The Irregularity Polynomials of Fibonacci and Lucas cubes
Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of | d e g ( u ) - d e g ( v ) | over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes,...
Saved in:
Published in | Bulletin of the Malaysian Mathematical Sciences Society Vol. 44; no. 2; pp. 753 - 765 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0126-6705 2180-4206 |
DOI | 10.1007/s40840-020-00981-0 |
Cover
Abstract | Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of
|
d
e
g
(
u
)
-
d
e
g
(
v
)
|
over all edges
uv
of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of
|
d
e
g
(
u
)
-
d
e
g
(
v
)
|
in these families of graphs. |
---|---|
AbstractList | Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of |deg(u)-deg(v)| over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of |deg(u)-deg(v)| in these families of graphs. Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of | d e g ( u ) - d e g ( v ) | over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of | d e g ( u ) - d e g ( v ) | in these families of graphs. |
Author | Eğecioğlu, Ömer Saygı, Elif Saygı, Zülfükar |
Author_xml | – sequence: 1 givenname: Ömer surname: Eğecioğlu fullname: Eğecioğlu, Ömer organization: Department of Computer Science, University of California Santa Barbara – sequence: 2 givenname: Elif surname: Saygı fullname: Saygı, Elif organization: Department of Mathematics and Science Education, Hacettepe University – sequence: 3 givenname: Zülfükar orcidid: 0000-0002-7575-3272 surname: Saygı fullname: Saygı, Zülfükar email: zsaygi@etu.edu.tr organization: Department of Mathematics, TOBB University of Economics and Technology |
BookMark | eNp9kEFLwzAUx4NMcM59AU8Fz9WXtE2aowyng4Ee5jmkaTIzumQm7aHf3mgFwcMePN7l_3vv8btGM-edRugWwz0GYA-xhLqEHEhq4DXO4QLNCa4hLwnQGZoDJjSnDKortIzxAKkqSijBc8R3HzrbhKD3QyeD7cfszXej80cru5h5k61t451UymbStdl2UDJmamh0vEGXJmX08ncu0Pv6abd6ybevz5vV4zZXBeZ9zpU0tDGmbRpGjKINNEWLmWqJYZJjToBUyphaM4orU-lWVxQ4Y9AW1JRlUSzQ3bT3FPznoGMvDn4ILp0UpORAaUGgSikypVTwMQZtxCnYowyjwCC-LYnJkkiWxI8lAQmq_0HK9rK33vVB2u48WkxoTHfcXoe_r85QX_e-fN4 |
CitedBy_id | crossref_primary_10_1007_s40840_021_01167_y crossref_primary_10_1142_S0129054121500271 crossref_primary_10_1007_s40840_021_01139_2 crossref_primary_10_1016_j_tcs_2021_04_019 crossref_primary_10_1016_j_disc_2023_113851 crossref_primary_10_1016_j_dam_2021_05_018 |
Cites_doi | 10.1109/71.205649 10.1016/j.dam.2018.05.013 10.1007/s40840-020-00932-9 10.1002/jgt.3190110214 10.1080/07468342.1988.11973088 10.1007/s10878-011-9433-z 10.1016/j.dam.2018.05.015 |
ContentType | Journal Article |
Copyright | Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020 Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020. |
Copyright_xml | – notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020 – notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40840-020-00981-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2180-4206 |
EndPage | 765 |
ExternalDocumentID | 10_1007_s40840_020_00981_0 |
GroupedDBID | 8FE 8FG ABUWG AFFNX ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVBZV HCIFZ L6V P2P REM TN5 AAYXX CITATION |
ID | FETCH-LOGICAL-c319t-9caf6bffdbb72fc6b0b3d17cd2f7a9192025cff8e7615f5ede5609770d36f4433 |
IEDL.DBID | AGYKE |
ISSN | 0126-6705 |
IngestDate | Tue Sep 09 14:52:01 EDT 2025 Tue Jul 01 00:57:14 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Fri Feb 21 02:49:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 05C31 11B39 Irregularity of graph Fibonacci cube Lucas cube 05C35 05A15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9caf6bffdbb72fc6b0b3d17cd2f7a9192025cff8e7615f5ede5609770d36f4433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7575-3272 |
PQID | 2490663205 |
PQPubID | 1006356 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2490663205 crossref_primary_10_1007_s40840_020_00981_0 crossref_citationtrail_10_1007_s40840_020_00981_0 springer_journals_10_1007_s40840_020_00981_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Bulletin of the Malaysian Mathematical Sciences Society |
PublicationTitleAbbrev | Bull. Malays. Math. Sci. Soc |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
References | Hsu (CR6) 1993; 4 Alavi, Chartrand, Chung, Erdős, Graham, Oellermann (CR2) 1987; 11 Albertson (CR3) 1997; 46 Saygı, Eğecioğlu (CR10) 2019; 266 Réti (CR9) 2019; 344–345 Chartrand, Erdős, Oellermann (CR5) 1988; 19 Abdo, Dimitrov, Gutman (CR1) 2018; 250 Alizadeh, Deutsch, Klavžar (CR4) 2020 Klavžar (CR7) 2013; 25 Munarini, Cippo, Zagaglia Salvi (CR8) 2001; 39 MO Albertson (981_CR3) 1997; 46 W-J Hsu (981_CR6) 1993; 4 E Saygı (981_CR10) 2019; 266 S Klavžar (981_CR7) 2013; 25 H Abdo (981_CR1) 2018; 250 Y Alizadeh (981_CR4) 2020 E Munarini (981_CR8) 2001; 39 Y Alavi (981_CR2) 1987; 11 T Réti (981_CR9) 2019; 344–345 G Chartrand (981_CR5) 1988; 19 |
References_xml | – volume: 4 start-page: 3 year: 1993 end-page: 12 ident: CR6 article-title: Fibonacci cubes-a new interconnection technology publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.205649 – volume: 46 start-page: 219 year: 1997 end-page: 225 ident: CR3 article-title: The irregularity of a graph publication-title: Ars Combin. – volume: 250 start-page: 57 year: 2018 end-page: 64 ident: CR1 article-title: Graphs with maximal irregularity publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.013 – year: 2020 ident: CR4 article-title: On the irregularity of -permutation graphs, Fibonacci cubes, and trees publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-020-00932-9 – volume: 39 start-page: 12 year: 2001 end-page: 21 ident: CR8 article-title: On the Lucas cubes publication-title: Fibonacci Quart. – volume: 11 start-page: 235 year: 1987 end-page: 249 ident: CR2 article-title: Highly irregular graphs publication-title: J. Graph Theory doi: 10.1002/jgt.3190110214 – volume: 19 start-page: 36 year: 1988 end-page: 42 ident: CR5 article-title: How to define an irregular graph publication-title: College Math. J. doi: 10.1080/07468342.1988.11973088 – volume: 25 start-page: 505 year: 2013 end-page: 522 ident: CR7 article-title: Structure of Fibonacci cubes: a survey publication-title: J. Comb. Optim. doi: 10.1007/s10878-011-9433-z – volume: 344–345 start-page: 107 year: 2019 end-page: 115 ident: CR9 article-title: On some properties of graph irregularity indices with a particular regard to the -index publication-title: Appl. Math. Comput. – volume: 266 start-page: 191 year: 2019 end-page: 199 ident: CR10 article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.015 – volume: 19 start-page: 36 year: 1988 ident: 981_CR5 publication-title: College Math. J. doi: 10.1080/07468342.1988.11973088 – volume: 39 start-page: 12 year: 2001 ident: 981_CR8 publication-title: Fibonacci Quart. – volume: 46 start-page: 219 year: 1997 ident: 981_CR3 publication-title: Ars Combin. – volume: 4 start-page: 3 year: 1993 ident: 981_CR6 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.205649 – volume: 25 start-page: 505 year: 2013 ident: 981_CR7 publication-title: J. Comb. Optim. doi: 10.1007/s10878-011-9433-z – volume: 250 start-page: 57 year: 2018 ident: 981_CR1 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.013 – volume: 11 start-page: 235 year: 1987 ident: 981_CR2 publication-title: J. Graph Theory doi: 10.1002/jgt.3190110214 – year: 2020 ident: 981_CR4 publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-020-00932-9 – volume: 344–345 start-page: 107 year: 2019 ident: 981_CR9 publication-title: Appl. Math. Comput. – volume: 266 start-page: 191 year: 2019 ident: 981_CR10 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.015 |
SSID | ssj0000562621 ssj0000562622 |
Score | 2.2333493 |
Snippet | Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 753 |
SubjectTerms | Applications of Mathematics Cubes Graph theory Hypercubes Irregularities Mathematics Mathematics and Statistics Polynomials Topology |
Title | The Irregularity Polynomials of Fibonacci and Lucas cubes |
URI | https://link.springer.com/article/10.1007/s40840-020-00981-0 https://www.proquest.com/docview/2490663205 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFICfoF1g4EYUSuWBDVLlsHOMLRDKUcRApTJFsWNLFVWLegzw63lOnUZUgNQximMlz895n-13AFzQQGUM7bolmYgsSgXOOckUgpyN66GUccfRAc7dZ7_Tow991jdBYdPC2704ksz_1MtgN2qH2hXR1ZHQUYiL4E2oMieMwgpUW3dvj-XeijbqvjFL5XV-oOC4vuUHNjPxM793_NNGleC5claam6B4F3rFyy88T96b8xlviq-VvI7rft0e7BgmJa2FEu3DhhwdwHZ3mdB1eggRqhO5n0zyyvW63h15GQ8_dUgzqi8ZKxIPODK9EAOSjjLypEupETHncnoEvfj29bpjmaoLlsDpOLMikSqfK5VxHrhK-NzmXuYEInNVkEYIhEhJQqlQBghDislMIjQhRdqZ5ytKPe8YKqPxSJ4AQXpg3BWSh0LRLApSniJwyVBQz3WEdGrgFHJOhElJritjDJNlMuVcLAmKJcnFktg1uFw-87FIyPFv63oxfImZnNMEV5watFyb1eCqGI3y9t-9na7X_Ay2XO0Bk3us1aEym8zlOSLMjDdQY9s37bhhNPcbioHjKw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEIAnCgf14NuIou7Bm9b0sdvHkRgR5BEPkOCp6W53EyIpBspBf72zpaWRqAnHpu2mnZ3tfNOdB8At9VTM0K4bkonAoFTgmpNMIciZ6A9FjFuWTnDu9d3WkL6M2ChPCpsX0e7FlmT2pV4lu1HT16GIts6EDnx0grehStEHNytQbTy_dcp_K9qou7lZKo-zDQXLdg3XM1meP_P7wD9tVAmea3ulmQlqHsCwePhl5Mn7wyLlD-Jrra7jpm93CPs5k5LGUomOYEsmx7DXWxV0nZ9AgOpE2rNZ1rle97sjr9PJp05pRvUlU0WaY45ML8SYRElMurqVGhELLuenMGw-DR5bRt51wRC4HFMjEJFyuVIx556thMtN7sSWJ2JbeVGAQIiUJJTypYcwpJiMJUITUqQZO66i1HHOoJJME3kOBOmBcVtI7gtF48CLeITAJX1BHdsS0qqBVcg5FHlJct0ZYxKuiilnYglRLGEmltCswd3qno9lQY5_r64X0xfmi3MeosepQcs2WQ3ui9koT_892sVml9_ATmvQ64bddr9zCbu2jobJotfqUElnC3mFOJPy61x7vwEJhOSW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7E-9-BN0-axm8exqNVaFQ8W6ilkX1CUVNr0oL_e2TRptaggHpPsLuzsDPNtZr4ZgBMaaMnQr1uKiciiVKDNKaYRyNl4H0oYdxxDcL6796-79KbHep9Y_Hm2exmSnHAaTJWmNGu8St2YEt-oHZq0RNewoqMQL8SLUMV3AZpmtXn11Jn9ZzEO3i9c1Ow5Dy44rm_5gc0KLs33C3_1VzMQOhc3zd1Raw2SciOTLJTn-jjjdfE-V-PxPztdh9UCq5LmRLk2YEGlm7ByNy30OtqCCNWMtIfDvKO96YNHHgYvb4bqjGpNBpq0-hyxvhB9kqSS3JoWa0SMuRptQ7d1-Xh-bRXdGCyBZppZkUi0z7WWnAeuFj63uSedQEhXB0mEQBHRk9A6VAGCJM2UVAimEF3a0vM1pZ63A5V0kKpdIIgqGHeF4qHQVEZBwhMEYioU1HMdoZwaOKXMY1GUKjcdM17iaZHlXCwxiiXOxRLbNTidznmdFOr4dfRBeZRxYbSjGG-iBoC5NqvBWXkys88_r7b3t-HHsPRw0Ypv2_edfVh2TZJMntR2AJVsOFaHiHIyflQo8gccUO16 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Irregularity+Polynomials+of+Fibonacci+and+Lucas+cubes&rft.jtitle=Bulletin+of+the+Malaysian+Mathematical+Sciences+Society&rft.au=E%C4%9Fecio%C4%9Flu+%C3%96mer&rft.au=Sayg%C4%B1+Elif&rft.au=Z%C3%BClf%C3%BCkar%2C+Sayg%C4%B1&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0126-6705&rft.eissn=2180-4206&rft.volume=44&rft.issue=2&rft.spage=753&rft.epage=765&rft_id=info:doi/10.1007%2Fs40840-020-00981-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0126-6705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0126-6705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0126-6705&client=summon |