The Irregularity Polynomials of Fibonacci and Lucas cubes

Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of | d e g ( u ) - d e g ( v ) | over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes,...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Malaysian Mathematical Sciences Society Vol. 44; no. 2; pp. 753 - 765
Main Authors Eğecioğlu, Ömer, Saygı, Elif, Saygı, Zülfükar
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0126-6705
2180-4206
DOI10.1007/s40840-020-00981-0

Cover

Abstract Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of | d e g ( u ) - d e g ( v ) | over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of | d e g ( u ) - d e g ( v ) | in these families of graphs.
AbstractList Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of |deg(u)-deg(v)| over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of |deg(u)-deg(v)| in these families of graphs.
Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as the sum of | d e g ( u ) - d e g ( v ) | over all edges uv of the graph. Motivated by a recent result on the irregularity of Fibonacci cubes, we consider irregularity polynomials and determine them for Fibonacci and Lucas cubes. These are graph families that have been studied as alternatives for the classical hypercube topology for interconnection networks. The irregularity polynomials specialize to the Albertson index and also provide additional information about the higher moments of | d e g ( u ) - d e g ( v ) | in these families of graphs.
Author Eğecioğlu, Ömer
Saygı, Elif
Saygı, Zülfükar
Author_xml – sequence: 1
  givenname: Ömer
  surname: Eğecioğlu
  fullname: Eğecioğlu, Ömer
  organization: Department of Computer Science, University of California Santa Barbara
– sequence: 2
  givenname: Elif
  surname: Saygı
  fullname: Saygı, Elif
  organization: Department of Mathematics and Science Education, Hacettepe University
– sequence: 3
  givenname: Zülfükar
  orcidid: 0000-0002-7575-3272
  surname: Saygı
  fullname: Saygı, Zülfükar
  email: zsaygi@etu.edu.tr
  organization: Department of Mathematics, TOBB University of Economics and Technology
BookMark eNp9kEFLwzAUx4NMcM59AU8Fz9WXtE2aowyng4Ee5jmkaTIzumQm7aHf3mgFwcMePN7l_3vv8btGM-edRugWwz0GYA-xhLqEHEhq4DXO4QLNCa4hLwnQGZoDJjSnDKortIzxAKkqSijBc8R3HzrbhKD3QyeD7cfszXej80cru5h5k61t451UymbStdl2UDJmamh0vEGXJmX08ncu0Pv6abd6ybevz5vV4zZXBeZ9zpU0tDGmbRpGjKINNEWLmWqJYZJjToBUyphaM4orU-lWVxQ4Y9AW1JRlUSzQ3bT3FPznoGMvDn4ILp0UpORAaUGgSikypVTwMQZtxCnYowyjwCC-LYnJkkiWxI8lAQmq_0HK9rK33vVB2u48WkxoTHfcXoe_r85QX_e-fN4
CitedBy_id crossref_primary_10_1007_s40840_021_01167_y
crossref_primary_10_1142_S0129054121500271
crossref_primary_10_1007_s40840_021_01139_2
crossref_primary_10_1016_j_tcs_2021_04_019
crossref_primary_10_1016_j_disc_2023_113851
crossref_primary_10_1016_j_dam_2021_05_018
Cites_doi 10.1109/71.205649
10.1016/j.dam.2018.05.013
10.1007/s40840-020-00932-9
10.1002/jgt.3190110214
10.1080/07468342.1988.11973088
10.1007/s10878-011-9433-z
10.1016/j.dam.2018.05.015
ContentType Journal Article
Copyright Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020
Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020.
Copyright_xml – notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020
– notice: Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40840-020-00981-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2180-4206
EndPage 765
ExternalDocumentID 10_1007_s40840_020_00981_0
GroupedDBID 8FE
8FG
ABUWG
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVBZV
HCIFZ
L6V
P2P
REM
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c319t-9caf6bffdbb72fc6b0b3d17cd2f7a9192025cff8e7615f5ede5609770d36f4433
IEDL.DBID AGYKE
ISSN 0126-6705
IngestDate Tue Sep 09 14:52:01 EDT 2025
Tue Jul 01 00:57:14 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 21 02:49:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 05C31
11B39
Irregularity of graph
Fibonacci cube
Lucas cube
05C35
05A15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9caf6bffdbb72fc6b0b3d17cd2f7a9192025cff8e7615f5ede5609770d36f4433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7575-3272
PQID 2490663205
PQPubID 1006356
PageCount 13
ParticipantIDs proquest_journals_2490663205
crossref_primary_10_1007_s40840_020_00981_0
crossref_citationtrail_10_1007_s40840_020_00981_0
springer_journals_10_1007_s40840_020_00981_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Bulletin of the Malaysian Mathematical Sciences Society
PublicationTitleAbbrev Bull. Malays. Math. Sci. Soc
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Hsu (CR6) 1993; 4
Alavi, Chartrand, Chung, Erdős, Graham, Oellermann (CR2) 1987; 11
Albertson (CR3) 1997; 46
Saygı, Eğecioğlu (CR10) 2019; 266
Réti (CR9) 2019; 344–345
Chartrand, Erdős, Oellermann (CR5) 1988; 19
Abdo, Dimitrov, Gutman (CR1) 2018; 250
Alizadeh, Deutsch, Klavžar (CR4) 2020
Klavžar (CR7) 2013; 25
Munarini, Cippo, Zagaglia Salvi (CR8) 2001; 39
MO Albertson (981_CR3) 1997; 46
W-J Hsu (981_CR6) 1993; 4
E Saygı (981_CR10) 2019; 266
S Klavžar (981_CR7) 2013; 25
H Abdo (981_CR1) 2018; 250
Y Alizadeh (981_CR4) 2020
E Munarini (981_CR8) 2001; 39
Y Alavi (981_CR2) 1987; 11
T Réti (981_CR9) 2019; 344–345
G Chartrand (981_CR5) 1988; 19
References_xml – volume: 4
  start-page: 3
  year: 1993
  end-page: 12
  ident: CR6
  article-title: Fibonacci cubes-a new interconnection technology
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.205649
– volume: 46
  start-page: 219
  year: 1997
  end-page: 225
  ident: CR3
  article-title: The irregularity of a graph
  publication-title: Ars Combin.
– volume: 250
  start-page: 57
  year: 2018
  end-page: 64
  ident: CR1
  article-title: Graphs with maximal irregularity
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.013
– year: 2020
  ident: CR4
  article-title: On the irregularity of -permutation graphs, Fibonacci cubes, and trees
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-020-00932-9
– volume: 39
  start-page: 12
  year: 2001
  end-page: 21
  ident: CR8
  article-title: On the Lucas cubes
  publication-title: Fibonacci Quart.
– volume: 11
  start-page: 235
  year: 1987
  end-page: 249
  ident: CR2
  article-title: Highly irregular graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190110214
– volume: 19
  start-page: 36
  year: 1988
  end-page: 42
  ident: CR5
  article-title: How to define an irregular graph
  publication-title: College Math. J.
  doi: 10.1080/07468342.1988.11973088
– volume: 25
  start-page: 505
  year: 2013
  end-page: 522
  ident: CR7
  article-title: Structure of Fibonacci cubes: a survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-011-9433-z
– volume: 344–345
  start-page: 107
  year: 2019
  end-page: 115
  ident: CR9
  article-title: On some properties of graph irregularity indices with a particular regard to the -index
  publication-title: Appl. Math. Comput.
– volume: 266
  start-page: 191
  year: 2019
  end-page: 199
  ident: CR10
  article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.015
– volume: 19
  start-page: 36
  year: 1988
  ident: 981_CR5
  publication-title: College Math. J.
  doi: 10.1080/07468342.1988.11973088
– volume: 39
  start-page: 12
  year: 2001
  ident: 981_CR8
  publication-title: Fibonacci Quart.
– volume: 46
  start-page: 219
  year: 1997
  ident: 981_CR3
  publication-title: Ars Combin.
– volume: 4
  start-page: 3
  year: 1993
  ident: 981_CR6
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.205649
– volume: 25
  start-page: 505
  year: 2013
  ident: 981_CR7
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-011-9433-z
– volume: 250
  start-page: 57
  year: 2018
  ident: 981_CR1
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.013
– volume: 11
  start-page: 235
  year: 1987
  ident: 981_CR2
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190110214
– year: 2020
  ident: 981_CR4
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-020-00932-9
– volume: 344–345
  start-page: 107
  year: 2019
  ident: 981_CR9
  publication-title: Appl. Math. Comput.
– volume: 266
  start-page: 191
  year: 2019
  ident: 981_CR10
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.015
SSID ssj0000562621
ssj0000562622
Score 2.2333493
Snippet Irregularity of a graph is an invariant measuring how much the graph differs from a regular graph. Albertson index is one measure of irregularity, defined as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Applications of Mathematics
Cubes
Graph theory
Hypercubes
Irregularities
Mathematics
Mathematics and Statistics
Polynomials
Topology
Title The Irregularity Polynomials of Fibonacci and Lucas cubes
URI https://link.springer.com/article/10.1007/s40840-020-00981-0
https://www.proquest.com/docview/2490663205
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFICfoF1g4EYUSuWBDVLlsHOMLRDKUcRApTJFsWNLFVWLegzw63lOnUZUgNQximMlz895n-13AFzQQGUM7bolmYgsSgXOOckUgpyN66GUccfRAc7dZ7_Tow991jdBYdPC2704ksz_1MtgN2qH2hXR1ZHQUYiL4E2oMieMwgpUW3dvj-XeijbqvjFL5XV-oOC4vuUHNjPxM793_NNGleC5claam6B4F3rFyy88T96b8xlviq-VvI7rft0e7BgmJa2FEu3DhhwdwHZ3mdB1eggRqhO5n0zyyvW63h15GQ8_dUgzqi8ZKxIPODK9EAOSjjLypEupETHncnoEvfj29bpjmaoLlsDpOLMikSqfK5VxHrhK-NzmXuYEInNVkEYIhEhJQqlQBghDislMIjQhRdqZ5ytKPe8YKqPxSJ4AQXpg3BWSh0LRLApSniJwyVBQz3WEdGrgFHJOhElJritjDJNlMuVcLAmKJcnFktg1uFw-87FIyPFv63oxfImZnNMEV5watFyb1eCqGI3y9t-9na7X_Ay2XO0Bk3us1aEym8zlOSLMjDdQY9s37bhhNPcbioHjKw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEIAnCgf14NuIou7Bm9b0sdvHkRgR5BEPkOCp6W53EyIpBspBf72zpaWRqAnHpu2mnZ3tfNOdB8At9VTM0K4bkonAoFTgmpNMIciZ6A9FjFuWTnDu9d3WkL6M2ChPCpsX0e7FlmT2pV4lu1HT16GIts6EDnx0grehStEHNytQbTy_dcp_K9qou7lZKo-zDQXLdg3XM1meP_P7wD9tVAmea3ulmQlqHsCwePhl5Mn7wyLlD-Jrra7jpm93CPs5k5LGUomOYEsmx7DXWxV0nZ9AgOpE2rNZ1rle97sjr9PJp05pRvUlU0WaY45ML8SYRElMurqVGhELLuenMGw-DR5bRt51wRC4HFMjEJFyuVIx556thMtN7sSWJ2JbeVGAQIiUJJTypYcwpJiMJUITUqQZO66i1HHOoJJME3kOBOmBcVtI7gtF48CLeITAJX1BHdsS0qqBVcg5FHlJct0ZYxKuiilnYglRLGEmltCswd3qno9lQY5_r64X0xfmi3MeosepQcs2WQ3ui9koT_892sVml9_ATmvQ64bddr9zCbu2jobJotfqUElnC3mFOJPy61x7vwEJhOSW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7E-9-BN0-axm8exqNVaFQ8W6ilkX1CUVNr0oL_e2TRptaggHpPsLuzsDPNtZr4ZgBMaaMnQr1uKiciiVKDNKaYRyNl4H0oYdxxDcL6796-79KbHep9Y_Hm2exmSnHAaTJWmNGu8St2YEt-oHZq0RNewoqMQL8SLUMV3AZpmtXn11Jn9ZzEO3i9c1Ow5Dy44rm_5gc0KLs33C3_1VzMQOhc3zd1Raw2SciOTLJTn-jjjdfE-V-PxPztdh9UCq5LmRLk2YEGlm7ByNy30OtqCCNWMtIfDvKO96YNHHgYvb4bqjGpNBpq0-hyxvhB9kqSS3JoWa0SMuRptQ7d1-Xh-bRXdGCyBZppZkUi0z7WWnAeuFj63uSedQEhXB0mEQBHRk9A6VAGCJM2UVAimEF3a0vM1pZ63A5V0kKpdIIgqGHeF4qHQVEZBwhMEYioU1HMdoZwaOKXMY1GUKjcdM17iaZHlXCwxiiXOxRLbNTidznmdFOr4dfRBeZRxYbSjGG-iBoC5NqvBWXkys88_r7b3t-HHsPRw0Ypv2_edfVh2TZJMntR2AJVsOFaHiHIyflQo8gccUO16
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Irregularity+Polynomials+of+Fibonacci+and+Lucas+cubes&rft.jtitle=Bulletin+of+the+Malaysian+Mathematical+Sciences+Society&rft.au=E%C4%9Fecio%C4%9Flu+%C3%96mer&rft.au=Sayg%C4%B1+Elif&rft.au=Z%C3%BClf%C3%BCkar%2C+Sayg%C4%B1&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0126-6705&rft.eissn=2180-4206&rft.volume=44&rft.issue=2&rft.spage=753&rft.epage=765&rft_id=info:doi/10.1007%2Fs40840-020-00981-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0126-6705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0126-6705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0126-6705&client=summon