A thin double layer analysis of asymmetric rectified electric fields (AREFs)

We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mathematics Vol. 129; no. 1
Main Authors Balu, Bhavya, Khair, Aditya S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers, 1 / ( κ L ) = ϵ → 0 , where κ - 1 is the Debye length, and L is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale, ω = O ( D A / L 2 ) , where D A = 2 D + D - / ( D + + D - ) is the ambipolar diffusivity, and D ± are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to D A / ω , and has a magnitude of O ( ϵ 2 k B T / ( L e ) ) to leading order in ϵ . Here, k B is the Boltzmann constant, T is temperature, and e is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages, V 0 ≪ k B T / e , where V 0 is the amplitude of the voltage, for which the AREF is O ( ϵ 2 V 0 2 e / ( k B T L ) ) . Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages, V 0 = O ( ( k B T / e ) ln ( 1 / ϵ ) ) . The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly.
AbstractList We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers, 1 / ( κ L ) = ϵ → 0 , where κ - 1 is the Debye length, and L is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale, ω = O ( D A / L 2 ) , where D A = 2 D + D - / ( D + + D - ) is the ambipolar diffusivity, and D ± are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to D A / ω , and has a magnitude of O ( ϵ 2 k B T / ( L e ) ) to leading order in ϵ . Here, k B is the Boltzmann constant, T is temperature, and e is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages, V 0 ≪ k B T / e , where V 0 is the amplitude of the voltage, for which the AREF is O ( ϵ 2 V 0 2 e / ( k B T L ) ) . Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages, V 0 = O ( ( k B T / e ) ln ( 1 / ϵ ) ) . The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly.
We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers, 1/(κL)=ϵ→0, where κ-1 is the Debye length, and L is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale, ω=O(DA/L2), where DA=2D+D-/(D++D-) is the ambipolar diffusivity, and D± are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to DA/ω, and has a magnitude of O(ϵ2kBT/(Le)) to leading order in ϵ. Here, kB is the Boltzmann constant, T is temperature, and e is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages, V0≪kBT/e, where V0 is the amplitude of the voltage, for which the AREF is O(ϵ2V02e/(kBTL)). Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages, V0=O((kBT/e)ln(1/ϵ)). The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly.
ArticleNumber 4
Author Balu, Bhavya
Khair, Aditya S.
Author_xml – sequence: 1
  givenname: Bhavya
  surname: Balu
  fullname: Balu, Bhavya
  organization: Department of Chemical Engineering, Carnegie Mellon University
– sequence: 2
  givenname: Aditya S.
  orcidid: 0000-0001-6076-2910
  surname: Khair
  fullname: Khair, Aditya S.
  email: akhair@andrew.cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University
BookMark eNp9kM1KAzEUhYNUsK2-gKuAG12M3iSTmcyylFaFgiC6Dpk00ZTpTE1S6Ly9qSMILrq6P5zv3sOZoFHbtQahawL3BKB8CASKgmdASUaAsCo7nKEx4SXLaAlshMYAlGYgGLtAkxA2AFCJnI7Raobjp2vxutvXjcGN6o3HqlVNH1zAncUq9Nutid5p7I2OzjqzxqZJ7XGVpmYd8O3sdbEMd5fo3KommKvfOkXvy8Xb_ClbvTw-z2erTDNSxayqKlHndWUt5RZ0zk3NwOZQ5wXXVFhqS10wasqCrFVaaS6Eqmtj85IySxWbopvh7s53X3sTotx0e59MB0l5TpkgnIqkooNK-y4Eb6zcebdVvpcE5DE1OaQmU2ryJzV5SJD4B2kXVXRdG71yzWmUDWhIf9oP4_9cnaC-AcGYg4U
CitedBy_id crossref_primary_10_1021_acs_langmuir_4c01516
crossref_primary_10_1039_D3SM01306E
crossref_primary_10_2139_ssrn_4147466
crossref_primary_10_1039_D3SM00823A
crossref_primary_10_1016_j_jelechem_2022_116222
crossref_primary_10_1016_j_electacta_2022_141220
crossref_primary_10_1103_PhysRevE_107_054608
crossref_primary_10_1149_1945_7111_ad6a3a
crossref_primary_10_1039_D1SM01239H
Cites_doi 10.1021/acs.analchem.7b02892
10.1039/D0SM00417K
10.1016/j.desal.2017.12.044
10.1103/PhysRevE.82.011501
10.1103/PhysRevE.61.R45
10.1134/S1023193512060031
10.1103/PhysRevE.73.051202
10.1103/PhysRevFluids.5.013702
10.1063/1.2963507
10.1006/jcis.1999.6346
10.1103/PhysRevE.87.032302
10.1103/PhysRev.92.4
10.1103/PhysRevE.70.021506
10.1021/acs.langmuir.9b00313
10.1103/PhysRevE.92.032305
10.1016/S0021-9797(02)00029-2
10.1103/PhysRevResearch.2.013138
10.1103/PhysRevE.100.042602
10.1103/PhysRevE.81.016320
10.1021/la704076j
10.1039/B408382M
10.1063/1.444369
10.1017/S0022112084002330
10.3390/mi10030161
10.1103/PhysRevE.89.032302
10.1063/1.1700669
10.1137/040609938
10.1016/j.cocis.2010.01.005
10.1016/j.jcis.2013.07.042
10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
10.1103/PhysRevE.74.011501
10.1103/PhysRevE.95.022802
10.1142/S0218202501000866
10.1103/PhysRevE.86.021503
10.1103/PhysRevE.86.061506
10.1016/0001-8686(91)80022-C
10.1103/PhysRevE.99.062603
10.1209/0295-5075/123/58006
10.1021/acs.langmuir.7b02793
10.1039/C8RA09017C
10.1093/qjmam/19.4.461
10.1146/annurev.fl.09.010177.001541
10.1016/j.cej.2019.122231
10.1063/1.3496976
10.3390/s17030449
10.1103/PhysRevE.76.051501
10.1021/acs.langmuir.5b02432
10.1103/PhysRevLett.121.185504
10.1201/9780429492563
10.1103/PhysRevE.91.042307
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10665-021-10139-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1573-2703
ExternalDocumentID 10_1007_s10665_021_10139_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: CBET-2002120
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z86
Z8M
Z8S
ZMTXR
ZWQNP
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-9998b4b9ff25f0c45eb30f40b465c28f2f7c632e761da65cc588abbef4723f2a3
IEDL.DBID U2A
ISSN 0022-0833
IngestDate Fri Jul 25 11:00:54 EDT 2025
Thu Apr 24 22:58:11 EDT 2025
Tue Jul 01 03:43:56 EDT 2025
Fri Feb 21 02:48:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ion transport
Electrophoresis
Electric field
Debye layer
Electrolyte
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9998b4b9ff25f0c45eb30f40b465c28f2f7c632e761da65cc588abbef4723f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6076-2910
PQID 2542381528
PQPubID 2043778
ParticipantIDs proquest_journals_2542381528
crossref_primary_10_1007_s10665_021_10139_x
crossref_citationtrail_10_1007_s10665_021_10139_x
springer_journals_10_1007_s10665_021_10139_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of engineering mathematics
PublicationTitleAbbrev J Eng Math
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Biesheuvel, Fu, Bazant (CR9) 2012; 48
Prieve, Sides, Wirth (CR12) 2010; 15
Hoggard, Sides, Prieve (CR13) 2008; 24
Prieve, Anderson, Ebel, Lowell (CR37) 1984; 148
Abd Rahman, Ibrahim, Yafouz (CR17) 2017; 17
Kim, Davidson, Mani (CR30) 2019; 10
Schnitzer, Yariv (CR48) 2012; 86
CR31
Riley (CR52) 1966; 19
Studer, Pépin, Chen, Ajdari (CR7) 2004; 129
Balu, Khair (CR39) 2020; 2
Olesen, Bazant, Bruus (CR23) 2010; 82
Bazant, Chu, Bayly (CR41) 2005; 65
Bukosky, Ristenpart (CR35) 2015; 31
Janssen (CR53) 2019; 100
Barbero, Lelidis (CR1) 2007; 76
Dukhin (CR4) 1991; 35
Hollingsworth, Saville (CR3) 2003; 257
Chen, Ren, Liu, Feng, Jia, Tao, Jiang (CR18) 2017; 89
Campione, Gurreri, Ciofalo, Micale, Tamburini, Cipollina (CR10) 2018; 434
Gonzalez, Ramos, García-Sánchez, Castellanos (CR46) 2010; 81
Hashemi Amrei, Miller, Bishop, Ristenpart (CR34) 2020; 16
Wirth, Sides, Prieve (CR36) 2013; 87
Schnitzer, Yariv (CR49) 2012; 86
Al-Amshawee, Yunus, Azoddein, Hassell, Dakhil, Hasan (CR11) 2020; 380
Hashemi Amrei, Miller, Ristenpart (CR33) 2020; 5
Bazant, Thornton, Ajdari (CR21) 2004; 70
DeLacey, White (CR44) 1982; 78
Strogatz (CR51) 2018
Ramos, Morgan, Green, Castellanos (CR5) 1999; 217
Hashemi Amrei, Bukosky, Rader, Ristenpart, Miller (CR28) 2018; 121
Stout, Khair (CR26) 2015; 92
Hashemi Amrei, Miller, Ristenpart (CR22) 2019; 99
Chang, Jaffé (CR19) 1952; 20
Chew, Sen (CR45) 1982; 77
Bukosky, Hashemi Amrei, Rader, Mora, Miller, Ristenpart (CR32) 2019; 35
Beltramo, Roa, Carrique, Furst (CR2) 2013; 408
Rica, Bazant (CR38) 2010; 22
Newman, Thomas-Alyea (CR42) 2012
Saville (CR50) 1977; 9
Ajdari (CR6) 2000; 61
García-Sánchez, Loucaides, Ramos (CR47) 2017; 95
Catalano, Biesheuvel (CR8) 2018; 123
Yang, Wu (CR14) 2018; 34
Gascoyne, Vykoukal (CR15) 2002; 23
Chen, Yuan (CR16) 2019; 9
Macdonald (CR20) 1953; 92
Bandopadhyay, Shaik, Chakraborty (CR27) 2015; 91
Freire, Barbero, Scalerandi (CR29) 2006; 73
Khair, Squires (CR25) 2008; 20
Chu, Bazant (CR43) 2006; 74
Schnitzer, Yariv (CR24) 2014; 89
Rubinstein, Zaltzman (CR40) 2001; 11
P Biesheuvel (10139_CR9) 2012; 48
SMH Hashemi Amrei (10139_CR28) 2018; 121
X Yang (10139_CR14) 2018; 34
A Bandopadhyay (10139_CR27) 2015; 91
O Schnitzer (10139_CR48) 2012; 86
N Riley (10139_CR52) 1966; 19
J Catalano (10139_CR8) 2018; 123
KT Chu (10139_CR43) 2006; 74
F Freire (10139_CR29) 2006; 73
SMH Hashemi Amrei (10139_CR34) 2020; 16
J Newman (10139_CR42) 2012
G Barbero (10139_CR1) 2007; 76
A Campione (10139_CR10) 2018; 434
I Rubinstein (10139_CR40) 2001; 11
LH Olesen (10139_CR23) 2010; 82
AS Khair (10139_CR25) 2008; 20
A Hollingsworth (10139_CR3) 2003; 257
N Abd Rahman (10139_CR17) 2017; 17
O Schnitzer (10139_CR49) 2012; 86
SMH Hashemi Amrei (10139_CR22) 2019; 99
D Saville (10139_CR50) 1977; 9
D Prieve (10139_CR37) 1984; 148
CL Wirth (10139_CR36) 2013; 87
M Janssen (10139_CR53) 2019; 100
S Al-Amshawee (10139_CR11) 2020; 380
X Chen (10139_CR18) 2017; 89
A Ramos (10139_CR5) 1999; 217
Q Chen (10139_CR16) 2019; 9
SH Strogatz (10139_CR51) 2018
EH DeLacey (10139_CR44) 1982; 78
WC Chew (10139_CR45) 1982; 77
JR Macdonald (10139_CR20) 1953; 92
J Kim (10139_CR30) 2019; 10
A Gonzalez (10139_CR46) 2010; 81
DC Prieve (10139_CR12) 2010; 15
PJ Beltramo (10139_CR2) 2013; 408
MZ Bazant (10139_CR21) 2004; 70
SC Bukosky (10139_CR32) 2019; 35
A Ajdari (10139_CR6) 2000; 61
SS Dukhin (10139_CR4) 1991; 35
B Balu (10139_CR39) 2020; 2
SMH Hashemi Amrei (10139_CR33) 2020; 5
V Studer (10139_CR7) 2004; 129
SC Bukosky (10139_CR35) 2015; 31
10139_CR31
O Schnitzer (10139_CR24) 2014; 89
PR Gascoyne (10139_CR15) 2002; 23
HC Chang (10139_CR19) 1952; 20
RF Stout (10139_CR26) 2015; 92
MZ Bazant (10139_CR41) 2005; 65
JD Hoggard (10139_CR13) 2008; 24
RA Rica (10139_CR38) 2010; 22
P García-Sánchez (10139_CR47) 2017; 95
References_xml – volume: 89
  start-page: 9583
  issue: 17
  year: 2017
  ident: CR18
  article-title: A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b02892
– volume: 16
  start-page: 7052
  year: 2020
  end-page: 7062
  ident: CR34
  article-title: A perturbation solution to the full Poisson–Nernst–Planck equations yields an asymmetric rectified electric field
  publication-title: Soft Matter
  doi: 10.1039/D0SM00417K
– volume: 434
  start-page: 121
  year: 2018
  ident: CR10
  article-title: Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.12.044
– volume: 82
  start-page: 011501
  issue: 1
  year: 2010
  ident: CR23
  article-title: Strongly nonlinear dynamics of electrolytes in large ac voltages
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.011501
– volume: 61
  start-page: R45
  issue: 1
  year: 2000
  ident: CR6
  article-title: Pumping liquids using asymmetric electrode arrays
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.61.R45
– volume: 48
  start-page: 580
  issue: 6
  year: 2012
  ident: CR9
  article-title: Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes
  publication-title: Russ J Electrochem
  doi: 10.1134/S1023193512060031
– volume: 73
  start-page: 051202
  issue: 5
  year: 2006
  ident: CR29
  article-title: Electrical impedance for an electrolytic cell
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.73.051202
– volume: 5
  start-page: 013702
  issue: 1
  year: 2020
  ident: CR33
  article-title: Asymmetric rectified electric fields generate flows that can dominate induced-charge electrokinetics
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.5.013702
– volume: 20
  start-page: 087102
  issue: 8
  year: 2008
  ident: CR25
  article-title: Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport
  publication-title: Phys Fluids
  doi: 10.1063/1.2963507
– volume: 217
  start-page: 2
  year: 1999
  ident: CR5
  article-title: AC electric-field-induced fluid flow in microelectrodes
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1999.6346
– volume: 87
  start-page: 032302
  issue: 3
  year: 2013
  ident: CR36
  article-title: Electrolyte dependence of particle motion near an electrode during ac polarization
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.87.032302
– volume: 92
  start-page: 4
  issue: 1
  year: 1953
  ident: CR20
  article-title: Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.92.4
– volume: 70
  start-page: 021506
  issue: 2
  year: 2004
  ident: CR21
  article-title: Diffuse-charge dynamics in electrochemical systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.021506
– volume: 35
  start-page: 6971
  issue: 21
  year: 2019
  ident: CR32
  article-title: Extreme levitation of colloidal particles in response to oscillatory electric fields
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00313
– volume: 92
  start-page: 032305
  issue: 3
  year: 2015
  ident: CR26
  article-title: Moderately nonlinear diffuse-charge dynamics under an AC voltage
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.032305
– volume: 257
  start-page: 65
  issue: 1
  year: 2003
  ident: CR3
  article-title: A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/S0021-9797(02)00029-2
– volume: 2
  start-page: 013138
  issue: 1
  year: 2020
  ident: CR39
  article-title: Dynamic double layer force between charged surfaces
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.2.013138
– volume: 100
  start-page: 042602
  issue: 4
  year: 2019
  ident: CR53
  article-title: Curvature affects electrolyte relaxation: studies of spherical and cylindrical electrodes
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.100.042602
– volume: 81
  start-page: 016320
  issue: 1
  year: 2010
  ident: CR46
  article-title: Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.016320
– volume: 24
  start-page: 2977
  issue: 7
  year: 2008
  ident: CR13
  article-title: Electrolyte-dependent multiparticle motion near electrodes in oscillating electric fields
  publication-title: Langmuir
  doi: 10.1021/la704076j
– volume: 129
  start-page: 944
  issue: 10
  year: 2004
  ident: CR7
  article-title: An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control
  publication-title: Analyst
  doi: 10.1039/B408382M
– volume: 77
  start-page: 4683
  issue: 9
  year: 1982
  ident: CR45
  article-title: Dielectric enhancement due to electrochemical double layer: thin double layer approximation
  publication-title: J Chem Phys
  doi: 10.1063/1.444369
– volume: 148
  start-page: 247
  year: 1984
  ident: CR37
  article-title: Motion of a particle generated by chemical gradients. Part 2. Electrolytes
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112084002330
– volume: 10
  start-page: 161
  issue: 3
  year: 2019
  ident: CR30
  article-title: Characterization of chaotic electroconvection near flat inert electrodes under oscillatory voltages
  publication-title: Micromachines
  doi: 10.3390/mi10030161
– volume: 89
  start-page: 032302
  issue: 3
  year: 2014
  ident: CR24
  article-title: Nonlinear oscillations in an electrolyte solution under AC voltage
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.89.032302
– volume: 20
  start-page: 1071
  issue: 7
  year: 1952
  ident: CR19
  article-title: Polarization in electrolytic solutions. Part I. Theory
  publication-title: J Chem Phys
  doi: 10.1063/1.1700669
– volume: 65
  start-page: 1463
  issue: 5
  year: 2005
  ident: CR41
  article-title: Current–voltage relations for electrochemical thin films
  publication-title: SIAM J Appl Math
  doi: 10.1137/040609938
– volume: 15
  start-page: 160
  issue: 3
  year: 2010
  ident: CR12
  article-title: 2-D assembly of colloidal particles on a planar electrode
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2010.01.005
– volume: 408
  start-page: 54
  year: 2013
  ident: CR2
  article-title: Dielectric spectroscopy of concentrated colloidal suspensions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2013.07.042
– volume: 23
  start-page: 1973
  issue: 13
  year: 2002
  ident: CR15
  article-title: Particle separation by dielectrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
– volume: 74
  start-page: 011501
  issue: 1
  year: 2006
  ident: CR43
  article-title: Nonlinear electrochemical relaxation around conductors
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.74.011501
– volume: 95
  start-page: 022802
  issue: 2
  year: 2017
  ident: CR47
  article-title: Pumping of electrolytes by electrical forces induced on the diffusion layer: a weakly nonlinear analysis
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.95.022802
– volume: 11
  start-page: 263
  issue: 02
  year: 2001
  ident: CR40
  article-title: Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202501000866
– year: 2012
  ident: CR42
  publication-title: Electrochemical systems
– volume: 86
  start-page: 021503
  issue: 2
  year: 2012
  ident: CR49
  article-title: Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.021503
– volume: 86
  start-page: 061506
  issue: 6
  year: 2012
  ident: CR48
  article-title: Induced-charge electro-osmosis beyond weak fields
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.061506
– volume: 35
  start-page: 173
  year: 1991
  ident: CR4
  article-title: Electrokinetic phenomena of the second kind and their applications
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/0001-8686(91)80022-C
– volume: 99
  start-page: 062603
  issue: 6
  year: 2019
  ident: CR22
  article-title: Asymmetric rectified electric fields between parallel electrodes: numerical and scaling analyses
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.99.062603
– volume: 123
  start-page: 58006
  issue: 5
  year: 2018
  ident: CR8
  article-title: AC-driven electro-osmotic flow in charged nanopores
  publication-title: EPL
  doi: 10.1209/0295-5075/123/58006
– volume: 34
  start-page: 952
  issue: 3
  year: 2018
  ident: CR14
  article-title: Change the collective behaviors of colloidal motors by tuning electrohydrodynamic flow at the subparticle level
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02793
– volume: 9
  start-page: 4963
  issue: 9
  year: 2019
  ident: CR16
  article-title: A review of polystyrene bead manipulation by dielectrophoresis
  publication-title: RSC Adv
  doi: 10.1039/C8RA09017C
– volume: 19
  start-page: 461
  issue: 4
  year: 1966
  ident: CR52
  article-title: On a sphere oscillating in a viscous fluid
  publication-title: Q J Mech Appl Math
  doi: 10.1093/qjmam/19.4.461
– volume: 9
  start-page: 321
  issue: 1
  year: 1977
  ident: CR50
  article-title: Electrokinetic effects with small particles
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.09.010177.001541
– volume: 380
  start-page: 122231
  year: 2020
  ident: CR11
  article-title: Electrodialysis desalination for water and wastewater: a review
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122231
– ident: CR31
– volume: 22
  start-page: 112109
  issue: 11
  year: 2010
  ident: CR38
  article-title: Electrodiffusiophoresis: particle motion in electrolytes under direct current
  publication-title: Phys Fluids
  doi: 10.1063/1.3496976
– volume: 17
  start-page: 449
  issue: 3
  year: 2017
  ident: CR17
  article-title: Dielectrophoresis for biomedical sciences applications: a review
  publication-title: Sensors
  doi: 10.3390/s17030449
– volume: 76
  start-page: 051501
  issue: 5
  year: 2007
  ident: CR1
  article-title: Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.76.051501
– volume: 31
  start-page: 9742
  issue: 36
  year: 2015
  ident: CR35
  article-title: Simultaneous aggregation and height bifurcation of colloidal particles near electrodes in oscillatory electric fields
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02432
– volume: 121
  start-page: 185504
  issue: 18
  year: 2018
  ident: CR28
  article-title: Oscillating electric fields in liquids create a long-range steady field
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.185504
– year: 2018
  ident: CR51
  publication-title: Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering
  doi: 10.1201/9780429492563
– volume: 91
  start-page: 042307
  issue: 4
  year: 2015
  ident: CR27
  article-title: Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.91.042307
– volume: 78
  start-page: 457
  issue: 3
  year: 1982
  ident: CR44
  article-title: The polarization impedance of an ideally polarizable plane electrode
  publication-title: J Chem Soc Faraday Trans 2 Mol Chem Phys
– volume: 9
  start-page: 4963
  issue: 9
  year: 2019
  ident: 10139_CR16
  publication-title: RSC Adv
  doi: 10.1039/C8RA09017C
– volume: 87
  start-page: 032302
  issue: 3
  year: 2013
  ident: 10139_CR36
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.87.032302
– volume-title: Electrochemical systems
  year: 2012
  ident: 10139_CR42
– volume-title: Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering
  year: 2018
  ident: 10139_CR51
  doi: 10.1201/9780429492563
– volume: 86
  start-page: 061506
  issue: 6
  year: 2012
  ident: 10139_CR48
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.061506
– volume: 92
  start-page: 4
  issue: 1
  year: 1953
  ident: 10139_CR20
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.92.4
– volume: 15
  start-page: 160
  issue: 3
  year: 2010
  ident: 10139_CR12
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2010.01.005
– volume: 5
  start-page: 013702
  issue: 1
  year: 2020
  ident: 10139_CR33
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.5.013702
– volume: 35
  start-page: 173
  year: 1991
  ident: 10139_CR4
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/0001-8686(91)80022-C
– volume: 89
  start-page: 9583
  issue: 17
  year: 2017
  ident: 10139_CR18
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b02892
– volume: 408
  start-page: 54
  year: 2013
  ident: 10139_CR2
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2013.07.042
– volume: 121
  start-page: 185504
  issue: 18
  year: 2018
  ident: 10139_CR28
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.185504
– volume: 16
  start-page: 7052
  year: 2020
  ident: 10139_CR34
  publication-title: Soft Matter
  doi: 10.1039/D0SM00417K
– volume: 48
  start-page: 580
  issue: 6
  year: 2012
  ident: 10139_CR9
  publication-title: Russ J Electrochem
  doi: 10.1134/S1023193512060031
– volume: 9
  start-page: 321
  issue: 1
  year: 1977
  ident: 10139_CR50
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.09.010177.001541
– volume: 20
  start-page: 087102
  issue: 8
  year: 2008
  ident: 10139_CR25
  publication-title: Phys Fluids
  doi: 10.1063/1.2963507
– volume: 100
  start-page: 042602
  issue: 4
  year: 2019
  ident: 10139_CR53
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.100.042602
– volume: 380
  start-page: 122231
  year: 2020
  ident: 10139_CR11
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122231
– volume: 86
  start-page: 021503
  issue: 2
  year: 2012
  ident: 10139_CR49
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.021503
– volume: 35
  start-page: 6971
  issue: 21
  year: 2019
  ident: 10139_CR32
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00313
– volume: 257
  start-page: 65
  issue: 1
  year: 2003
  ident: 10139_CR3
  publication-title: J Colloid Interface Sci
  doi: 10.1016/S0021-9797(02)00029-2
– volume: 65
  start-page: 1463
  issue: 5
  year: 2005
  ident: 10139_CR41
  publication-title: SIAM J Appl Math
  doi: 10.1137/040609938
– volume: 70
  start-page: 021506
  issue: 2
  year: 2004
  ident: 10139_CR21
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.021506
– volume: 82
  start-page: 011501
  issue: 1
  year: 2010
  ident: 10139_CR23
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.011501
– volume: 92
  start-page: 032305
  issue: 3
  year: 2015
  ident: 10139_CR26
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.032305
– volume: 73
  start-page: 051202
  issue: 5
  year: 2006
  ident: 10139_CR29
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.73.051202
– volume: 76
  start-page: 051501
  issue: 5
  year: 2007
  ident: 10139_CR1
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.76.051501
– volume: 74
  start-page: 011501
  issue: 1
  year: 2006
  ident: 10139_CR43
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.74.011501
– volume: 99
  start-page: 062603
  issue: 6
  year: 2019
  ident: 10139_CR22
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.99.062603
– volume: 31
  start-page: 9742
  issue: 36
  year: 2015
  ident: 10139_CR35
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02432
– volume: 10
  start-page: 161
  issue: 3
  year: 2019
  ident: 10139_CR30
  publication-title: Micromachines
  doi: 10.3390/mi10030161
– volume: 77
  start-page: 4683
  issue: 9
  year: 1982
  ident: 10139_CR45
  publication-title: J Chem Phys
  doi: 10.1063/1.444369
– ident: 10139_CR31
– volume: 89
  start-page: 032302
  issue: 3
  year: 2014
  ident: 10139_CR24
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.89.032302
– volume: 434
  start-page: 121
  year: 2018
  ident: 10139_CR10
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.12.044
– volume: 11
  start-page: 263
  issue: 02
  year: 2001
  ident: 10139_CR40
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202501000866
– volume: 24
  start-page: 2977
  issue: 7
  year: 2008
  ident: 10139_CR13
  publication-title: Langmuir
  doi: 10.1021/la704076j
– volume: 34
  start-page: 952
  issue: 3
  year: 2018
  ident: 10139_CR14
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02793
– volume: 217
  start-page: 2
  year: 1999
  ident: 10139_CR5
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1999.6346
– volume: 81
  start-page: 016320
  issue: 1
  year: 2010
  ident: 10139_CR46
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.016320
– volume: 129
  start-page: 944
  issue: 10
  year: 2004
  ident: 10139_CR7
  publication-title: Analyst
  doi: 10.1039/B408382M
– volume: 148
  start-page: 247
  year: 1984
  ident: 10139_CR37
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112084002330
– volume: 61
  start-page: R45
  issue: 1
  year: 2000
  ident: 10139_CR6
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.61.R45
– volume: 2
  start-page: 013138
  issue: 1
  year: 2020
  ident: 10139_CR39
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.2.013138
– volume: 95
  start-page: 022802
  issue: 2
  year: 2017
  ident: 10139_CR47
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.95.022802
– volume: 91
  start-page: 042307
  issue: 4
  year: 2015
  ident: 10139_CR27
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.91.042307
– volume: 22
  start-page: 112109
  issue: 11
  year: 2010
  ident: 10139_CR38
  publication-title: Phys Fluids
  doi: 10.1063/1.3496976
– volume: 23
  start-page: 1973
  issue: 13
  year: 2002
  ident: 10139_CR15
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
– volume: 20
  start-page: 1071
  issue: 7
  year: 1952
  ident: 10139_CR19
  publication-title: J Chem Phys
  doi: 10.1063/1.1700669
– volume: 78
  start-page: 457
  issue: 3
  year: 1982
  ident: 10139_CR44
  publication-title: J Chem Soc Faraday Trans 2 Mol Chem Phys
– volume: 17
  start-page: 449
  issue: 3
  year: 2017
  ident: 10139_CR17
  publication-title: Sensors
  doi: 10.3390/s17030449
– volume: 19
  start-page: 461
  issue: 4
  year: 1966
  ident: 10139_CR52
  publication-title: Q J Mech Appl Math
  doi: 10.1093/qjmam/19.4.461
– volume: 123
  start-page: 58006
  issue: 5
  year: 2018
  ident: 10139_CR8
  publication-title: EPL
  doi: 10.1209/0295-5075/123/58006
SSID ssj0009842
Score 2.3036888
Snippet We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Approximation
Asymmetry
Boundary conditions
Computational Mathematics and Numerical Analysis
Debye length
Electric fields
Electric potential
Electrochemical cells
Electrolytes
Electrophoresis
Ion diffusion
Ion transport
Ions
Mathematical analysis
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Particle motion
Perturbation methods
Potential gradient
Practical Asymptotics VII
Theoretical and Applied Mechanics
Thin films
Voltage
Title A thin double layer analysis of asymmetric rectified electric fields (AREFs)
URI https://link.springer.com/article/10.1007/s10665-021-10139-x
https://www.proquest.com/docview/2542381528
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBB2pEkezBg0ab0O0-yrEYkKhwMJLgqdltu9EEirGQ6L93tmwpGjXx1HRfh9mZ3W-yM98gdBZz4nIuqJMwLRzqwznY5kw6MNwzD23SzXOrBkPeH9HbMRvbpLCsiHYvniTzk3ot2Y1zk01sQrAAtziAHKvM-O6gxSMSlFS7Pl1xhAPA8GyqzM9rfL2OSoz57Vk0v216u2jbwkQcLPd1D20kaQ3tWMiIrUFmNbS1xicIf4MVCWu2j-4DPH9-SXE8W6hJgicS0DWWloQEzzSW2cd0aipqRTg_97RZe1kXB5ry2LYMnwcP3V52cYBGve7jdd-xxROcCKxq7gDw8xVVba0J062IMvCaW5q2FOUsIr4mWkTcI4ngbiyhKWK-L5VKNBXE00R6h6iSztLkCOG2ICrWytNMUCokeCTGKUyIggmu8HgduYUMw8gyi5sCF5Ow5EQ2cg9B7mEu9_C9ji5Xc16XvBp_jm4UWxNaG8tCcG0N3mDEr6OrYrvK7t9XO_7f8BO0SYzG5FF_DVSZvy2SU0Aic9VE1aDX6QzN9-bprtvMFfETPAXVUA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDAAIJIjeNHOkaoVYG2A2qlbpGdxAKpTRFJJfj3nFOnKQiQGOPYN9zZ5-_ku-8Quow5cTkX1EmYFg71wQ-2OJMOTPfMQ5t0i9qq_oB3R_RhzMa2KCwrs93LJ8nCU68Uu3FuqolNChbgFgeQ4waAAd8kco1IUFHt-nTJEQ4Aw7OlMj_L-HodVRjz27Nocdt09tCOhYk4WNh1H60laQ3tWsiI7YHMamh7hU8QvvpLEtbsAPUCnD-_pDiezdUkwRMJ6BpLS0KCZxrL7GM6NR21Ilz4PW1kL_riwFCR25bhq-Cp3cmuD9Go0x7edR3bPMGJ4FTlDgA_X1HV0pow3Ywog6i5qWlTUc4i4muiRcQ9kgjuxhKGIub7UqlEU0E8TaR3hNbTWZocI9wSRMVaeZoJSoWEiMQEhQlRsMAVHq8jt9RhGFlmcdPgYhJWnMhG7yHoPSz0Hr7X0c1yzeuCV-PP2Y3SNKE9Y1kIoa3BG4z4dXRbmqv6_bu0k_9Nv0Cb3WG_F_buB4-naIuY3VNkADbQev42T84AleTqvNiEnxGe1TM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPrgx1ScTs2DD4qWrWk-useiG1O3IeJgbyVpGxS2btgO9L_30o9tigo-Nk3u4S65_I7c_Q6h85ATm3NBrYhpYVEX_GCTM2nBdMc8tEk7q63q9XlnQO-HbLhUxZ9lu5dPknlNg2FpitP6NNT1pcI3zk1lsUnHAgxjAYpcA3dsm309IN6Cdtelc75wABtOUTbzs4yvV9MCb357Is1unvYO2iogI_ZyG--ilSiuoO0CPuLicCYVtLnELQhfvTkha7KHuh5OX15jHE5mahThkQSkjWVBSIInGsvkYzw23bUCnPlAbWTnPXJgKMtzS_CF99RqJ5f7aNBuPd90rKKRghWASlILQKCrqGpqTZhuBJRBBN3QtKEoZwFxNdEi4A6JBLdDCUMBc12pVKSpII4m0jlAq_Ekjg4RbgqiQq0czQSlQkJ0YgLEiChYYAuHV5Fd6tAPCpZx0-xi5C_4kY3efdC7n-ndf6-iq_maac6x8efsWmkavzhviQ9hrsEejLhVdF2aa_H7d2lH_5t-htYfb9t-967_cIw2iNk8WTJgDa2mb7PoBABKqk6zPfgJo3TZbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thin+double+layer+analysis+of+asymmetric+rectified+electric+fields+%28AREFs%29&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Balu+Bhavya&rft.au=Khair%2C+Aditya+S&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=129&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-021-10139-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon