Enhanced near-room-temperature thermoelectric performance in GeTe

GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit ( ZT ) values at temperatures over 600 K. Its near-room-temperature performance is less studied due to the intrinsic high carrier concentration. Here, we successfully enhance the Seebeck coefficient...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 41; no. 9; pp. 3027 - 3034
Main Authors Tan, Xian Yi, Dong, Jin-Feng, Jia, Ning, Zhang, Hong-Xia, Ji, Rong, Suwardi, Ady, Li, Zhi-Liang, Zhu, Qiang, Xu, Jian-Wei, Yan, Qing-Yu
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1001-0521
1867-7185
DOI10.1007/s12598-022-02036-8

Cover

Loading…
Abstract GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit ( ZT ) values at temperatures over 600 K. Its near-room-temperature performance is less studied due to the intrinsic high carrier concentration. Here, we successfully enhance the Seebeck coefficient of GeTe from ~ 30 to 220 μV·K −1 at 300 K, which is achieved by AgInSe 2 alloying and Bi doping. It is demonstrated that Bi doping helps to optimize the Seebeck coefficient without deteriorating the intrinsic electrical transport properties of the matrix. A high room-temperature power factor (PF) of ~ 11 μW·cm −1 ·K −2 is achieved for a wide range of Bi-doped samples. The simultaneously introduced abundant point defects cause mass and strain fluctuations, which decrease the lattice thermal conductivity ( κ L ) to a low value of 0.6 W·m −1 ·K −1 at 300 K. Due to the synergetic effects of Bi doping in AgInSe 2 -alloyed GeTe, a high room-temperature ZT value of 0.46 is obtained together with a high ZT value of 1.1 at 523 K. Graphical abstract
AbstractList GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit ( ZT ) values at temperatures over 600 K. Its near-room-temperature performance is less studied due to the intrinsic high carrier concentration. Here, we successfully enhance the Seebeck coefficient of GeTe from ~ 30 to 220 μV·K −1 at 300 K, which is achieved by AgInSe 2 alloying and Bi doping. It is demonstrated that Bi doping helps to optimize the Seebeck coefficient without deteriorating the intrinsic electrical transport properties of the matrix. A high room-temperature power factor (PF) of ~ 11 μW·cm −1 ·K −2 is achieved for a wide range of Bi-doped samples. The simultaneously introduced abundant point defects cause mass and strain fluctuations, which decrease the lattice thermal conductivity ( κ L ) to a low value of 0.6 W·m −1 ·K −1 at 300 K. Due to the synergetic effects of Bi doping in AgInSe 2 -alloyed GeTe, a high room-temperature ZT value of 0.46 is obtained together with a high ZT value of 1.1 at 523 K. Graphical abstract
GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit (ZT) values at temperatures over 600 K. Its near-room-temperature performance is less studied due to the intrinsic high carrier concentration. Here, we successfully enhance the Seebeck coefficient of GeTe from ~ 30 to 220 μV·K−1 at 300 K, which is achieved by AgInSe2 alloying and Bi doping. It is demonstrated that Bi doping helps to optimize the Seebeck coefficient without deteriorating the intrinsic electrical transport properties of the matrix. A high room-temperature power factor (PF) of ~ 11 μW·cm−1·K−2 is achieved for a wide range of Bi-doped samples. The simultaneously introduced abundant point defects cause mass and strain fluctuations, which decrease the lattice thermal conductivity (κL) to a low value of 0.6 W·m−1·K−1 at 300 K. Due to the synergetic effects of Bi doping in AgInSe2-alloyed GeTe, a high room-temperature ZT value of 0.46 is obtained together with a high ZT value of 1.1 at 523 K.
Author Zhang, Hong-Xia
Jia, Ning
Xu, Jian-Wei
Suwardi, Ady
Yan, Qing-Yu
Dong, Jin-Feng
Li, Zhi-Liang
Zhu, Qiang
Ji, Rong
Tan, Xian Yi
Author_xml – sequence: 1
  givenname: Xian Yi
  surname: Tan
  fullname: Tan, Xian Yi
  organization: School of Materials Science and Engineering, Nanyang Technological University, Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 2
  givenname: Jin-Feng
  orcidid: 0000-0002-3026-8054
  surname: Dong
  fullname: Dong, Jin-Feng
  email: jinfeng.dong@ntu.edu.sg
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 3
  givenname: Ning
  surname: Jia
  fullname: Jia, Ning
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 4
  givenname: Hong-Xia
  surname: Zhang
  fullname: Zhang, Hong-Xia
  organization: Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University
– sequence: 5
  givenname: Rong
  surname: Ji
  fullname: Ji, Rong
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 6
  givenname: Ady
  surname: Suwardi
  fullname: Suwardi, Ady
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 7
  givenname: Zhi-Liang
  surname: Li
  fullname: Li, Zhi-Liang
  organization: Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University
– sequence: 8
  givenname: Qiang
  surname: Zhu
  fullname: Zhu, Qiang
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 9
  givenname: Jian-Wei
  surname: Xu
  fullname: Xu, Jian-Wei
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research
– sequence: 10
  givenname: Qing-Yu
  orcidid: 0000-0003-0317-3225
  surname: Yan
  fullname: Yan, Qing-Yu
  email: alexyan@ntu.edu.sg
  organization: School of Materials Science and Engineering, Nanyang Technological University
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOTZHeTPZZSq1DwUs8hm521W7pJTdKD_96tKwgeehhmGN43b3gzMnHeISH3DB4ZgHyKjBeVosD5UCBKqq7IlKlSUslUMRlmAEah4OyGzGLcA-R5WcKULFZuZ5zFJnNoAg3e9zRhf8Rg0ilglnYYeo8HtCl0Nhv2rQ_9mcg6l61xi7fkujWHiHe_fU7en1fb5QvdvK1fl4sNtYJViVZNXSvWSmy4tA1XwiqDNYPaMJFLoepKiZIhyBy4NWgaJaCsG8nqsuJFi2JOHsa7x-A_TxiT3vtTcIOl5hJAFIJLNaj4qLLBxxiw1cfQ9SZ8aQb6HJUeo9JDVPonKn2G1D_IdsmkzrsUTHe4jIoRjYOP-8Dw99UF6hsyw3-q
CitedBy_id crossref_primary_10_1021_acsami_4c00455
crossref_primary_10_1021_acs_inorgchem_3c02777
crossref_primary_10_1016_j_mattod_2023_04_021
crossref_primary_10_1002_adfm_202403498
crossref_primary_10_1016_j_jssc_2024_124785
crossref_primary_10_54227_mlab_20230001
crossref_primary_10_1021_acs_inorgchem_3c00350
crossref_primary_10_1002_adom_202301955
crossref_primary_10_1002_slct_202304794
crossref_primary_10_1002_adfm_202417260
crossref_primary_10_1039_D3NR02678G
crossref_primary_10_1002_asia_202400180
crossref_primary_10_1007_s12598_024_02986_1
crossref_primary_10_1007_s12598_024_02862_y
crossref_primary_10_1016_j_nanoen_2022_108118
crossref_primary_10_1021_acs_chemmater_4c02649
crossref_primary_10_1002_marc_202400064
crossref_primary_10_1038_s41467_023_43228_9
crossref_primary_10_1002_advs_202400870
crossref_primary_10_1016_j_jcou_2024_102727
crossref_primary_10_1016_j_jmat_2023_06_008
crossref_primary_10_1088_2053_1591_ad6534
crossref_primary_10_1016_j_cej_2024_156250
crossref_primary_10_1021_acsami_3c03365
crossref_primary_10_1016_j_mtphys_2025_101661
crossref_primary_10_1007_s12598_024_02860_0
crossref_primary_10_1088_1361_6463_ad3ce6
crossref_primary_10_1002_aesr_202300069
crossref_primary_10_3390_en16093774
crossref_primary_10_1016_j_jallcom_2024_175896
crossref_primary_10_1016_j_mtener_2023_101355
crossref_primary_10_1039_D3TA05885A
Cites_doi 10.1126/science.aak9997
10.1038/s41563-021-01109-w
10.1126/sciadv.abc0726
10.1063/1.5021094
10.1002/aenm.201801837
10.1073/pnas.1802020115
10.1002/adma.201807071
10.1039/C9TA09972G
10.1126/science.aax7792
10.1002/adma.202005612
10.1038/nmat2090
10.1016/j.joule.2019.08.017
10.1039/D1CS00347J
10.1002/adfm.201201576
10.1039/D1NR06962D
10.1103/PhysRevB.46.6131
10.1038/ncomms9144
10.1002/advs.202100220
10.1107/S0567739476001551
10.1039/D0EE02791J
10.1126/science.1158899
10.1039/D0TA06013E
10.1038/nmat3273
10.1038/natrevmats.2016.32
10.1016/j.joule.2018.02.016
10.1126/science.abi8668
10.1021/jacs.8b09147
10.1021/acs.chemrev.0c00026
10.1007/s12598-021-01753-w
10.1002/adma.201603955
10.1016/j.joule.2020.03.004
10.1038/asiamat.2010.138
10.1103/PhysRev.120.1149
10.1002/adfm.201806613
10.1016/j.joule.2019.10.010
10.1038/s41427-019-0187-x
10.1039/C7EE03326E
10.1002/aenm.202100661
10.1039/C9EE00317G
10.1021/acsami.9b10207
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2022
Youke Publishing Co.,Ltd 2022.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2022
– notice: Youke Publishing Co.,Ltd 2022.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-022-02036-8
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 3034
ExternalDocumentID 10_1007_s12598_022_02036_8
GrantInformation_xml – fundername: Singapore MOE AcRF Tier 2
  grantid: 2018-T2-1-010
– fundername: Sustainable Hybrid Lighting System for Controlled Environment Agriculture programme
  grantid: A19D9a0096
– fundername: Agency for Science, Technology and Research (A*STAR), Singapore Career Development Fund (CDF)
  grantid: C210112022
– fundername: Singapore A*STAR project
  grantid: A19D9a0096
– fundername: S&T Program of Hebei
  grantid: 206Z4403G
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c319t-9dbb81f7ed27cd283c8aeb10ba134738b98361e07402caead8306bd71b6925fe3
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Tue Aug 12 18:13:40 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 01:30:11 EDT 2025
Fri Feb 21 02:46:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Thermal conductivity
Thermoelectric
Room-temperature
GeTe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9dbb81f7ed27cd283c8aeb10ba134738b98361e07402caead8306bd71b6925fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0317-3225
0000-0002-3026-8054
PQID 2700353278
PQPubID 326325
PageCount 8
ParticipantIDs proquest_journals_2700353278
crossref_primary_10_1007_s12598_022_02036_8
crossref_citationtrail_10_1007_s12598_022_02036_8
springer_journals_10_1007_s12598_022_02036_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2022
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Callaway, von Baeyer (CR45) 1960; 120
Hong, Wang, Liu, Matsumura, Wang, Zou, Chen (CR25) 2018; 8
Bell (CR1) 2008; 321
Li, Liu, Zhao, Zhou (CR5) 2010; 2
Zheng, Slade, Hu, Tan, Luo, Luo, Xu, Yan, Kanatzidis (CR6) 2021; 50
Liu, Sun, Mao, Zhu, Ren, Zhou, Wang, Singh, Sui, Chu, Ren (CR47) 2018; 115
Mao, Zhu, Ding, Liu, Gamage, Chen, Ren (CR16) 2019; 365
Luo, Cai, Hao, Pielnhofer, Hadar, Luo, Xu, Wolverton, Dravid, Pfitzner, Yan, Kanatzidis (CR12) 2020; 4
Perumal, Samanta, Ghosh, Shenoy, Bohra, Bhattacharya, Singh, Waghmare, Biswas (CR40) 2019; 3
Hu, Luo, Fang, Qin, Cao, Xie, Liu, Dong, Sanson, Giarola, Tan, Zheng, Suwardi, Huang, Hippalgaonkar, He, Zhang, Xu, Yan, Kanatzidis (CR42) 2021; 11
Jia, Cao, Tan, Dong, Liu, Tan, Xu, Yan, Loh, Suwardi (CR8) 2021; 21
Huiping, Kaiyang, Tiejun, Xinbing (CR13) 2021; 45
Xing, Song, Qiu, Zhang, Gu, Xia, Liao, Shi, Chen (CR33) 2021; 14
Cahill, Watson, Pohl (CR48) 1992; 46
Qin, Wang, Liu, Qin, Dong, Luo, Li, Liu, Tan, Tang, Li, He, Zhao (CR11) 2021; 373
Shannon (CR37) 1976; 32
Yan, Kanatzidis (CR3) 2021
Zhang, Bu, Lin, Chen, Li, Pei (CR20) 2020; 4
Zhang, Bu, Shi, Chen, Lin, Shan, Wood, Snyder, Chen, Snyder, Pei (CR35) 2020
Wu, Xie, Xu, He (CR26) 2019; 29
Bai, Yu, Wu, Li, Xie, Hu, Liu, Wuttig, Cojocaru-Mirédin, Zhang (CR28) 2021; 11
Zhi, Li, Hu, Li, Li, Wu, Liu, Zhang, Ao, Xie, Zhao, Pennycook, Zhu (CR29) 2021; 8
Bu, Chen, Zhang, Lin, Mao, Li, Chen, Pei (CR34) 2020; 15
Wang, LaLonde, Pei, Snyder (CR44) 2013; 23
Snyder, Toberer (CR4) 2008; 7
Suwardi, Cao, Zhao, Wu, Chien, Tan, Hu, Wang, Wang, Li, Yin, Zhou, Repaka, Chen, Zheng, Yan, Zhang, Xu (CR38) 2020; 14
Dong, Sun, Tang, Hayashi, Li, Shang, Miyazaki, Li (CR46) 2019; 11
CR2
He, Tritt (CR9) 2017
Tamaki, Sato, Kanno (CR15) 2016; 28
Fu, Bai, Liu, Tang, Chen, Zhao, Zhu (CR17) 2015; 6
Bu, Li, Li, Zhang, Mao, Chen, Pei (CR24) 2019; 9
Kuo, Kang, Imasato, Tamaki, Ohno, Kanno, Snyder (CR43) 2018; 11
Li, Zhang, Chen, Lin, Li, Shen, Witting, Faghaninia, Chen, Jain, Chen, Snyder, Pei (CR22) 2018; 2
Wang, Qin, Wang, Hong, Gao, Zhao (CR10) 2021; 40
Dong, Sun, Tang, Pei, Zhuang, Hu, Zhang, Pan, Li (CR23) 2019; 12
Li, Chen, Zhang, Sun, Yang, Pei (CR41) 2017; 9
Wu, Li, Wang, Zhang, Yang, Zhang, Chen, Yang (CR36) 2017; 9
Zevalkink, Smiadak, Blackburn, Ferguson, Chabinyc, Delaire, Wang, Kovnir, Martin, Schelhas, Sparks, Kang, Dylla, Snyder, Ortiz, Toberer (CR7) 2018; 5
Zeier, Schmitt, Hautier, Aydemir, Gibbs, Felser, Snyder (CR18) 2016; 1
Tsai, Wei, Chang, Wang, Yang, Lai, Hsing, Wei, He, Snyder, Wu (CR27) 2020; 33
Suwardi, Cao, Hu, Wei, Wu, Zhao, Lim, Yang, Tan, Chien, Yin, Zhou, Mun Nancy, Wang, Lim, Ni, Li, Yan, Zheng, Zhang, Xu (CR31) 2020; 8
Hong, Zou, Chen (CR19) 2019; 31
Liu, Sato, Guo, Gao, Mori (CR39) 2020; 12
Liu, Shi, Xu, Zhang, Zhang, Chen, Li, Uher, Day, Snyder (CR14) 2012; 11
Li, Zhang, Wang, Bu, Zheng, Zhou, Xiong, Chen, Pei (CR21) 2018; 140
Dong, Pei, Zhuang, Hu, Cai, Li (CR30) 2019; 7
Cao, Tan, Jia, Lan, Solco, Chen, Chien, Liu, Tan, Zhu, Xu, Yan, Suwardi (CR32) 2022; 14
X Zhang (2036_CR20) 2020; 4
Z Bu (2036_CR24) 2019; 9
J Li (2036_CR41) 2017; 9
L Wu (2036_CR36) 2017; 9
Z Bu (2036_CR34) 2020; 15
J Li (2036_CR21) 2018; 140
J He (2036_CR9) 2017
T Xing (2036_CR33) 2021; 14
Z Liu (2036_CR47) 2018; 115
J Dong (2036_CR23) 2019; 12
N Jia (2036_CR8) 2021; 21
JF Li (2036_CR5) 2010; 2
G Bai (2036_CR28) 2021; 11
J Mao (2036_CR16) 2019; 365
H Wang (2036_CR44) 2013; 23
2036_CR2
M Hong (2036_CR19) 2019; 31
RD Shannon (2036_CR37) 1976; 32
ZH Liu (2036_CR39) 2020; 12
J Dong (2036_CR46) 2019; 11
L Hu (2036_CR42) 2021; 11
D Wu (2036_CR26) 2019; 29
J Dong (2036_CR30) 2019; 7
LE Bell (2036_CR1) 2008; 321
WG Zeier (2036_CR18) 2016; 1
JJ Kuo (2036_CR43) 2018; 11
Y Zheng (2036_CR6) 2021; 50
H Tamaki (2036_CR15) 2016; 28
M Hong (2036_CR25) 2018; 8
C Fu (2036_CR17) 2015; 6
YF Tsai (2036_CR27) 2020; 33
J Cao (2036_CR32) 2022; 14
H Liu (2036_CR14) 2012; 11
A Suwardi (2036_CR31) 2020; 8
S Perumal (2036_CR40) 2019; 3
YP Wang (2036_CR10) 2021; 40
Y Luo (2036_CR12) 2020; 4
A Suwardi (2036_CR38) 2020; 14
J Callaway (2036_CR45) 1960; 120
J Li (2036_CR22) 2018; 2
GJ Snyder (2036_CR4) 2008; 7
X Zhang (2036_CR35) 2020
B Qin (2036_CR11) 2021; 373
Q Yan (2036_CR3) 2021
A Zevalkink (2036_CR7) 2018; 5
S Zhi (2036_CR29) 2021; 8
DG Cahill (2036_CR48) 1992; 46
Hu Huiping (2036_CR13) 2021; 45
References_xml – volume: 40
  start-page: 2819
  issue: 10
  year: 2021
  ident: CR10
  article-title: Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion
  publication-title: Rare Met
– volume: 45
  start-page: 513
  issue: 5
  year: 2021
  ident: CR13
  article-title: Recent advances in Ag-based superionic thermoelectric materials
  publication-title: Chin J Rare Met
– volume: 365
  start-page: 495
  issue: 6452
  year: 2019
  ident: CR16
  article-title: High thermoelectric cooling performance of n-type Mg Bi -based materials
  publication-title: Science
– year: 2017
  ident: CR9
  article-title: Advances in thermoelectric materials research: looking back and moving forward
  publication-title: Science
  doi: 10.1126/science.aak9997
– volume: 373
  start-page: 556
  issue: 6554
  year: 2021
  ident: CR11
  article-title: Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments
  publication-title: Science
– volume: 8
  start-page: 18880
  issue: 36
  year: 2020
  ident: CR31
  article-title: Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics
  publication-title: J Mater Chem A
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: CR39
  article-title: Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction
  publication-title: NPG Asia Mater
– volume: 2
  start-page: 976
  issue: 5
  year: 2018
  ident: CR22
  article-title: Low-symmetry rhombohedral GeTe thermoelectrics
  publication-title: Joule
– volume: 12
  start-page: 1396
  issue: 4
  year: 2019
  ident: CR23
  article-title: Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance
  publication-title: Energy Environ Sci
– ident: CR2
– volume: 120
  start-page: 1149
  issue: 4
  year: 1960
  ident: CR45
  article-title: Effect of point imperfections on lattice thermal conductivity
  publication-title: Phys Rev
– volume: 9
  year: 2019
  ident: CR24
  article-title: Dilute Cu Te-alloying enables extraordinary performance of r-GeTe thermoelectrics
  publication-title: Mater Today Phys
– volume: 8
  start-page: 2100220
  issue: 12
  year: 2021
  ident: CR29
  article-title: Medium entropy-enabled high performance cubic GeTe thermoelectrics
  publication-title: Adv Sci
– volume: 1
  start-page: 16032
  issue: 6
  year: 2016
  ident: CR18
  article-title: Engineering half-Heusler thermoelectric materials using Zintl chemistry
  publication-title: Nat Rev Mater
– volume: 4
  start-page: 986
  issue: 5
  year: 2020
  ident: CR20
  article-title: GeTe thermoelectrics
  publication-title: Joule
– volume: 3
  start-page: 2565
  issue: 10
  year: 2019
  ident: CR40
  article-title: Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In
  publication-title: Joule
– volume: 115
  start-page: 5332
  issue: 21
  year: 2018
  ident: CR47
  article-title: Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 1586
  issue: 12
  year: 2013
  ident: CR44
  article-title: The criteria for beneficial disorder in thermoelectric solid solutions
  publication-title: Adv Func Mater
– volume: 28
  start-page: 10182
  issue: 46
  year: 2016
  end-page: 10187
  ident: CR15
  article-title: Isotropic conduction network and defect chemistry in Mg Sb -based layered zintl compounds with high thermoelectric performance
  publication-title: Adv Mater
– volume: 50
  start-page: 9022
  issue: 16
  year: 2021
  ident: CR6
  article-title: Defect engineering in thermoelectric materials: what have we learned?
  publication-title: Chem Soc Rev
– volume: 14
  start-page: 995
  issue: 2
  year: 2021
  ident: CR33
  article-title: High efficiency GeTe-based materials and modules for thermoelectric power generation
  publication-title: Energy Environ Sci
– volume: 8
  start-page: 1801837
  issue: 30
  year: 2018
  ident: CR25
  article-title: Arrays of planar vacancies in superior thermoelectric Ge Cd Bi Te with band convergence
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 101
  issue: 2
  year: 2008
  ident: CR4
  article-title: Complex thermoelectric materials
  publication-title: Nat Mater
– year: 2021
  ident: CR3
  article-title: High-performance thermoelectrics and challenges for practical devices
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-01109-w
– volume: 15
  year: 2020
  ident: CR34
  article-title: Near-room-temperature rhombohedral Ge Pb Te thermoelectrics
  publication-title: Mater Today Phys
– volume: 11
  start-page: 2100661
  issue: 42
  year: 2021
  ident: CR42
  article-title: High thermoelectric performance through crystal symmetry enhancement in triply doped diamondoid compound Cu SnSe
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 8144
  year: 2015
  ident: CR17
  article-title: Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
  publication-title: Nat Commun
– volume: 14
  year: 2020
  ident: CR38
  article-title: Achieving high thermoelectric quality factor toward high figure of merit in GeTe
  publication-title: Mater Today Phys
– volume: 9
  issue: 3
  year: 2017
  ident: CR41
  article-title: Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides
  publication-title: NPG Asia Mater
– volume: 11
  start-page: 28221
  issue: 31
  year: 2019
  ident: CR46
  article-title: Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance
  publication-title: ACS Appl Mater Interface
– volume: 46
  start-page: 6131
  issue: 10
  year: 1992
  ident: CR48
  article-title: Lower limit to the thermal conductivity of disordered crystals
  publication-title: Physl Rev B
– volume: 7
  start-page: 27361
  issue: 48
  year: 2019
  ident: CR30
  article-title: High-performance electron-doped GeMnTe : hierarchical structure and low thermal conductivity
  publication-title: J Mater Chem A
– volume: 14
  start-page: 410
  issue: 2
  year: 2022
  ident: CR32
  article-title: Improved zT in Nb Ge –GeTe thermoelectric nanocomposite
  publication-title: Nanoscale
– year: 2020
  ident: CR35
  article-title: Electronic quality factor for thermoelectrics
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abc0726
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: CR37
  article-title: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr Sect A
– volume: 11
  start-page: 429
  issue: 2
  year: 2018
  ident: CR43
  article-title: Grain boundary dominated charge transport in Mg Sb -based compounds
  publication-title: Energy Environ Sci
– volume: 11
  start-page: 2021
  issue: 37
  year: 2021
  ident: CR28
  article-title: Boron strengthened GeTe-based alloys for robust thermoelectric devices with high output power density
  publication-title: Adv Energy Mater
– volume: 321
  start-page: 1457
  issue: 5895
  year: 2008
  ident: CR1
  article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
  publication-title: Science
– volume: 4
  start-page: 159
  issue: 1
  year: 2020
  ident: CR12
  article-title: High-performance thermoelectrics from cellular nanostructured Sb Si Te
  publication-title: Joule
– volume: 11
  start-page: 422
  issue: 5
  year: 2012
  ident: CR14
  article-title: Copper ion liquid-like thermoelectrics
  publication-title: Nat Mater
– volume: 140
  start-page: 16190
  issue: 47
  year: 2018
  ident: CR21
  article-title: High-performance GeTe thermoelectrics in both rhombohedral and cubic phases
  publication-title: J Am Chem Soc
– volume: 9
  issue: 1
  year: 2017
  ident: CR36
  article-title: Resonant level-induced high thermoelectric response in indium-doped GeTe
  publication-title: NPG Asia Mater
– volume: 29
  start-page: 1806613
  issue: 18
  year: 2019
  ident: CR26
  article-title: High thermoelectric performance achieved in GeTe–Bi Te pseudo-binary via Van der Waals gap-induced hierarchical ferroelectric domain structure
  publication-title: Adv Func Mater
– volume: 5
  issue: 2
  year: 2018
  ident: CR7
  article-title: A practical field guide to thermoelectrics: fundamentals, synthesis, and characterization
  publication-title: Appl Phys Rev
– volume: 31
  start-page: 1807071
  issue: 14
  year: 2019
  ident: CR19
  article-title: Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance
  publication-title: Adv Mater
– volume: 2
  start-page: 152
  issue: 4
  year: 2010
  ident: CR5
  article-title: High-performance nanostructured thermoelectric materials
  publication-title: NPG Asia Mater
– volume: 33
  start-page: 2005612
  issue: 1
  year: 2020
  ident: CR27
  article-title: Compositional fluctuations locked by athermal transformation yielding high thermoelectric performance in GeTe
  publication-title: Adv Mater
– volume: 21
  year: 2021
  ident: CR8
  article-title: Thermoelectric materials and transport physics
  publication-title: Mater Today Phys
– volume: 5
  issue: 2
  year: 2018
  ident: 2036_CR7
  publication-title: Appl Phys Rev
  doi: 10.1063/1.5021094
– volume: 8
  start-page: 1801837
  issue: 30
  year: 2018
  ident: 2036_CR25
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201801837
– volume: 115
  start-page: 5332
  issue: 21
  year: 2018
  ident: 2036_CR47
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1802020115
– year: 2021
  ident: 2036_CR3
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-01109-w
– volume: 31
  start-page: 1807071
  issue: 14
  year: 2019
  ident: 2036_CR19
  publication-title: Adv Mater
  doi: 10.1002/adma.201807071
– volume: 9
  year: 2019
  ident: 2036_CR24
  publication-title: Mater Today Phys
– volume: 9
  issue: 3
  year: 2017
  ident: 2036_CR41
  publication-title: NPG Asia Mater
– volume: 45
  start-page: 513
  issue: 5
  year: 2021
  ident: 2036_CR13
  publication-title: Chin J Rare Met
– volume: 7
  start-page: 27361
  issue: 48
  year: 2019
  ident: 2036_CR30
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA09972G
– volume: 14
  year: 2020
  ident: 2036_CR38
  publication-title: Mater Today Phys
– volume: 365
  start-page: 495
  issue: 6452
  year: 2019
  ident: 2036_CR16
  publication-title: Science
  doi: 10.1126/science.aax7792
– volume: 33
  start-page: 2005612
  issue: 1
  year: 2020
  ident: 2036_CR27
  publication-title: Adv Mater
  doi: 10.1002/adma.202005612
– volume: 15
  year: 2020
  ident: 2036_CR34
  publication-title: Mater Today Phys
– volume: 7
  start-page: 101
  issue: 2
  year: 2008
  ident: 2036_CR4
  publication-title: Nat Mater
  doi: 10.1038/nmat2090
– volume: 3
  start-page: 2565
  issue: 10
  year: 2019
  ident: 2036_CR40
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.017
– volume: 50
  start-page: 9022
  issue: 16
  year: 2021
  ident: 2036_CR6
  publication-title: Chem Soc Rev
  doi: 10.1039/D1CS00347J
– volume: 23
  start-page: 1586
  issue: 12
  year: 2013
  ident: 2036_CR44
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201201576
– volume: 14
  start-page: 410
  issue: 2
  year: 2022
  ident: 2036_CR32
  publication-title: Nanoscale
  doi: 10.1039/D1NR06962D
– volume: 9
  issue: 1
  year: 2017
  ident: 2036_CR36
  publication-title: NPG Asia Mater
– volume: 46
  start-page: 6131
  issue: 10
  year: 1992
  ident: 2036_CR48
  publication-title: Physl Rev B
  doi: 10.1103/PhysRevB.46.6131
– volume: 21
  year: 2021
  ident: 2036_CR8
  publication-title: Mater Today Phys
– volume: 6
  start-page: 8144
  year: 2015
  ident: 2036_CR17
  publication-title: Nat Commun
  doi: 10.1038/ncomms9144
– volume: 8
  start-page: 2100220
  issue: 12
  year: 2021
  ident: 2036_CR29
  publication-title: Adv Sci
  doi: 10.1002/advs.202100220
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: 2036_CR37
  publication-title: Acta Crystallogr Sect A
  doi: 10.1107/S0567739476001551
– volume: 14
  start-page: 995
  issue: 2
  year: 2021
  ident: 2036_CR33
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE02791J
– volume: 321
  start-page: 1457
  issue: 5895
  year: 2008
  ident: 2036_CR1
  publication-title: Science
  doi: 10.1126/science.1158899
– volume: 8
  start-page: 18880
  issue: 36
  year: 2020
  ident: 2036_CR31
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA06013E
– volume: 11
  start-page: 422
  issue: 5
  year: 2012
  ident: 2036_CR14
  publication-title: Nat Mater
  doi: 10.1038/nmat3273
– volume: 1
  start-page: 16032
  issue: 6
  year: 2016
  ident: 2036_CR18
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.32
– volume: 2
  start-page: 976
  issue: 5
  year: 2018
  ident: 2036_CR22
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.016
– volume: 373
  start-page: 556
  issue: 6554
  year: 2021
  ident: 2036_CR11
  publication-title: Science
  doi: 10.1126/science.abi8668
– volume: 140
  start-page: 16190
  issue: 47
  year: 2018
  ident: 2036_CR21
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b09147
– ident: 2036_CR2
  doi: 10.1021/acs.chemrev.0c00026
– year: 2017
  ident: 2036_CR9
  publication-title: Science
  doi: 10.1126/science.aak9997
– volume: 40
  start-page: 2819
  issue: 10
  year: 2021
  ident: 2036_CR10
  publication-title: Rare Met
  doi: 10.1007/s12598-021-01753-w
– volume: 28
  start-page: 10182
  issue: 46
  year: 2016
  ident: 2036_CR15
  publication-title: Adv Mater
  doi: 10.1002/adma.201603955
– volume: 4
  start-page: 986
  issue: 5
  year: 2020
  ident: 2036_CR20
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.004
– year: 2020
  ident: 2036_CR35
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abc0726
– volume: 2
  start-page: 152
  issue: 4
  year: 2010
  ident: 2036_CR5
  publication-title: NPG Asia Mater
  doi: 10.1038/asiamat.2010.138
– volume: 120
  start-page: 1149
  issue: 4
  year: 1960
  ident: 2036_CR45
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.120.1149
– volume: 29
  start-page: 1806613
  issue: 18
  year: 2019
  ident: 2036_CR26
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201806613
– volume: 4
  start-page: 159
  issue: 1
  year: 2020
  ident: 2036_CR12
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.010
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2036_CR39
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-019-0187-x
– volume: 11
  start-page: 429
  issue: 2
  year: 2018
  ident: 2036_CR43
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE03326E
– volume: 11
  start-page: 2021
  issue: 37
  year: 2021
  ident: 2036_CR28
  publication-title: Adv Energy Mater
– volume: 11
  start-page: 2100661
  issue: 42
  year: 2021
  ident: 2036_CR42
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202100661
– volume: 12
  start-page: 1396
  issue: 4
  year: 2019
  ident: 2036_CR23
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE00317G
– volume: 11
  start-page: 28221
  issue: 31
  year: 2019
  ident: 2036_CR46
  publication-title: ACS Appl Mater Interface
  doi: 10.1021/acsami.9b10207
SSID ssj0044660
Score 2.4102936
Snippet GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit ( ZT ) values at temperatures over 600 K. Its...
GeTe is an excellent mid-temperature thermoelectric material with high dimensionless figure of merit (ZT) values at temperatures over 600 K. Its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3027
SubjectTerms Alloying
Biomaterials
Bismuth
Carrier density
Chemistry and Materials Science
Doping
Energy
Figure of merit
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Point defects
Power factor
Room temperature
Seebeck effect
Temperature
Thermal conductivity
Thermoelectric materials
Thermoelectricity
Transport properties
Title Enhanced near-room-temperature thermoelectric performance in GeTe
URI https://link.springer.com/article/10.1007/s12598-022-02036-8
https://www.proquest.com/docview/2700353278
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSDMfXADSK1yZpmxwrtIRCcNmmcqrwqJkE3sfH_cdKWAgIkLr0kzcFx7M-y_RngUujQGp5LonWMAQoPJRE5x8CVyVDbREbGk_rcP_DJrH87j-dVU9i6rnavU5LeUjfNbojUBXHV5z57RsQ2tGOM3Z1ez2ha21-XoCw5CFygjN6papX5-Yyv7qjBmN_Sot7bjPZhr4KJQVre6wFs2eIQdj-RBx5BOiyefPo-KFBbiUPAxBFNVSzJgUN2L8tyzM1CB6umQyBYFMHYTu0xzEbD6c2EVAMRiMaXsiEDo5SI8sQammiDwEALibY2VNI1hDKhBoLxyCIqCKmWqCMCAwJlkkjxAY1zy06gVSwLewqBdCw4MX4QzvQ508qEiGTCyKAFsNSaDkS1XDJdsYW7oRXPWcNz7GSZoSwzL8tMdODq459VyZXx5-5uLe6sejfrzKXBWcxogsvX9RU0y7-fdva_7eewQ70WuGKxLrQ2r2_2AtHFRvWgnY4f74Y9r1TvyZ7FUw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5ZmADV3k0iTtWqA_oY2qlMlnxo6IC0oqmC7-ec-IQqACpSxY7VnL23X2nu_sMcEOFrWQwiYgQPgYogR0ROgkwcPUiW6gwcmRK6tMfBJ1R7XHsj01T2CKvds9TkqmlLprdEKlToqvP0-wZoZtQrmEM7peg3Gg_dZu5BdYpyoyFQIfK6J9Ms8zvq_x0SAXKXEmMpv6mtQej_EuzMpOX6jLhVfGxQuK47q_sw64BoFYjOzEHsKHiQ9j5Rkt4BI1m_JwWBlgx6gHR2JpoCivDv2xpzPg2yy7QmQprXvQeWNPYaquhOoZRqzm87xBz1QIRqIMJqUvOqTMJlXRDIRFyCBqhFbd5pFtNPcrr1AschXjDdkWEp49iqMFl6PCg7voT5Z1AKZ7F6hSsSPPr-PhAoFQLPMGljRjJdiTaFuUqWQEnlzcThodcX4fxygoGZS0ehuJhqXgYrcDt1zvzjIXj39kX-TYyo5ELphPsnu-5IQ7f5btSDP-92tl6069hqzPs91jvYdA9h2033WRdknYBpeR9qS4RwyT8yhzZT-As46o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOiKcYDOiBG0S06dpmxwk2xmvisEm7RXlVTIJugvL_cdKWDgRIXHpJmoPj2J9l-zPAKVO-0XEqiFIRBiixLwhLYwxcQ-Erk4hAO1Kfh2E8GLdvJ9FkoYvfVbtXKcmip8GyNGX5xVynF3XjG6J2RmwlusukEbYMK2iOA1vUNabdyhbbZGXBR2CDZvRUZdvMz2d8dU013vyWInWep78JGyVk9LrFHW_Bksm2YX2BSHAHur3syaXyvQw1l1g0TCzpVMmY7FmU9zIrRt5MlTevuwW8aeZdm5HZhXG_N7ockHI4AlH4anLS0VKyIE2MponSCBIUE2h3fSlsc2jIZIeFcWAQIfhUCdQXhsGB1Ekg4w6NUhPuQSObZWYfPGEZcSL8ILRpx6GS2kdU4wcarYGhRjchqOTCVckcbgdYPPOa89jKkqMsuZMlZ004-_xnXvBm_Lm7VYmbl2_ojduUeBiFNMHl8-oK6uXfTzv43_YTWH286vP7m-HdIaxRpxC2hqwFjfz13Rwh6MjlsdOrD-s1yu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+near-room-temperature+thermoelectric+performance+in+GeTe&rft.jtitle=Rare+metals&rft.au=Tan%2C+Xian+Yi&rft.au=Dong%2C+Jin-Feng&rft.au=Jia%2C+Ning&rft.au=Zhang%2C+Hong-Xia&rft.date=2022-09-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=9&rft.spage=3027&rft.epage=3034&rft_id=info:doi/10.1007%2Fs12598-022-02036-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_022_02036_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon