A thin double layer analysis of asymmetric rectified electric fields (AREFs)
We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady...
Saved in:
Published in | Journal of engineering mathematics Vol. 129; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers,
1
/
(
κ
L
)
=
ϵ
→
0
, where
κ
-
1
is the Debye length, and
L
is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale,
ω
=
O
(
D
A
/
L
2
)
, where
D
A
=
2
D
+
D
-
/
(
D
+
+
D
-
)
is the ambipolar diffusivity, and
D
±
are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to
D
A
/
ω
, and has a magnitude of
O
(
ϵ
2
k
B
T
/
(
L
e
)
)
to leading order in
ϵ
. Here,
k
B
is the Boltzmann constant,
T
is temperature, and
e
is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages,
V
0
≪
k
B
T
/
e
, where
V
0
is the amplitude of the voltage, for which the AREF is
O
(
ϵ
2
V
0
2
e
/
(
k
B
T
L
)
)
. Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages,
V
0
=
O
(
(
k
B
T
/
e
)
ln
(
1
/
ϵ
)
)
. The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly. |
---|---|
AbstractList | We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers,
1
/
(
κ
L
)
=
ϵ
→
0
, where
κ
-
1
is the Debye length, and
L
is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale,
ω
=
O
(
D
A
/
L
2
)
, where
D
A
=
2
D
+
D
-
/
(
D
+
+
D
-
)
is the ambipolar diffusivity, and
D
±
are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to
D
A
/
ω
, and has a magnitude of
O
(
ϵ
2
k
B
T
/
(
L
e
)
)
to leading order in
ϵ
. Here,
k
B
is the Boltzmann constant,
T
is temperature, and
e
is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages,
V
0
≪
k
B
T
/
e
, where
V
0
is the amplitude of the voltage, for which the AREF is
O
(
ϵ
2
V
0
2
e
/
(
k
B
T
L
)
)
. Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages,
V
0
=
O
(
(
k
B
T
/
e
)
ln
(
1
/
ϵ
)
)
. The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly. We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model electrochemical cell consisting of a binary, asymmetric electrolyte bounded by planar, parallel, blocking electrodes. The AREF refers to the steady component of the electric potential gradient within the electrolyte, as discovered via numerics by Hashemi Amrei et. al. (Phys Rev Lett 121(18):185504). We adopt the Poisson–Nernst–Planck framework for ion transport in dilute electrolytes, taking into account unequal ionic diffusivities. We consider the mathematically singular, and practically relevant, limit of thin Debye layers, 1/(κL)=ϵ→0, where κ-1 is the Debye length, and L is the length of the half-cell. The dynamics of the electric potential and ionic strength in the “bulk” electrolyte (i.e., outside the Debye layers) are solved subject to effective boundary conditions obtained from consideration of the Debye-scale transport. We specifically analyze the case when the applied voltage has a frequency comparable to the inverse bulk ion diffusion time scale, ω=O(DA/L2), where DA=2D+D-/(D++D-) is the ambipolar diffusivity, and D± are the ionic diffusivities. In this regime, the AREF extends throughout the bulk of the cell, varying on a lengthscale proportional to DA/ω, and has a magnitude of O(ϵ2kBT/(Le)) to leading order in ϵ. Here, kB is the Boltzmann constant, T is temperature, and e is the charge on a proton. We obtain an analytical approximation for the AREF at weak voltages, V0≪kBT/e, where V0 is the amplitude of the voltage, for which the AREF is O(ϵ2V02e/(kBTL)). Our asymptotic scheme is also used to calculate a numerical approximation to the AREF that is valid up to logarithmically large voltages, V0=O((kBT/e)ln(1/ϵ)). The existence of an AREF implies that a charged colloidal particle undergoes net electrophoretic motion under the applied oscillatory voltage. Additionally, a gradient in the bulk ionic strength, caused by the difference in ionic diffusivities, leads to rectified diffusiophoretic particle motion. Here, we predict the electrophoretic and diffusiophoretic velocities for a rigid, spherical, colloidal particle. The diffusiophoretic velocity is comparable in magnitude to the electrophoretic velocity, and can thus affect particle motion in an AREF significantly. |
ArticleNumber | 4 |
Author | Balu, Bhavya Khair, Aditya S. |
Author_xml | – sequence: 1 givenname: Bhavya surname: Balu fullname: Balu, Bhavya organization: Department of Chemical Engineering, Carnegie Mellon University – sequence: 2 givenname: Aditya S. orcidid: 0000-0001-6076-2910 surname: Khair fullname: Khair, Aditya S. email: akhair@andrew.cmu.edu organization: Department of Chemical Engineering, Carnegie Mellon University |
BookMark | eNp9kM1KAzEUhYNUsK2-gKuAG12M3iSTmcyylFaFgiC6Dpk00ZTpTE1S6Ly9qSMILrq6P5zv3sOZoFHbtQahawL3BKB8CASKgmdASUaAsCo7nKEx4SXLaAlshMYAlGYgGLtAkxA2AFCJnI7Raobjp2vxutvXjcGN6o3HqlVNH1zAncUq9Nutid5p7I2OzjqzxqZJ7XGVpmYd8O3sdbEMd5fo3KommKvfOkXvy8Xb_ClbvTw-z2erTDNSxayqKlHndWUt5RZ0zk3NwOZQ5wXXVFhqS10wasqCrFVaaS6Eqmtj85IySxWbopvh7s53X3sTotx0e59MB0l5TpkgnIqkooNK-y4Eb6zcebdVvpcE5DE1OaQmU2ryJzV5SJD4B2kXVXRdG71yzWmUDWhIf9oP4_9cnaC-AcGYg4U |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_4c01516 crossref_primary_10_1039_D3SM01306E crossref_primary_10_2139_ssrn_4147466 crossref_primary_10_1039_D3SM00823A crossref_primary_10_1016_j_jelechem_2022_116222 crossref_primary_10_1016_j_electacta_2022_141220 crossref_primary_10_1103_PhysRevE_107_054608 crossref_primary_10_1149_1945_7111_ad6a3a crossref_primary_10_1039_D1SM01239H |
Cites_doi | 10.1021/acs.analchem.7b02892 10.1039/D0SM00417K 10.1016/j.desal.2017.12.044 10.1103/PhysRevE.82.011501 10.1103/PhysRevE.61.R45 10.1134/S1023193512060031 10.1103/PhysRevE.73.051202 10.1103/PhysRevFluids.5.013702 10.1063/1.2963507 10.1006/jcis.1999.6346 10.1103/PhysRevE.87.032302 10.1103/PhysRev.92.4 10.1103/PhysRevE.70.021506 10.1021/acs.langmuir.9b00313 10.1103/PhysRevE.92.032305 10.1016/S0021-9797(02)00029-2 10.1103/PhysRevResearch.2.013138 10.1103/PhysRevE.100.042602 10.1103/PhysRevE.81.016320 10.1021/la704076j 10.1039/B408382M 10.1063/1.444369 10.1017/S0022112084002330 10.3390/mi10030161 10.1103/PhysRevE.89.032302 10.1063/1.1700669 10.1137/040609938 10.1016/j.cocis.2010.01.005 10.1016/j.jcis.2013.07.042 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1 10.1103/PhysRevE.74.011501 10.1103/PhysRevE.95.022802 10.1142/S0218202501000866 10.1103/PhysRevE.86.021503 10.1103/PhysRevE.86.061506 10.1016/0001-8686(91)80022-C 10.1103/PhysRevE.99.062603 10.1209/0295-5075/123/58006 10.1021/acs.langmuir.7b02793 10.1039/C8RA09017C 10.1093/qjmam/19.4.461 10.1146/annurev.fl.09.010177.001541 10.1016/j.cej.2019.122231 10.1063/1.3496976 10.3390/s17030449 10.1103/PhysRevE.76.051501 10.1021/acs.langmuir.5b02432 10.1103/PhysRevLett.121.185504 10.1201/9780429492563 10.1103/PhysRevE.91.042307 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10665-021-10139-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1573-2703 |
ExternalDocumentID | 10_1007_s10665_021_10139_x |
GrantInformation_xml | – fundername: National Science Foundation grantid: CBET-2002120 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z86 Z8M Z8S ZMTXR ZWQNP ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-9998b4b9ff25f0c45eb30f40b465c28f2f7c632e761da65cc588abbef4723f2a3 |
IEDL.DBID | U2A |
ISSN | 0022-0833 |
IngestDate | Fri Jul 25 11:00:54 EDT 2025 Thu Apr 24 22:58:11 EDT 2025 Tue Jul 01 03:43:56 EDT 2025 Fri Feb 21 02:48:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ion transport Electrophoresis Electric field Debye layer Electrolyte |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9998b4b9ff25f0c45eb30f40b465c28f2f7c632e761da65cc588abbef4723f2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6076-2910 |
PQID | 2542381528 |
PQPubID | 2043778 |
ParticipantIDs | proquest_journals_2542381528 crossref_primary_10_1007_s10665_021_10139_x crossref_citationtrail_10_1007_s10665_021_10139_x springer_journals_10_1007_s10665_021_10139_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of engineering mathematics |
PublicationTitleAbbrev | J Eng Math |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Biesheuvel, Fu, Bazant (CR9) 2012; 48 Prieve, Sides, Wirth (CR12) 2010; 15 Hoggard, Sides, Prieve (CR13) 2008; 24 Prieve, Anderson, Ebel, Lowell (CR37) 1984; 148 Abd Rahman, Ibrahim, Yafouz (CR17) 2017; 17 Kim, Davidson, Mani (CR30) 2019; 10 Schnitzer, Yariv (CR48) 2012; 86 CR31 Riley (CR52) 1966; 19 Studer, Pépin, Chen, Ajdari (CR7) 2004; 129 Balu, Khair (CR39) 2020; 2 Olesen, Bazant, Bruus (CR23) 2010; 82 Bazant, Chu, Bayly (CR41) 2005; 65 Bukosky, Ristenpart (CR35) 2015; 31 Janssen (CR53) 2019; 100 Barbero, Lelidis (CR1) 2007; 76 Dukhin (CR4) 1991; 35 Hollingsworth, Saville (CR3) 2003; 257 Chen, Ren, Liu, Feng, Jia, Tao, Jiang (CR18) 2017; 89 Campione, Gurreri, Ciofalo, Micale, Tamburini, Cipollina (CR10) 2018; 434 Gonzalez, Ramos, García-Sánchez, Castellanos (CR46) 2010; 81 Hashemi Amrei, Miller, Bishop, Ristenpart (CR34) 2020; 16 Wirth, Sides, Prieve (CR36) 2013; 87 Schnitzer, Yariv (CR49) 2012; 86 Al-Amshawee, Yunus, Azoddein, Hassell, Dakhil, Hasan (CR11) 2020; 380 Hashemi Amrei, Miller, Ristenpart (CR33) 2020; 5 Bazant, Thornton, Ajdari (CR21) 2004; 70 DeLacey, White (CR44) 1982; 78 Strogatz (CR51) 2018 Ramos, Morgan, Green, Castellanos (CR5) 1999; 217 Hashemi Amrei, Bukosky, Rader, Ristenpart, Miller (CR28) 2018; 121 Stout, Khair (CR26) 2015; 92 Hashemi Amrei, Miller, Ristenpart (CR22) 2019; 99 Chang, Jaffé (CR19) 1952; 20 Chew, Sen (CR45) 1982; 77 Bukosky, Hashemi Amrei, Rader, Mora, Miller, Ristenpart (CR32) 2019; 35 Beltramo, Roa, Carrique, Furst (CR2) 2013; 408 Rica, Bazant (CR38) 2010; 22 Newman, Thomas-Alyea (CR42) 2012 Saville (CR50) 1977; 9 Ajdari (CR6) 2000; 61 García-Sánchez, Loucaides, Ramos (CR47) 2017; 95 Catalano, Biesheuvel (CR8) 2018; 123 Yang, Wu (CR14) 2018; 34 Gascoyne, Vykoukal (CR15) 2002; 23 Chen, Yuan (CR16) 2019; 9 Macdonald (CR20) 1953; 92 Bandopadhyay, Shaik, Chakraborty (CR27) 2015; 91 Freire, Barbero, Scalerandi (CR29) 2006; 73 Khair, Squires (CR25) 2008; 20 Chu, Bazant (CR43) 2006; 74 Schnitzer, Yariv (CR24) 2014; 89 Rubinstein, Zaltzman (CR40) 2001; 11 P Biesheuvel (10139_CR9) 2012; 48 SMH Hashemi Amrei (10139_CR28) 2018; 121 X Yang (10139_CR14) 2018; 34 A Bandopadhyay (10139_CR27) 2015; 91 O Schnitzer (10139_CR48) 2012; 86 N Riley (10139_CR52) 1966; 19 J Catalano (10139_CR8) 2018; 123 KT Chu (10139_CR43) 2006; 74 F Freire (10139_CR29) 2006; 73 SMH Hashemi Amrei (10139_CR34) 2020; 16 J Newman (10139_CR42) 2012 G Barbero (10139_CR1) 2007; 76 A Campione (10139_CR10) 2018; 434 I Rubinstein (10139_CR40) 2001; 11 LH Olesen (10139_CR23) 2010; 82 AS Khair (10139_CR25) 2008; 20 A Hollingsworth (10139_CR3) 2003; 257 N Abd Rahman (10139_CR17) 2017; 17 O Schnitzer (10139_CR49) 2012; 86 SMH Hashemi Amrei (10139_CR22) 2019; 99 D Saville (10139_CR50) 1977; 9 D Prieve (10139_CR37) 1984; 148 CL Wirth (10139_CR36) 2013; 87 M Janssen (10139_CR53) 2019; 100 S Al-Amshawee (10139_CR11) 2020; 380 X Chen (10139_CR18) 2017; 89 A Ramos (10139_CR5) 1999; 217 Q Chen (10139_CR16) 2019; 9 SH Strogatz (10139_CR51) 2018 EH DeLacey (10139_CR44) 1982; 78 WC Chew (10139_CR45) 1982; 77 JR Macdonald (10139_CR20) 1953; 92 J Kim (10139_CR30) 2019; 10 A Gonzalez (10139_CR46) 2010; 81 DC Prieve (10139_CR12) 2010; 15 PJ Beltramo (10139_CR2) 2013; 408 MZ Bazant (10139_CR21) 2004; 70 SC Bukosky (10139_CR32) 2019; 35 A Ajdari (10139_CR6) 2000; 61 SS Dukhin (10139_CR4) 1991; 35 B Balu (10139_CR39) 2020; 2 SMH Hashemi Amrei (10139_CR33) 2020; 5 V Studer (10139_CR7) 2004; 129 SC Bukosky (10139_CR35) 2015; 31 10139_CR31 O Schnitzer (10139_CR24) 2014; 89 PR Gascoyne (10139_CR15) 2002; 23 HC Chang (10139_CR19) 1952; 20 RF Stout (10139_CR26) 2015; 92 MZ Bazant (10139_CR41) 2005; 65 JD Hoggard (10139_CR13) 2008; 24 RA Rica (10139_CR38) 2010; 22 P García-Sánchez (10139_CR47) 2017; 95 |
References_xml | – volume: 89 start-page: 9583 issue: 17 year: 2017 ident: CR18 article-title: A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation publication-title: Anal Chem doi: 10.1021/acs.analchem.7b02892 – volume: 16 start-page: 7052 year: 2020 end-page: 7062 ident: CR34 article-title: A perturbation solution to the full Poisson–Nernst–Planck equations yields an asymmetric rectified electric field publication-title: Soft Matter doi: 10.1039/D0SM00417K – volume: 434 start-page: 121 year: 2018 ident: CR10 article-title: Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications publication-title: Desalination doi: 10.1016/j.desal.2017.12.044 – volume: 82 start-page: 011501 issue: 1 year: 2010 ident: CR23 article-title: Strongly nonlinear dynamics of electrolytes in large ac voltages publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.011501 – volume: 61 start-page: R45 issue: 1 year: 2000 ident: CR6 article-title: Pumping liquids using asymmetric electrode arrays publication-title: Phys Rev E doi: 10.1103/PhysRevE.61.R45 – volume: 48 start-page: 580 issue: 6 year: 2012 ident: CR9 article-title: Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes publication-title: Russ J Electrochem doi: 10.1134/S1023193512060031 – volume: 73 start-page: 051202 issue: 5 year: 2006 ident: CR29 article-title: Electrical impedance for an electrolytic cell publication-title: Phys Rev E doi: 10.1103/PhysRevE.73.051202 – volume: 5 start-page: 013702 issue: 1 year: 2020 ident: CR33 article-title: Asymmetric rectified electric fields generate flows that can dominate induced-charge electrokinetics publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.5.013702 – volume: 20 start-page: 087102 issue: 8 year: 2008 ident: CR25 article-title: Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport publication-title: Phys Fluids doi: 10.1063/1.2963507 – volume: 217 start-page: 2 year: 1999 ident: CR5 article-title: AC electric-field-induced fluid flow in microelectrodes publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1999.6346 – volume: 87 start-page: 032302 issue: 3 year: 2013 ident: CR36 article-title: Electrolyte dependence of particle motion near an electrode during ac polarization publication-title: Phys Rev E doi: 10.1103/PhysRevE.87.032302 – volume: 92 start-page: 4 issue: 1 year: 1953 ident: CR20 article-title: Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes publication-title: Phys Rev doi: 10.1103/PhysRev.92.4 – volume: 70 start-page: 021506 issue: 2 year: 2004 ident: CR21 article-title: Diffuse-charge dynamics in electrochemical systems publication-title: Phys Rev E doi: 10.1103/PhysRevE.70.021506 – volume: 35 start-page: 6971 issue: 21 year: 2019 ident: CR32 article-title: Extreme levitation of colloidal particles in response to oscillatory electric fields publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00313 – volume: 92 start-page: 032305 issue: 3 year: 2015 ident: CR26 article-title: Moderately nonlinear diffuse-charge dynamics under an AC voltage publication-title: Phys Rev E doi: 10.1103/PhysRevE.92.032305 – volume: 257 start-page: 65 issue: 1 year: 2003 ident: CR3 article-title: A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation publication-title: J Colloid Interface Sci doi: 10.1016/S0021-9797(02)00029-2 – volume: 2 start-page: 013138 issue: 1 year: 2020 ident: CR39 article-title: Dynamic double layer force between charged surfaces publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.2.013138 – volume: 100 start-page: 042602 issue: 4 year: 2019 ident: CR53 article-title: Curvature affects electrolyte relaxation: studies of spherical and cylindrical electrodes publication-title: Phys Rev E doi: 10.1103/PhysRevE.100.042602 – volume: 81 start-page: 016320 issue: 1 year: 2010 ident: CR46 article-title: Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.016320 – volume: 24 start-page: 2977 issue: 7 year: 2008 ident: CR13 article-title: Electrolyte-dependent multiparticle motion near electrodes in oscillating electric fields publication-title: Langmuir doi: 10.1021/la704076j – volume: 129 start-page: 944 issue: 10 year: 2004 ident: CR7 article-title: An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control publication-title: Analyst doi: 10.1039/B408382M – volume: 77 start-page: 4683 issue: 9 year: 1982 ident: CR45 article-title: Dielectric enhancement due to electrochemical double layer: thin double layer approximation publication-title: J Chem Phys doi: 10.1063/1.444369 – volume: 148 start-page: 247 year: 1984 ident: CR37 article-title: Motion of a particle generated by chemical gradients. Part 2. Electrolytes publication-title: J Fluid Mech doi: 10.1017/S0022112084002330 – volume: 10 start-page: 161 issue: 3 year: 2019 ident: CR30 article-title: Characterization of chaotic electroconvection near flat inert electrodes under oscillatory voltages publication-title: Micromachines doi: 10.3390/mi10030161 – volume: 89 start-page: 032302 issue: 3 year: 2014 ident: CR24 article-title: Nonlinear oscillations in an electrolyte solution under AC voltage publication-title: Phys Rev E doi: 10.1103/PhysRevE.89.032302 – volume: 20 start-page: 1071 issue: 7 year: 1952 ident: CR19 article-title: Polarization in electrolytic solutions. Part I. Theory publication-title: J Chem Phys doi: 10.1063/1.1700669 – volume: 65 start-page: 1463 issue: 5 year: 2005 ident: CR41 article-title: Current–voltage relations for electrochemical thin films publication-title: SIAM J Appl Math doi: 10.1137/040609938 – volume: 15 start-page: 160 issue: 3 year: 2010 ident: CR12 article-title: 2-D assembly of colloidal particles on a planar electrode publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2010.01.005 – volume: 408 start-page: 54 year: 2013 ident: CR2 article-title: Dielectric spectroscopy of concentrated colloidal suspensions publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2013.07.042 – volume: 23 start-page: 1973 issue: 13 year: 2002 ident: CR15 article-title: Particle separation by dielectrophoresis publication-title: Electrophoresis doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1 – volume: 74 start-page: 011501 issue: 1 year: 2006 ident: CR43 article-title: Nonlinear electrochemical relaxation around conductors publication-title: Phys Rev E doi: 10.1103/PhysRevE.74.011501 – volume: 95 start-page: 022802 issue: 2 year: 2017 ident: CR47 article-title: Pumping of electrolytes by electrical forces induced on the diffusion layer: a weakly nonlinear analysis publication-title: Phys Rev E doi: 10.1103/PhysRevE.95.022802 – volume: 11 start-page: 263 issue: 02 year: 2001 ident: CR40 article-title: Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202501000866 – year: 2012 ident: CR42 publication-title: Electrochemical systems – volume: 86 start-page: 021503 issue: 2 year: 2012 ident: CR49 article-title: Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction publication-title: Phys Rev E doi: 10.1103/PhysRevE.86.021503 – volume: 86 start-page: 061506 issue: 6 year: 2012 ident: CR48 article-title: Induced-charge electro-osmosis beyond weak fields publication-title: Phys Rev E doi: 10.1103/PhysRevE.86.061506 – volume: 35 start-page: 173 year: 1991 ident: CR4 article-title: Electrokinetic phenomena of the second kind and their applications publication-title: Adv Colloid Interface Sci doi: 10.1016/0001-8686(91)80022-C – volume: 99 start-page: 062603 issue: 6 year: 2019 ident: CR22 article-title: Asymmetric rectified electric fields between parallel electrodes: numerical and scaling analyses publication-title: Phys Rev E doi: 10.1103/PhysRevE.99.062603 – volume: 123 start-page: 58006 issue: 5 year: 2018 ident: CR8 article-title: AC-driven electro-osmotic flow in charged nanopores publication-title: EPL doi: 10.1209/0295-5075/123/58006 – volume: 34 start-page: 952 issue: 3 year: 2018 ident: CR14 article-title: Change the collective behaviors of colloidal motors by tuning electrohydrodynamic flow at the subparticle level publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02793 – volume: 9 start-page: 4963 issue: 9 year: 2019 ident: CR16 article-title: A review of polystyrene bead manipulation by dielectrophoresis publication-title: RSC Adv doi: 10.1039/C8RA09017C – volume: 19 start-page: 461 issue: 4 year: 1966 ident: CR52 article-title: On a sphere oscillating in a viscous fluid publication-title: Q J Mech Appl Math doi: 10.1093/qjmam/19.4.461 – volume: 9 start-page: 321 issue: 1 year: 1977 ident: CR50 article-title: Electrokinetic effects with small particles publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.09.010177.001541 – volume: 380 start-page: 122231 year: 2020 ident: CR11 article-title: Electrodialysis desalination for water and wastewater: a review publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122231 – ident: CR31 – volume: 22 start-page: 112109 issue: 11 year: 2010 ident: CR38 article-title: Electrodiffusiophoresis: particle motion in electrolytes under direct current publication-title: Phys Fluids doi: 10.1063/1.3496976 – volume: 17 start-page: 449 issue: 3 year: 2017 ident: CR17 article-title: Dielectrophoresis for biomedical sciences applications: a review publication-title: Sensors doi: 10.3390/s17030449 – volume: 76 start-page: 051501 issue: 5 year: 2007 ident: CR1 article-title: Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell publication-title: Phys Rev E doi: 10.1103/PhysRevE.76.051501 – volume: 31 start-page: 9742 issue: 36 year: 2015 ident: CR35 article-title: Simultaneous aggregation and height bifurcation of colloidal particles near electrodes in oscillatory electric fields publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02432 – volume: 121 start-page: 185504 issue: 18 year: 2018 ident: CR28 article-title: Oscillating electric fields in liquids create a long-range steady field publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.185504 – year: 2018 ident: CR51 publication-title: Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering doi: 10.1201/9780429492563 – volume: 91 start-page: 042307 issue: 4 year: 2015 ident: CR27 article-title: Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances publication-title: Phys Rev E doi: 10.1103/PhysRevE.91.042307 – volume: 78 start-page: 457 issue: 3 year: 1982 ident: CR44 article-title: The polarization impedance of an ideally polarizable plane electrode publication-title: J Chem Soc Faraday Trans 2 Mol Chem Phys – volume: 9 start-page: 4963 issue: 9 year: 2019 ident: 10139_CR16 publication-title: RSC Adv doi: 10.1039/C8RA09017C – volume: 87 start-page: 032302 issue: 3 year: 2013 ident: 10139_CR36 publication-title: Phys Rev E doi: 10.1103/PhysRevE.87.032302 – volume-title: Electrochemical systems year: 2012 ident: 10139_CR42 – volume-title: Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering year: 2018 ident: 10139_CR51 doi: 10.1201/9780429492563 – volume: 86 start-page: 061506 issue: 6 year: 2012 ident: 10139_CR48 publication-title: Phys Rev E doi: 10.1103/PhysRevE.86.061506 – volume: 92 start-page: 4 issue: 1 year: 1953 ident: 10139_CR20 publication-title: Phys Rev doi: 10.1103/PhysRev.92.4 – volume: 15 start-page: 160 issue: 3 year: 2010 ident: 10139_CR12 publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2010.01.005 – volume: 5 start-page: 013702 issue: 1 year: 2020 ident: 10139_CR33 publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.5.013702 – volume: 35 start-page: 173 year: 1991 ident: 10139_CR4 publication-title: Adv Colloid Interface Sci doi: 10.1016/0001-8686(91)80022-C – volume: 89 start-page: 9583 issue: 17 year: 2017 ident: 10139_CR18 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b02892 – volume: 408 start-page: 54 year: 2013 ident: 10139_CR2 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2013.07.042 – volume: 121 start-page: 185504 issue: 18 year: 2018 ident: 10139_CR28 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.185504 – volume: 16 start-page: 7052 year: 2020 ident: 10139_CR34 publication-title: Soft Matter doi: 10.1039/D0SM00417K – volume: 48 start-page: 580 issue: 6 year: 2012 ident: 10139_CR9 publication-title: Russ J Electrochem doi: 10.1134/S1023193512060031 – volume: 9 start-page: 321 issue: 1 year: 1977 ident: 10139_CR50 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.09.010177.001541 – volume: 20 start-page: 087102 issue: 8 year: 2008 ident: 10139_CR25 publication-title: Phys Fluids doi: 10.1063/1.2963507 – volume: 100 start-page: 042602 issue: 4 year: 2019 ident: 10139_CR53 publication-title: Phys Rev E doi: 10.1103/PhysRevE.100.042602 – volume: 380 start-page: 122231 year: 2020 ident: 10139_CR11 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122231 – volume: 86 start-page: 021503 issue: 2 year: 2012 ident: 10139_CR49 publication-title: Phys Rev E doi: 10.1103/PhysRevE.86.021503 – volume: 35 start-page: 6971 issue: 21 year: 2019 ident: 10139_CR32 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00313 – volume: 257 start-page: 65 issue: 1 year: 2003 ident: 10139_CR3 publication-title: J Colloid Interface Sci doi: 10.1016/S0021-9797(02)00029-2 – volume: 65 start-page: 1463 issue: 5 year: 2005 ident: 10139_CR41 publication-title: SIAM J Appl Math doi: 10.1137/040609938 – volume: 70 start-page: 021506 issue: 2 year: 2004 ident: 10139_CR21 publication-title: Phys Rev E doi: 10.1103/PhysRevE.70.021506 – volume: 82 start-page: 011501 issue: 1 year: 2010 ident: 10139_CR23 publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.011501 – volume: 92 start-page: 032305 issue: 3 year: 2015 ident: 10139_CR26 publication-title: Phys Rev E doi: 10.1103/PhysRevE.92.032305 – volume: 73 start-page: 051202 issue: 5 year: 2006 ident: 10139_CR29 publication-title: Phys Rev E doi: 10.1103/PhysRevE.73.051202 – volume: 76 start-page: 051501 issue: 5 year: 2007 ident: 10139_CR1 publication-title: Phys Rev E doi: 10.1103/PhysRevE.76.051501 – volume: 74 start-page: 011501 issue: 1 year: 2006 ident: 10139_CR43 publication-title: Phys Rev E doi: 10.1103/PhysRevE.74.011501 – volume: 99 start-page: 062603 issue: 6 year: 2019 ident: 10139_CR22 publication-title: Phys Rev E doi: 10.1103/PhysRevE.99.062603 – volume: 31 start-page: 9742 issue: 36 year: 2015 ident: 10139_CR35 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02432 – volume: 10 start-page: 161 issue: 3 year: 2019 ident: 10139_CR30 publication-title: Micromachines doi: 10.3390/mi10030161 – volume: 77 start-page: 4683 issue: 9 year: 1982 ident: 10139_CR45 publication-title: J Chem Phys doi: 10.1063/1.444369 – ident: 10139_CR31 – volume: 89 start-page: 032302 issue: 3 year: 2014 ident: 10139_CR24 publication-title: Phys Rev E doi: 10.1103/PhysRevE.89.032302 – volume: 434 start-page: 121 year: 2018 ident: 10139_CR10 publication-title: Desalination doi: 10.1016/j.desal.2017.12.044 – volume: 11 start-page: 263 issue: 02 year: 2001 ident: 10139_CR40 publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202501000866 – volume: 24 start-page: 2977 issue: 7 year: 2008 ident: 10139_CR13 publication-title: Langmuir doi: 10.1021/la704076j – volume: 34 start-page: 952 issue: 3 year: 2018 ident: 10139_CR14 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02793 – volume: 217 start-page: 2 year: 1999 ident: 10139_CR5 publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1999.6346 – volume: 81 start-page: 016320 issue: 1 year: 2010 ident: 10139_CR46 publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.016320 – volume: 129 start-page: 944 issue: 10 year: 2004 ident: 10139_CR7 publication-title: Analyst doi: 10.1039/B408382M – volume: 148 start-page: 247 year: 1984 ident: 10139_CR37 publication-title: J Fluid Mech doi: 10.1017/S0022112084002330 – volume: 61 start-page: R45 issue: 1 year: 2000 ident: 10139_CR6 publication-title: Phys Rev E doi: 10.1103/PhysRevE.61.R45 – volume: 2 start-page: 013138 issue: 1 year: 2020 ident: 10139_CR39 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.2.013138 – volume: 95 start-page: 022802 issue: 2 year: 2017 ident: 10139_CR47 publication-title: Phys Rev E doi: 10.1103/PhysRevE.95.022802 – volume: 91 start-page: 042307 issue: 4 year: 2015 ident: 10139_CR27 publication-title: Phys Rev E doi: 10.1103/PhysRevE.91.042307 – volume: 22 start-page: 112109 issue: 11 year: 2010 ident: 10139_CR38 publication-title: Phys Fluids doi: 10.1063/1.3496976 – volume: 23 start-page: 1973 issue: 13 year: 2002 ident: 10139_CR15 publication-title: Electrophoresis doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1 – volume: 20 start-page: 1071 issue: 7 year: 1952 ident: 10139_CR19 publication-title: J Chem Phys doi: 10.1063/1.1700669 – volume: 78 start-page: 457 issue: 3 year: 1982 ident: 10139_CR44 publication-title: J Chem Soc Faraday Trans 2 Mol Chem Phys – volume: 17 start-page: 449 issue: 3 year: 2017 ident: 10139_CR17 publication-title: Sensors doi: 10.3390/s17030449 – volume: 19 start-page: 461 issue: 4 year: 1966 ident: 10139_CR52 publication-title: Q J Mech Appl Math doi: 10.1093/qjmam/19.4.461 – volume: 123 start-page: 58006 issue: 5 year: 2018 ident: 10139_CR8 publication-title: EPL doi: 10.1209/0295-5075/123/58006 |
SSID | ssj0009842 |
Score | 2.3036888 |
Snippet | We use perturbation methods to analyze the “asymmetric rectified electric field (AREF)” generated when an oscillating voltage is applied across a model... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applications of Mathematics Approximation Asymmetry Boundary conditions Computational Mathematics and Numerical Analysis Debye length Electric fields Electric potential Electrochemical cells Electrolytes Electrophoresis Ion diffusion Ion transport Ions Mathematical analysis Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Particle motion Perturbation methods Potential gradient Practical Asymptotics VII Theoretical and Applied Mechanics Thin films Voltage |
Title | A thin double layer analysis of asymmetric rectified electric fields (AREFs) |
URI | https://link.springer.com/article/10.1007/s10665-021-10139-x https://www.proquest.com/docview/2542381528 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBB2pEkezBg0ab0O0-yrEYkKhwMJLgqdltu9EEirGQ6L93tmwpGjXx1HRfh9mZ3W-yM98gdBZz4nIuqJMwLRzqwznY5kw6MNwzD23SzXOrBkPeH9HbMRvbpLCsiHYvniTzk3ot2Y1zk01sQrAAtziAHKvM-O6gxSMSlFS7Pl1xhAPA8GyqzM9rfL2OSoz57Vk0v216u2jbwkQcLPd1D20kaQ3tWMiIrUFmNbS1xicIf4MVCWu2j-4DPH9-SXE8W6hJgicS0DWWloQEzzSW2cd0aipqRTg_97RZe1kXB5ry2LYMnwcP3V52cYBGve7jdd-xxROcCKxq7gDw8xVVba0J062IMvCaW5q2FOUsIr4mWkTcI4ngbiyhKWK-L5VKNBXE00R6h6iSztLkCOG2ICrWytNMUCokeCTGKUyIggmu8HgduYUMw8gyi5sCF5Ow5EQ2cg9B7mEu9_C9ji5Xc16XvBp_jm4UWxNaG8tCcG0N3mDEr6OrYrvK7t9XO_7f8BO0SYzG5FF_DVSZvy2SU0Aic9VE1aDX6QzN9-bprtvMFfETPAXVUA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDMDAo4AoFPDAAIJIjeNHOkaoVYG2A2qlbpGdxAKpTRFJJfj3nFOnKQiQGOPYN9zZ5-_ku-8Quow5cTkX1EmYFg71wQ-2OJMOTPfMQ5t0i9qq_oB3R_RhzMa2KCwrs93LJ8nCU68Uu3FuqolNChbgFgeQ4waAAd8kco1IUFHt-nTJEQ4Aw7OlMj_L-HodVRjz27Nocdt09tCOhYk4WNh1H60laQ3tWsiI7YHMamh7hU8QvvpLEtbsAPUCnD-_pDiezdUkwRMJ6BpLS0KCZxrL7GM6NR21Ilz4PW1kL_riwFCR25bhq-Cp3cmuD9Go0x7edR3bPMGJ4FTlDgA_X1HV0pow3Ywog6i5qWlTUc4i4muiRcQ9kgjuxhKGIub7UqlEU0E8TaR3hNbTWZocI9wSRMVaeZoJSoWEiMQEhQlRsMAVHq8jt9RhGFlmcdPgYhJWnMhG7yHoPSz0Hr7X0c1yzeuCV-PP2Y3SNKE9Y1kIoa3BG4z4dXRbmqv6_bu0k_9Nv0Cb3WG_F_buB4-naIuY3VNkADbQev42T84AleTqvNiEnxGe1TM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPrgx1ScTs2DD4qWrWk-useiG1O3IeJgbyVpGxS2btgO9L_30o9tigo-Nk3u4S65_I7c_Q6h85ATm3NBrYhpYVEX_GCTM2nBdMc8tEk7q63q9XlnQO-HbLhUxZ9lu5dPknlNg2FpitP6NNT1pcI3zk1lsUnHAgxjAYpcA3dsm309IN6Cdtelc75wABtOUTbzs4yvV9MCb357Is1unvYO2iogI_ZyG--ilSiuoO0CPuLicCYVtLnELQhfvTkha7KHuh5OX15jHE5mahThkQSkjWVBSIInGsvkYzw23bUCnPlAbWTnPXJgKMtzS_CF99RqJ5f7aNBuPd90rKKRghWASlILQKCrqGpqTZhuBJRBBN3QtKEoZwFxNdEi4A6JBLdDCUMBc12pVKSpII4m0jlAq_Ekjg4RbgqiQq0czQSlQkJ0YgLEiChYYAuHV5Fd6tAPCpZx0-xi5C_4kY3efdC7n-ndf6-iq_maac6x8efsWmkavzhviQ9hrsEejLhVdF2aa_H7d2lH_5t-htYfb9t-967_cIw2iNk8WTJgDa2mb7PoBABKqk6zPfgJo3TZbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thin+double+layer+analysis+of+asymmetric+rectified+electric+fields+%28AREFs%29&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Balu+Bhavya&rft.au=Khair%2C+Aditya+S&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=129&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-021-10139-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon |