2 – volume: 75 start-page: 11513 issue: 18 year: 2016 end-page: 11527 ident: CR20 article-title: PCET based copy-move forgery detection in images under geometric transforms publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2872-2 – ident: CR15 – volume: 149 start-page: 736 year: 2015 end-page: 751 ident: CR30 article-title: A survey of recent advances in visual feature detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.003 – ident: CR38 – volume: 20 start-page: 803 issue: 8 year: 2013 end-page: 806 ident: CR9 article-title: Quaternion polar harmonic transforms for color images publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2013.2247596 – volume: 10 start-page: 1705 issue: 8 year: 2015 end-page: 1716 ident: CR28 article-title: Image forgery detection using adaptive over-segmentation and feature point matching publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2423261 – volume: 40 start-page: 1951 issue: 6 year: 2014 end-page: 1962 ident: CR19 article-title: Detecting copy-move forgery under affine transforms for image forensics publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.034 – volume: 78 start-page: 34585 issue: 24 year: 2019 end-page: 34612 ident: CR24 article-title: Copy-move forgery detection based on adaptive keypoints extraction and matching publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-019-08169-w – volume: 20 start-page: 1358 issue: 12 year: 1998 end-page: 1364 ident: CR37 article-title: On the accuracy of Zernike moments for image analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.735809 – ident: CR13 – volume: 40 start-page: 3740 issue: 12 year: 2007 end-page: 3752 ident: CR39 article-title: Circularly orthogonal moments for geometrically robust image watermarking publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.05.004 – volume: 295 start-page: 83 year: 2019 end-page: 99 ident: CR18 article-title: CMF-iteMS: An automatic threshold selection for detection of copy-move forgery publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2018.12.004 – ident: CR32 – volume: 101 start-page: 107177 year: 2020 ident: CR36 article-title: Image analysis by Log-Polar Exponent-Fourier moments publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107177 – year: 2006 ident: CR8 publication-title: Machine learning for high-speed corner detection. European conference on computer vision (ECCV), Graz, Austria – volume: 11 start-page: 301 issue: 5 year: 2017 end-page: 309 ident: CR14 article-title: Blur-invariant copy-move forgery detection technique with improved detection accuracy utilising SWT-SVD publication-title: IET Image Proc doi: 10.1049/iet-ipr.2016.0537 – volume: 14 start-page: 1307 issue: 5 year: 2019 end-page: 1322 ident: CR41 article-title: Fast and effective image copy-move forgery detection via hierarchical feature point matching publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2018.2876837 – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 ident: CR33 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 8 start-page: 199 issue: 4 year: 2011 ident: CR7 article-title: Detection of region duplication forgery in digital images using SURF publication-title: Int J Comput Sci Issues (IJCSI) – volume: 5 start-page: 857 issue: 4 year: 2010 ident: 968_CR2 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2010.2078506 – ident: 968_CR15 – volume: 9 start-page: 49 issue: 1 year: 2012 ident: 968_CR11 publication-title: Digit Invest doi: 10.1016/j.diin.2012.04.004 – volume: 20 start-page: 1358 issue: 12 year: 1998 ident: 968_CR37 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.735809 – volume: 295 start-page: 83 year: 2019 ident: 968_CR18 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2018.12.004 – volume: 28 start-page: 659 issue: 6 year: 2013 ident: 968_CR29 publication-title: Signal Processing: Image Communication – ident: 968_CR38 – volume: 10 start-page: 2284 issue: 11 year: 2015 ident: 968_CR22 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2455334 – ident: 968_CR13 doi: 10.1109/SENSET.2017.8125021 – volume: 10 start-page: 507 issue: 3 year: 2015 ident: 968_CR5 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2014.2381872 – ident: 968_CR16 doi: 10.1007/s11042-018-6605-1 – volume: 14 start-page: 1307 issue: 5 year: 2019 ident: 968_CR41 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2018.2876837 – volume: 40 start-page: 1951 issue: 6 year: 2014 ident: 968_CR19 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.034 – volume: 149 start-page: 736 year: 2015 ident: 968_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.003 – volume: 11 start-page: 2499 issue: 11 year: 2016 ident: 968_CR6 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2016.2585118 – volume: 32 start-page: 1259 issue: 7 year: 2010 ident: 968_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.119 – volume: 57 start-page: 113 year: 2017 ident: 968_CR27 publication-title: Signal Processing: Image Communication – volume: 21 start-page: 291 issue: 2 year: 2018 ident: 968_CR1 publication-title: Pattern Anal Appl doi: 10.1007/s10044-017-0678-8 – volume: 75 start-page: 11513 issue: 18 year: 2016 ident: 968_CR20 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2872-2 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 968_CR33 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 463 start-page: 33 year: 2018 ident: 968_CR17 publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.040 – volume: 29 start-page: 16 year: 2015 ident: 968_CR4 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2015.01.016 – volume: 78 start-page: 34585 issue: 24 year: 2019 ident: 968_CR24 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-019-08169-w – volume: 40 start-page: 890 issue: 3 year: 2007 ident: 968_CR40 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.02.008 – ident: 968_CR32 doi: 10.1007/978-3-642-15552-9_14 – volume: 104 start-page: 172 issue: 2 year: 2013 ident: 968_CR34 publication-title: Int J Comput Vision doi: 10.1007/s11263-013-0622-3 – volume: 11 start-page: 301 issue: 5 year: 2017 ident: 968_CR14 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2016.0537 – ident: 968_CR25 doi: 10.1109/APSIPA.2016.7820758 – ident: 968_CR35 – volume: 32 start-page: 105 issue: 1 year: 2010 ident: 968_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.275 – volume: 53 start-page: 202 year: 2018 ident: 968_CR10 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.03.015 – volume-title: Machine learning for high-speed corner detection. European conference on computer vision (ECCV), Graz, Austria year: 2006 ident: 968_CR8 – volume: 101 start-page: 107177 year: 2020 ident: 968_CR36 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107177 – ident: 968_CR12 doi: 10.1109/ICASSP.2011.5946873 – volume: 40 start-page: 3740 issue: 12 year: 2007 ident: 968_CR39 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.05.004 – volume: 6 start-page: 1099 issue: 3 year: 2011 ident: 968_CR3 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2129512 – volume: 75 start-page: 3221 issue: 6 year: 2016 ident: 968_CR23 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-014-2431-2 – volume: 76 start-page: 23353 issue: 22 year: 2017 ident: 968_CR26 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4140-5 – volume: 8 start-page: 199 issue: 4 year: 2011 ident: 968_CR7 publication-title: Int J Comput Sci Issues (IJCSI) – volume: 10 start-page: 1705 issue: 8 year: 2015 ident: 968_CR28 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2423261 – volume: 20 start-page: 803 issue: 8 year: 2013 ident: 968_CR9 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2013.2247596 |
SSID | ssj0033328 |
Score | 2.5053844 |
Snippet | Copy-move (or copy-paste or cloning) is one of the most common image forgeries, wherein one or more region are copied and pasted within the same image. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1025 |
SubjectTerms | Accelerated tests Algorithms Cloning Clustering Computer Science Feature extraction Forgery Localization Localization method Offsets Pattern Recognition Performance evaluation Post-production processing Quaternions Reproduction (copying) Retouching Robustness Splicing Theoretical Advances |
Title | Robust and effective multiple copy-move forgeries detection and localization |
URI | https://link.springer.com/article/10.1007/s10044-021-00968-y https://www.proquest.com/docview/2557060502 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXVh4IwqlysAGllLbSfBYoZaK14CoVKbIdpwJ0oqkQ_89Z9emgACJ1bE9nH1338Xf3QGcKaGSjAlNqEgU4TJhBJ2CIVQXSqBmGukyvO8f0tGY30ySiU8KqwPbPTxJOkv9Kdkt5pxYSoHF3ZdksQ6tBGN3S-Qa036wv4wx11EVgQAjWcJ7PlXm5z2-uqMVxvz2LOq8zXAHtjxMjPrLc92FNVPtwbaHjJFXyBqHQleGMLYPd49TNa-bSFZFtGRroEGLAnEw0tPZgrxOcai0f8NtpBwVpnGMrMotcu7Np2cewHg4eLoaEd8zgWhUpoYIgyLJSvRMPWNiLUqURloYgzhDaRXLQkrJWZoaJSmT0rAMMVdZSiGMUIhN2CFsVNPKHEGUIVjRlDFexqV9zhWm0FnGuBKpDfJYG3pBdLn2BcVtX4uXfFUK2Yo7R3HnTtz5og3nH2tmy3Iaf87uhBPJvWrVObVFwzAIi2kbLsIprT7_vtvx_6afwCZ1F8WS_Tqw0bzNzSkCkEZ1odW_fr4ddN29ewf_zNL2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLDwjSgU8MAGllLbSeqxQlQF2g6olbpFtuNMkFYkHfrvObs2BQRIrBfbw9nne869u0PoWgkVp0xoQkWsCJcxI-AUDKE6VwIs00iX4T0cJf0Jf5zGU58UVgW2ewhJupv6U7JbxDmxlAKLuztkuYm2AAx07Fme0G64fxljrqMqAAFG0pi3farMz2t8dUdrjPktLOq8TW8f7XqYiLurfT1AG6Y8RHseMmJvkBWIQleGIDtCg-eZWlQ1lmWOV2wNuNBwIA5iPZsvyesMRIX9G25fyjg3tWNklW6Sc28-PfMYTXr347s-8T0TiAZjqokwMY3SAjxT25hIiwK0keTGAM5QWkUyl1JyliRGScqkNCwFzFUUUggjFGATdoIa5aw0pwinAFY0ZYwXUWHDucLkOk0ZVyKxjzzWRO2gukz7guK2r8VLti6FbNWdgbozp-5s2UQ3H3Pmq3Iaf45uhR3JvGlVGbVFw-ARFtEmug27tP78-2pn_xt-hbb74-EgGzyMns7RDnWHxhL_WqhRvy3MBYCRWl26s_cOdojUVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSIiFb0ShQAY2sJraToLHCqgKlAohKnWzbMeZIKloOvTfc3ZiWhAgsTq2h_Od71187w6hc8VVlFCuMeGRwkxGFINTMJjoVHGwTCMdw_txGPdH7H4cjZdY_C7b3T9JVpwGW6UpL9uTNGsvEd9CxrBNL7AY_ArPV9Eas2xg0OgR6fq7mFLquqsCKKA4iVinps38vMdX17TAm9-eSJ3n6W2jzRoyBt3qjHfQisl30VYNH4PaOKcw5Ds0-LE9NHgu1GxaBjJPgypzAy63wCcRBrqYzPFbAUOZ_TNuo-YgNaXLzsrdIufqaqrmPhr1bl-u-7jun4A1GFaJuYlImGTgpTrGhJpnII04NQYwh9IqlKmUktE4NkoSKqWhCeCvLJOcG64Ap9AD1MiL3ByiIAHgogmlLAsz-7TLTaqThDLFYxvw0SbqeNEJXRcXtz0uXsWiLLIVtwBxCyduMW-ii881k6q0xp-zW_5ERG1mU0FsATEIyELSRJf-lBaff9_t6H_Tz9D6001PDO6GD8dogzidsTmALdQo32fmBHBJqU6d6n0A0B_YiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+effective+multiple+copy-move+forgeries+detection+and+localization&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Wang%2C+Xiang-yang&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Li&rft.au=Yang%2C+Hong-ying&rft.date=2021-08-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=24&rft.issue=3&rft.spage=1025&rft.epage=1046&rft_id=info:doi/10.1007%2Fs10044-021-00968-y&rft.externalDocID=10_1007_s10044_021_00968_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |