Hardware Architecture Exploration for Deep Neural Networks
Owing to good performance, deep Convolution Neural Networks (CNNs) are rapidly rising in popularity across a broad range of applications. Since high accuracy CNNs are both computation intensive and memory intensive, many researchers have shown significant interest in the accelerator design. Furtherm...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 46; no. 10; pp. 9703 - 9712 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to good performance, deep Convolution Neural Networks (CNNs) are rapidly rising in popularity across a broad range of applications. Since high accuracy CNNs are both computation intensive and memory intensive, many researchers have shown significant interest in the accelerator design. Furthermore, the AI chip market size grows and the competition on the performance, cost, and power consumption of the artificial intelligence SoC designs is increasing. Therefore, it is important to develop design techniques and platforms that are useful for the efficient design of optimized AI architectures to satisfy the given specifications in a short design time. In this research, we have developed design space exploration techniques and environments for the optimal design of the overall system including computing modules and memories. Our current design platform is built using NVIDIA Deep Learning Accelerator as a computing model, SRAM as a buffer, and DRAM with GDDR6 as an off-chip memory. We also developed a program to estimate the processing time of a given neural network. By modifying both the on-chip SRAM size and the computing module size, a designer can explore the design space efficiently, and then choose the optimal architecture which shows the minimal cost while satisfying the performance specification. To illustrate the operation of the design platform, two well-known deep CNNs are used, which are YOLOv3 and faster RCNN. This technology can be used to explore and to optimize the hardware architectures of the CNNs so that the cost can be minimized. |
---|---|
AbstractList | Owing to good performance, deep Convolution Neural Networks (CNNs) are rapidly rising in popularity across a broad range of applications. Since high accuracy CNNs are both computation intensive and memory intensive, many researchers have shown significant interest in the accelerator design. Furthermore, the AI chip market size grows and the competition on the performance, cost, and power consumption of the artificial intelligence SoC designs is increasing. Therefore, it is important to develop design techniques and platforms that are useful for the efficient design of optimized AI architectures to satisfy the given specifications in a short design time. In this research, we have developed design space exploration techniques and environments for the optimal design of the overall system including computing modules and memories. Our current design platform is built using NVIDIA Deep Learning Accelerator as a computing model, SRAM as a buffer, and DRAM with GDDR6 as an off-chip memory. We also developed a program to estimate the processing time of a given neural network. By modifying both the on-chip SRAM size and the computing module size, a designer can explore the design space efficiently, and then choose the optimal architecture which shows the minimal cost while satisfying the performance specification. To illustrate the operation of the design platform, two well-known deep CNNs are used, which are YOLOv3 and faster RCNN. This technology can be used to explore and to optimize the hardware architectures of the CNNs so that the cost can be minimized. |
Author | Zhao, Yangyi Shin, Hyunchul Zheng, Wenqi Park, Jinhong Chen, Yunfan |
Author_xml | – sequence: 1 givenname: Wenqi surname: Zheng fullname: Zheng, Wenqi organization: Department of Electrical Engineering, Hanyang University – sequence: 2 givenname: Yangyi surname: Zhao fullname: Zhao, Yangyi organization: Department of Electrical Engineering, Hanyang University – sequence: 3 givenname: Yunfan surname: Chen fullname: Chen, Yunfan organization: Department of Electrical Engineering, Hanyang University – sequence: 4 givenname: Jinhong surname: Park fullname: Park, Jinhong organization: Samsung Electronics Inc – sequence: 5 givenname: Hyunchul orcidid: 0000-0003-3020-5130 surname: Shin fullname: Shin, Hyunchul email: shin@hanyang.ac.kr organization: Department of Electrical Engineering, Hanyang University |
BookMark | eNp9kE9LAzEQxYNUsNZ-AU8LnqP5v423UqsVil4UvIVsktXVdbMmKdVvb-wKgoeeZgbeb2beOwajzncOgFOMzjFC5UXElAoJEcEQccY5ZAdgTLDEkJEZHu16Crkon47ANMamQmxGJceYjsHlSge71cEV82BemuRM2uRh-dm3PujU-K6ofSiunOuLO7cJus0lbX14iyfgsNZtdNPfOgGP18uHxQqu729uF_M1NBTLBKXVshKVFFWlqXUlrqk12iJruJVCMmyFKE3NJCNGuBrryjlUG04Rz7ZwSSfgbNjbB_-xcTGpV78JXT6pCC8J4RgRmlWzQWWCjzG4Wpkm7QykoJtWYaR-wlJDWCqHpXZhKZZR8g_tQ_Ouw9d-iA5QzOLu2YW_r_ZQ3wqJfmA |
CitedBy_id | crossref_primary_10_1038_s41598_022_12141_4 crossref_primary_10_1007_s00034_024_02760_9 |
Cites_doi | 10.1145/3007787.3001179 10.1109/HOTCHIPS.2016.7936226 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2021 King Fahd University of Petroleum & Minerals 2021. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2021 – notice: King Fahd University of Petroleum & Minerals 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-021-05455-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 9712 |
ExternalDocumentID | 10_1007_s13369_021_05455_4 |
GrantInformation_xml | – fundername: Samsung funderid: http://dx.doi.org/10.13039/100004358 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-9da9b6b96bba3de71f3dcad0dc5d96941d667cf4942c6ef1abee0fc5305336173 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 08:57:11 EDT 2025 Tue Jul 01 01:34:17 EDT 2025 Thu Apr 24 23:07:03 EDT 2025 Fri Feb 21 02:47:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | CNN AI architecture Neural network architecture Design space exploration |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-9da9b6b96bba3de71f3dcad0dc5d96941d667cf4942c6ef1abee0fc5305336173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3020-5130 |
PQID | 2572251023 |
PQPubID | 2044268 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2572251023 crossref_citationtrail_10_1007_s13369_021_05455_4 crossref_primary_10_1007_s13369_021_05455_4 springer_journals_10_1007_s13369_021_05455_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Norman, P. J.; Cliff, Y.; Nishant, P. et al.: In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pp 1–12 (2017). Manoj, A.; Han, C.; Michael, F.; Peter, M.: Fused CNN accelerator. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture 22, pp 1–12 (2016) Yongming, S.; Michael, F.; Peter, M.: Escher: A CNN Accelerator with Flexible Buffering to Minimize Off-Chip Transfer. In: 2017 IEEE 25th annual international symposium on field-programmable custom computing machines Enrico, R.; Marco, R.; Anna, M. N. et al.: Pareto Optimal Design Space Exploration for Accelerated CNN on FPGA. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) Shaoqing, R.; Kaiming, H.; Ross, G.; Jian, S.: Faster R-CNN: Towards real-time object detection with region proposal networks. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2015) 1506.01497 Arthur, S.; Francesco, C.: Optimally Scheduling CNN Convolutions for Efficient Memory Access. IEEE transactions on computer-aided design of integrated circuits and systems (2019) Irtiza, H.; Shengcai, L.; Jinpeng, L. et al.: Pedestrian Detection: The Elephant. In: The Room. arXiv preprint arXiv:2003.08799 (2020) NVIDIA,NVIDIA open source ML accelerator, http://nvdla.org, (2018) Shaoli, L.; Zidong, D.; Jinhua, T. et al.: Cambricon: An instruction set architecture for neural networks. In: The 43rd International Symposium on Computer Architecture, 393–405 (2016) Wei, L.; Shengcai, L.; Weiqiang, R. et al.: High-Level Semantic Feature Detection: A New Perspective for Pedestrian Detection. In: CVPR (2019) Tianshi, C.; Zidong, D.; Ninghui, S. et al.: DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In: The 19th international conference on Architectural support for programming languages and operating systems, 269–284 (2014) Shijin, Z.; Zidong, D.; Lei, Z. et al.: Cambricon-X: An accelerator for sparse neural networks. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture 20, pp 1–12 (2016) Joseph, R.; Ali, F.: YOLOv3: An Incremental Improvement. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2018)1804.02767 Thang, V.; Cao, V. N.; Trung, X. P. et al.: Fast and Efficient Image Quality Enhancement via Desubpixel Convolutional Neural Networks. In: ECCV workshop (2018) Joseph, R.; Santosh, D.; Ross, G.; Ali, F.: You Only Look Once: Unified, Real-Time Object Detection. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2016) 1506.02640 Song, H.; Xingyu, L.; Huizi, M. et al.: EIE: efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture Yunji, C.; Tao, L.; Shijin, L. et al.: DaDianNao: A machine-learning supercomputer. In: The 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622 (2014) Daofu, L.; Tianshi, C.; Shaoli, L. et al.: PuDianNao: A polyvalent machine learning accelerator. In: The Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 369–381 (2015) High Bandwidth Memory (HBM) DRAM JESD235C. https://www.jedec.org/standards-documents/docs/jesd235a. (2020) Sachin, M., Mohammad, R., Linda, S., Hannaneh, H.: ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network. In: Proceedings IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) 2019, pp 9190–9200 Zidong, D.; Robert, F.; Tianshi, C. et al.: ShiDianNao: shifting vision processing closer to the sensor. In: The 42nd Annual International Symposium on Computer Architecture, 92–104 (2015) Graphics Double Data Rate (GDDR6) SGRAM Standard JESD250B. https://www.jedec.org/standards-documents/docs/jesd250b. (2018) Cheng, L.; Man-Kit, S.; Hongxiang, F. et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) Qijie, Z.; Tao, S.; Yongtao, W. et al.: M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network. In: AAAI (2019) Chen, W.; Wenjing, W.; Wenhan, Y.; Jiaying, L.: Deep Retinex Decomposition for Low-Light Enhancement. In British Machine Vision Conference (2018) 5455_CR9 5455_CR7 5455_CR8 5455_CR1 5455_CR17 5455_CR2 5455_CR16 5455_CR19 5455_CR18 5455_CR5 5455_CR13 5455_CR6 5455_CR12 5455_CR3 5455_CR15 5455_CR4 5455_CR14 5455_CR11 5455_CR10 5455_CR24 5455_CR23 5455_CR25 5455_CR20 5455_CR22 5455_CR21 |
References_xml | – reference: Joseph, R.; Ali, F.: YOLOv3: An Incremental Improvement. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2018)1804.02767 – reference: Arthur, S.; Francesco, C.: Optimally Scheduling CNN Convolutions for Efficient Memory Access. IEEE transactions on computer-aided design of integrated circuits and systems (2019) – reference: Norman, P. J.; Cliff, Y.; Nishant, P. et al.: In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pp 1–12 (2017). – reference: Manoj, A.; Han, C.; Michael, F.; Peter, M.: Fused CNN accelerator. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture 22, pp 1–12 (2016) – reference: Yunji, C.; Tao, L.; Shijin, L. et al.: DaDianNao: A machine-learning supercomputer. In: The 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622 (2014) – reference: NVIDIA,NVIDIA open source ML accelerator, http://nvdla.org, (2018) – reference: Daofu, L.; Tianshi, C.; Shaoli, L. et al.: PuDianNao: A polyvalent machine learning accelerator. In: The Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, pp 369–381 (2015) – reference: Zidong, D.; Robert, F.; Tianshi, C. et al.: ShiDianNao: shifting vision processing closer to the sensor. In: The 42nd Annual International Symposium on Computer Architecture, 92–104 (2015) – reference: Shaoli, L.; Zidong, D.; Jinhua, T. et al.: Cambricon: An instruction set architecture for neural networks. In: The 43rd International Symposium on Computer Architecture, 393–405 (2016) – reference: Chen, W.; Wenjing, W.; Wenhan, Y.; Jiaying, L.: Deep Retinex Decomposition for Low-Light Enhancement. In British Machine Vision Conference (2018) – reference: Shijin, Z.; Zidong, D.; Lei, Z. et al.: Cambricon-X: An accelerator for sparse neural networks. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture 20, pp 1–12 (2016) – reference: Joseph, R.; Santosh, D.; Ross, G.; Ali, F.: You Only Look Once: Unified, Real-Time Object Detection. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2016) 1506.02640 – reference: Cheng, L.; Man-Kit, S.; Hongxiang, F. et al.: Towards efficient deep neural network training by FPGA-based batch-level parallelism. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) – reference: Thang, V.; Cao, V. N.; Trung, X. P. et al.: Fast and Efficient Image Quality Enhancement via Desubpixel Convolutional Neural Networks. In: ECCV workshop (2018) – reference: Enrico, R.; Marco, R.; Anna, M. N. et al.: Pareto Optimal Design Space Exploration for Accelerated CNN on FPGA. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) – reference: Song, H.; Xingyu, L.; Huizi, M. et al.: EIE: efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture – reference: Wei, L.; Shengcai, L.; Weiqiang, R. et al.: High-Level Semantic Feature Detection: A New Perspective for Pedestrian Detection. In: CVPR (2019) – reference: Irtiza, H.; Shengcai, L.; Jinpeng, L. et al.: Pedestrian Detection: The Elephant. In: The Room. arXiv preprint arXiv:2003.08799 (2020) – reference: Graphics Double Data Rate (GDDR6) SGRAM Standard JESD250B. https://www.jedec.org/standards-documents/docs/jesd250b. (2018) – reference: Yongming, S.; Michael, F.; Peter, M.: Escher: A CNN Accelerator with Flexible Buffering to Minimize Off-Chip Transfer. In: 2017 IEEE 25th annual international symposium on field-programmable custom computing machines – reference: Qijie, Z.; Tao, S.; Yongtao, W. et al.: M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network. In: AAAI (2019) – reference: Sachin, M., Mohammad, R., Linda, S., Hannaneh, H.: ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network. In: Proceedings IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) 2019, pp 9190–9200 – reference: Tianshi, C.; Zidong, D.; Ninghui, S. et al.: DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In: The 19th international conference on Architectural support for programming languages and operating systems, 269–284 (2014) – reference: Shaoqing, R.; Kaiming, H.; Ross, G.; Jian, S.: Faster R-CNN: Towards real-time object detection with region proposal networks. Computer Vision and Pattern Recognition (cs.CV), arXiv: (2015) 1506.01497 – reference: High Bandwidth Memory (HBM) DRAM JESD235C. https://www.jedec.org/standards-documents/docs/jesd235a. (2020) – ident: 5455_CR8 doi: 10.1145/3007787.3001179 – ident: 5455_CR10 – ident: 5455_CR14 – ident: 5455_CR16 – ident: 5455_CR12 – ident: 5455_CR4 – ident: 5455_CR22 – ident: 5455_CR24 – ident: 5455_CR19 – ident: 5455_CR2 – ident: 5455_CR20 – ident: 5455_CR6 – ident: 5455_CR11 – ident: 5455_CR23 doi: 10.1109/HOTCHIPS.2016.7936226 – ident: 5455_CR17 – ident: 5455_CR15 – ident: 5455_CR13 – ident: 5455_CR21 – ident: 5455_CR18 – ident: 5455_CR25 – ident: 5455_CR9 – ident: 5455_CR7 – ident: 5455_CR1 – ident: 5455_CR3 – ident: 5455_CR5 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.231847 |
Snippet | Owing to good performance, deep Convolution Neural Networks (CNNs) are rapidly rising in popularity across a broad range of applications. Since high accuracy... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9703 |
SubjectTerms | Artificial intelligence Artificial neural networks Chips (memory devices) Computation Computer architecture Design Design optimization Dynamic random access memory Engineering Hardware Humanities and Social Sciences Machine learning Modules multidisciplinary Neural networks Power consumption Research Article-Electrical Engineering Science Specifications Static random access memory |
Title | Hardware Architecture Exploration for Deep Neural Networks |
URI | https://link.springer.com/article/10.1007/s13369-021-05455-4 https://www.proquest.com/docview/2572251023 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9rIdhu6FZe0KH3bLHPghy9ZuSdegKIpshwRLT4Yky22BwenaBMX2G_ajSz1sKV1bbLsYhmwrEUmRFMWPQuiDABuViTwNwfYkIWY0DUHn4TCTkaCFEARznW0xJUdzfLzIFr3eby9rab3iQ_HrXlzJ_3AV2oCvCiX7D5ztOoUGuAf-whU4DNe_4rHadr9RqVsjfzvApNW5JMLPUl4OVBEO4MbUZH1f-z6pPpf5iqni4-3utP6unfYqtO6VLRyqGL3ufKwVqXvigtCyORt8k82PCy8uvRycsubsZ9d0YHEhp-umdiL61eZuH18050vbpQ1KJHGX3rYZlFQZ12rgHWhG61iFmyoig3ceSt0GehOWsok5vaVVzDY2aQUw8tQszaPUM9k0N6nYf5iDyMKj05TQUP1NcFCzzMKKNmpvT7-Uk_nJSTk7XMyeoO0EFh0aOr6IXcQOPGl9XJex8yQudP5CNxwLyTLAzLu_uOn2uLXMne137dXMdtBzy-5gZGTrBerJ5iV65vH0FfrUSlngS1ngSVkA0hIoKQuMlAWtlL1G88nh7OAotCduhAJGsQppxSgnnBLOWVrJPK7TSrAqqkRWUQV5rgjJRY0pTgSRdcy4lFEtslQhusEXTt-grWbZyLcoIKyQSS5ZzWDqsxwWErAyxkUdY4YZ57yP4pYgpbDl6NWpKN9LV0hbEbEEIpaaiCXuo0H3zaUpxvLo23stnUs7aa9LsFBgwVS9kj762NLePX64t3eP97aLnrp5sIe2Vldr-R7c1RXfR9ujyXg83dfSdAu-hZEH |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Architecture+Exploration+for+Deep+Neural+Networks&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Zheng+Wenqi&rft.au=Zhao+Yangyi&rft.au=Chen%2C+Yunfan&rft.au=Park%2C+Jinhong&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=46&rft.issue=10&rft.spage=9703&rft.epage=9712&rft_id=info:doi/10.1007%2Fs13369-021-05455-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |