Enhancing real-time fire detection: an effective multi-attention network and a fire benchmark

Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 37; no. 18; pp. 11693 - 11707
Main Authors Khan, Taimoor, Khan, Zulfiqar Ahmad, Choi, Chang
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices.
AbstractList Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices.
Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices.
Author Choi, Chang
Khan, Zulfiqar Ahmad
Khan, Taimoor
Author_xml – sequence: 1
  givenname: Taimoor
  surname: Khan
  fullname: Khan, Taimoor
  organization: Department of Computer Engineering, Gachon University
– sequence: 2
  givenname: Zulfiqar Ahmad
  surname: Khan
  fullname: Khan, Zulfiqar Ahmad
  organization: Sejong University
– sequence: 3
  givenname: Chang
  orcidid: 0000-0002-2276-2378
  surname: Choi
  fullname: Choi, Chang
  email: changchoi@gachon.ac.kr
  organization: Department of Computer Engineering, Gachon University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqP53E28SakfIHjRo4Ts7mybfmRrNlX67826guChpzDM80xm3gka-dYDQpeUXFNCipuOEMkoJoxjoplW-HCCxlRwjjmRaoTGRIvUzgU_Q5OuWxFCRK7kGL3P_dL6yvlFFsBucHRbyBoXIKshQhVd628z6zNomr76hGy730SHbYzg-27mIX61YZ2gOrODWoKvllsb1ufotLGbDi5-3yl6u5-_zh7x88vD0-zuGVec6oi10gUprbRMiLzJGQCjTaEsrYWQElReaULLvFQ1q4pC1U1poZQ1p7nkjCrJp-hqmLsL7cceumhW7T749KVJgBZK54VIlBqoKrRdF6AxlYu2PyIG6zaGEtOHaYYwTQrT_IRpDkll_9RdcOnCw3GJD1KXYL-A8LfVEesbCXaKFQ
CitedBy_id crossref_primary_10_1007_s10044_024_01267_y
crossref_primary_10_54565_jphcfum_1501853
crossref_primary_10_1080_00102202_2024_2372689
crossref_primary_10_1007_s11760_024_03508_3
crossref_primary_10_3390_s25072044
crossref_primary_10_3390_fire7110422
crossref_primary_10_3390_fire7120430
crossref_primary_10_3390_fire8030085
crossref_primary_10_1038_s41598_024_81742_y
Cites_doi 10.1109/SMC.2017.8122904
10.1109/JIOT.2023.3259343
10.1016/j.patrec.2005.06.015
10.1007/978-3-319-65172-9_16
10.1016/j.eswa.2023.120465
10.3390/s18030712
10.1109/CVPR.2016.249
10.1016/j.firesaf.2008.05.005
10.1109/TIP.2020.3016431
10.23919/ChiCC.2018.8483118
10.1007/978-3-031-34873-0_13
10.1109/ICCRD.2011.5764295
10.1109/CVPR52688.2022.01167
10.1109/CADSM.2017.7916148
10.1016/j.engappai.2022.105403
10.1007/978-3-319-59081-3_36
10.1109/ICIP.2018.8451657
10.1109/TCSVT.2014.2339592
10.1109/TII.2019.2897594
10.1109/TPAMI.2021.3050918
10.1109/TIP.2013.2258353
10.1016/j.proeng.2013.08.140
10.1016/j.neucom.2017.04.083
10.32604/csse.2023.034475
10.1109/ACCESS.2018.2812835
10.1109/JCAI.2009.79
10.1109/ICASSP.2007.366130
10.1007/s00521-023-08260-2
10.3390/s21144932
10.1016/j.jvcir.2006.12.003
10.1109/SIBGRAPI.2015.19
10.1007/978-3-319-11758-4_52
10.1155/2021/5195508
10.1109/TCSVT.2010.2045813
10.1007/s10694-017-0695-6
10.1007/978-3-319-63315-2_60
10.1109/TCSVT.2018.2872503
10.1016/j.engappai.2023.106397
10.1109/MNET.011.1900257
10.3390/s23083835
10.1109/TIP.2022.3207006
10.1109/JSTSP.2023.3260627
10.1109/TSMC.2018.2830099
10.1109/ICIP.2004.1421401
10.1155/2014/923609
10.1007/s00521-023-08809-1
10.1016/j.knosys.2023.110525
10.1016/j.firesaf.2006.02.001
10.1016/j.eswa.2023.120599
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 corrected publication 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 corrected publication 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-023-09298-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 11707
ExternalDocumentID 10_1007_s00521_023_09298_y
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABRTQ
CITATION
PQGLB
ID FETCH-LOGICAL-c319t-98970ba5a2446f62ee21f78a1d4455e86c901b6b8d2c778dfbaeb5d3165321853
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sat Aug 23 12:51:57 EDT 2025
Wed Aug 20 07:45:28 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Wed Jun 18 01:18:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Deep learning
Disaster management system
Attention module
Fire detection
Machine learning
MAFire-Net
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-98970ba5a2446f62ee21f78a1d4455e86c901b6b8d2c778dfbaeb5d3165321853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2276-2378
PQID 3219489674
PQPubID 2043988
PageCount 15
ParticipantIDs proquest_journals_3219489674
crossref_citationtrail_10_1007_s00521_023_09298_y
crossref_primary_10_1007_s00521_023_09298_y
springer_journals_10_1007_s00521_023_09298_y
PublicationCentury 2000
PublicationDate 20250600
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References T Celik (9298_CR12) 2009; 44
K Mustaqeem (9298_CR47) 2023; 270
G Marbach (9298_CR10) 2006; 41
W Mao (9298_CR25) 2018; 54
K Muhammad (9298_CR31) 2018; 49
J Sharma (9298_CR24) 2017
C Shen (9298_CR41) 2018; 29
X Shu (9298_CR42) 2021; 44
9298_CR33
L Shi (9298_CR37) 2017
T Celik (9298_CR13) 2007; 18
9298_CR39
9298_CR35
9298_CR36
H Yar (9298_CR3) 2021; 21
M Mueller (9298_CR20) 2013; 22
K Muhammad (9298_CR30) 2018; 6
T Khan (9298_CR52) 2023; 23
Z Wang (9298_CR34) 2017
K Muhammad (9298_CR57) 2018; 288
PVK Borges (9298_CR19) 2010; 20
K Muhammad (9298_CR7) 2019; 15
K Dimitropoulos (9298_CR21) 2014; 25
9298_CR23
X Qi (9298_CR17) 2009; 2
S Li (9298_CR22) 2020; 29
Y Zhao (9298_CR38) 2018; 18
9298_CR28
9298_CR29
9298_CR8
9298_CR9
H Yar (9298_CR26) 2021; 17
9298_CR53
9298_CR54
9298_CR11
9298_CR55
9298_CR56
AI Filkov (9298_CR2) 2020; 1
9298_CR50
H Yar (9298_CR43) 2023; 231
9298_CR51
9298_CR14
BU Töreyin (9298_CR5) 2006; 27
C Yu (9298_CR16) 2013; 62
PVA de Venâncio (9298_CR45) 2023; 35
ZA Khan (9298_CR4) 2022; 116
N Dilshad (9298_CR27) 2023; 46
Y-H Kim (9298_CR15) 2014; 10
9298_CR44
K Muhammad (9298_CR32) 2020; 34
9298_CR40
9298_CR1
9298_CR46
M Lin (9298_CR49) 2023; 123
R Di Lascio (9298_CR18) 2014
9298_CR48
H Yar (9298_CR6) 2022; 31
References_xml – ident: 9298_CR35
  doi: 10.1109/SMC.2017.8122904
– volume: 17
  start-page: 21
  issue: 5
  year: 2021
  ident: 9298_CR26
  publication-title: J Korean Inst Next Gener Comput
– ident: 9298_CR50
  doi: 10.1109/JIOT.2023.3259343
– volume: 27
  start-page: 49
  issue: 1
  year: 2006
  ident: 9298_CR5
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.06.015
– start-page: 183
  volume-title: Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings
  year: 2017
  ident: 9298_CR24
  doi: 10.1007/978-3-319-65172-9_16
– volume: 231
  year: 2023
  ident: 9298_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120465
– volume: 18
  start-page: 712
  issue: 3
  year: 2018
  ident: 9298_CR38
  publication-title: Sensors
  doi: 10.3390/s18030712
– ident: 9298_CR33
– ident: 9298_CR40
  doi: 10.1109/CVPR.2016.249
– volume: 44
  start-page: 147
  issue: 2
  year: 2009
  ident: 9298_CR12
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2008.05.005
– volume: 29
  start-page: 8467
  year: 2020
  ident: 9298_CR22
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3016431
– ident: 9298_CR39
  doi: 10.23919/ChiCC.2018.8483118
– ident: 9298_CR46
  doi: 10.1007/978-3-031-34873-0_13
– ident: 9298_CR9
  doi: 10.1109/ICCRD.2011.5764295
– ident: 9298_CR53
  doi: 10.1109/CVPR52688.2022.01167
– ident: 9298_CR36
  doi: 10.1109/CADSM.2017.7916148
– ident: 9298_CR1
– ident: 9298_CR23
– volume: 116
  year: 2022
  ident: 9298_CR4
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105403
– start-page: 299
  volume-title: Advances in Neural Networks-ISNN 2017: 14th International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017, Proceedings, Part II 14
  year: 2017
  ident: 9298_CR37
  doi: 10.1007/978-3-319-59081-3_36
– ident: 9298_CR29
  doi: 10.1109/ICIP.2018.8451657
– volume: 25
  start-page: 339
  issue: 2
  year: 2014
  ident: 9298_CR21
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2014.2339592
– volume: 15
  start-page: 3113
  issue: 5
  year: 2019
  ident: 9298_CR7
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2019.2897594
– volume: 44
  start-page: 3300
  issue: 6
  year: 2021
  ident: 9298_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3050918
– volume: 22
  start-page: 2786
  issue: 7
  year: 2013
  ident: 9298_CR20
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2258353
– volume: 62
  start-page: 891
  year: 2013
  ident: 9298_CR16
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.08.140
– ident: 9298_CR28
– volume: 288
  start-page: 30
  year: 2018
  ident: 9298_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.083
– volume: 46
  start-page: 749
  issue: 1
  year: 2023
  ident: 9298_CR27
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2023.034475
– volume: 6
  start-page: 18174
  year: 2018
  ident: 9298_CR30
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2018.2812835
– volume: 2
  start-page: 22
  issue: S09
  year: 2009
  ident: 9298_CR17
  publication-title: Int J Imag
– ident: 9298_CR56
  doi: 10.1109/JCAI.2009.79
– ident: 9298_CR14
  doi: 10.1109/ICASSP.2007.366130
– volume: 35
  start-page: 9349
  issue: 13
  year: 2023
  ident: 9298_CR45
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08260-2
– volume: 21
  start-page: 4932
  issue: 14
  year: 2021
  ident: 9298_CR3
  publication-title: Sensors
  doi: 10.3390/s21144932
– volume: 18
  start-page: 176
  issue: 2
  year: 2007
  ident: 9298_CR13
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2006.12.003
– ident: 9298_CR55
  doi: 10.1109/SIBGRAPI.2015.19
– start-page: 477
  volume-title: Image Analysis and Recognition: 11th International Conference, ICIAR 2014, Vilamoura, Portugal, October 22–24, 2014, Proceedings, Part I 11
  year: 2014
  ident: 9298_CR18
  doi: 10.1007/978-3-319-11758-4_52
– ident: 9298_CR54
  doi: 10.1155/2021/5195508
– volume: 20
  start-page: 721
  issue: 5
  year: 2010
  ident: 9298_CR19
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2010.2045813
– volume: 1
  start-page: 44
  issue: 1
  year: 2020
  ident: 9298_CR2
  publication-title: J Saf Sci Resil
– volume: 54
  start-page: 531
  year: 2018
  ident: 9298_CR25
  publication-title: Fire Technol
  doi: 10.1007/s10694-017-0695-6
– start-page: 682
  volume-title: Intelligent Computing Methodologies: 13th International Conference, ICIC 2017, Liverpool, UK, August 7–10, 2017, Proceedings, Part III 13
  year: 2017
  ident: 9298_CR34
  doi: 10.1007/978-3-319-63315-2_60
– volume: 29
  start-page: 3016
  issue: 10
  year: 2018
  ident: 9298_CR41
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2018.2872503
– volume: 123
  year: 2023
  ident: 9298_CR49
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106397
– volume: 34
  start-page: 108
  issue: 3
  year: 2020
  ident: 9298_CR32
  publication-title: IEEE Network
  doi: 10.1109/MNET.011.1900257
– volume: 23
  start-page: 3835
  issue: 8
  year: 2023
  ident: 9298_CR52
  publication-title: Sensors
  doi: 10.3390/s23083835
– ident: 9298_CR8
– volume: 31
  start-page: 6331
  year: 2022
  ident: 9298_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3207006
– ident: 9298_CR51
  doi: 10.1109/JSTSP.2023.3260627
– volume: 49
  start-page: 1419
  issue: 7
  year: 2018
  ident: 9298_CR31
  publication-title: IEEE Trans Syst Man Cybern: Syst
  doi: 10.1109/TSMC.2018.2830099
– ident: 9298_CR11
  doi: 10.1109/ICIP.2004.1421401
– volume: 10
  issue: 4
  year: 2014
  ident: 9298_CR15
  publication-title: Int J Distrib Sens Netw
  doi: 10.1155/2014/923609
– ident: 9298_CR44
  doi: 10.1007/s00521-023-08809-1
– volume: 270
  year: 2023
  ident: 9298_CR47
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110525
– volume: 41
  start-page: 285
  issue: 4
  year: 2006
  ident: 9298_CR10
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2006.02.001
– ident: 9298_CR48
  doi: 10.1016/j.eswa.2023.120599
SSID ssj0004685
Score 2.467362
SecondaryResourceType review_article
Snippet Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11693
SubjectTerms Artificial Intelligence
Benchmarks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer vision
Data Mining and Knowledge Discovery
Datasets
Deep learning
Feature maps
Fire detection
Forest & brush fires
Image Processing and Computer Vision
Inference
Machine learning
Modules
Natural disasters
Probability and Statistics in Computer Science
Real time
S.I.: Innovations in AI-based Systems and Software
Sensors
Special Issue on Innovations in AI-based Systems and Software
Subject specialists
Title Enhancing real-time fire detection: an effective multi-attention network and a fire benchmark
URI https://link.springer.com/article/10.1007/s00521-023-09298-y
https://www.proquest.com/docview/3219489674
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagXVi4EYVSeWADS83hI2wVaqlAMFGpDCiyHZtKlIDaMPTf8-wkLSBAYo6P6NnvsP299yF0aiNpdcYMEdpQEnNFibKJo3thNlAGNpXPhbm9Y8NRfD2m4yopbF6j3esnSW-pl8lu7gYTjr5hRLrg0wVZrKMmdWd32MWjsPcpG9ITccK5xWF64qhKlfl5jK_uaBVjfnsW9d5msI02qzAR98p13UFrJt9FWzUFA640cg899vOJq5iRP2GI_qbEUcVjC2YMZ6bwKKv8Asscl7ANsGzYIwiJq6rpcY44L3Hg0CjDsuyqYOzJi5w976PRoH9_OSQVYwLRoEoFSUTCu0pSCU6bWRYaEwaWCxlkcUypEUyD-1dMiSzUnIvMKmkUzaKA0Sh0nvsANfLX3BwimKobCMGstBBw8FgmgTaai0horrTlvIWCWnCprsqJO1aLaboshOyFnYKwUy_sdNFCZ8s-b2UxjT9bt-v1SCvFmqfwm0ksEsbjFjqv12j1-ffRjv7X_BhthI7p19-3tFGjmL2bEwg_CtVBzd7Vw02_43fdBzth0z0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxbURRe_CmTdhX2_VGDAQVOEHCxWzabiuJuBpYD_x7p91dUKMmnrePzbTzaPvNfAhdmkAYlVJNuNIRCZmMiDSxpXuhxpMaNpXLhekPaHcU3o-jcZkUNq_Q7tWTpLPUy2Q3e4MJR18_IE3w6Zws1tEGBAPcArlGfutTNqQj4oRzi8X0hEGZKvPzGF_d0SrG_PYs6rxNZxdtl2EibhXruofWdLaPdioKBlxq5AF6bGcTWzEje8IQ_U2JpYrHBswYTnXuUFbZDRYZLmAbYNmwQxASW1XT4RxxVuDAoVGKRdFVwtiTFzF7PkSjTnt42yUlYwJRoEo5iXnMmlJEApw2NdTX2vcM48JLwzCKNKcK3L-kkqe-YoynRgotozTwaBT41nMfoVr2muljBFM1Pc6pEQYCDhaK2FNaMR5wxaQyjNWRVwkuUWU5cctqMU2WhZCdsBMQduKEnSzq6GrZ560opvFn60a1HkmpWPMEfjMOeUxZWEfX1RqtPv8-2sn_ml-gze6w30t6d4OHU7TlW9Zfd_fSQLV89q7PIBTJ5bnbeR-zANSc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLz4FuszB28a7L6SrLeiFt94sOBFljwtqFHqeui_d5LdbVVU8LyTZJkkM5Pkm_kQ2rWJsEpTQ7gyGUmZzIi0uad7oTaSBhZVyIW5uqanvfT8Lrv7lMUf0O7Nk2SV0-CrNLny4FXbg1Him7_NhGNwnJA2-HdOhpNoGsxx5Nd1L-58yowMpJxwhvH4njSp02Z-7uOraxrHm9-eSIPn6S6guTpkxJ1qjhfRhHFLaL6hY8D17lxG9yeu76tnuAcMkeAT8bTx2IJJw9qUAXHlDrFwuIJwgJXDAU1IfIXNgHnErsKEg5DGomoqoe_-sxg8rqBe9-T26JTU7AlEgR5KkvOctaXIBDhwamlsTBxZxkWk0zTLDKcKQgFJJdexYoxrK4WRmU4imiWx9-KraMq9OLOGYKh2xDm1wkLwwVKRR8ooxhOumFSWsRaKGsUVqi4t7hkunopRUeSg7AKUXQRlF8MW2hu1ea0Ka_wpvdnMR1FvsrcCfjNPeU5Z2kL7zRyNP__e2_r_xHfQzM1xt7g8u77YQLOxJwAO1zCbaKocvJstiEpKuR0W3gcggtjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+real-time+fire+detection%3A+an+effective+multi-attention+network+and+a+fire+benchmark&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=18&rft.spage=11693&rft.epage=11707&rft_id=info:doi/10.1007%2Fs00521-023-09298-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon