Enhancing real-time fire detection: an effective multi-attention network and a fire benchmark
Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However...
Saved in:
Published in | Neural computing & applications Vol. 37; no. 18; pp. 11693 - 11707 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices. |
---|---|
AbstractList | Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices. Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on the ecology, economy, environment, and life preservation. Therefore, early fire detection has immense significance in computer vision. However, existing methods suffer from high false prediction rates and slow inference times, which limit their real-time applicability. To bridge these gaps, this study introduces a multi-attention fire network (MAFire-Net) that integrates a modified ConvNeXtTiny (ConvNeXt-T) architecture with channel attention (CA) and spatial attention (SA) modules. These attention modules are integrated after each block of the ConvNeXt-T architecture where the CA module is responsible for capturing dominant channels within the features, leading to highly emphasized feature maps. The SA module enhances the spatial details, enabling the model to distinguish between fire and non-fire scenarios more accurately. Additionally, fine-tuning strategies are applied to streamline the ConvNeXt-T architecture, resulting in an optimized model tailored for real-world fire detection. Furthermore, a comprehensive large-scale fire dataset is developed that encompasses diverse, imbalanced, and challenging fire/nonfire images (both indoors and outdoors). Extensive experiments were conducted to validate the superior generalization capability of the MAFire-Net compared with several baseline architectures using four benchmarks (Yar, BowFire, FD, and DFAN). The experimental results demonstrated that the proposed MAFire-Net outperforms state-of-the-art (SOTA) techniques, demonstrating higher accuracy and faster inference times, which make it an ideal choice for real-time deployment over edge devices. |
Author | Choi, Chang Khan, Zulfiqar Ahmad Khan, Taimoor |
Author_xml | – sequence: 1 givenname: Taimoor surname: Khan fullname: Khan, Taimoor organization: Department of Computer Engineering, Gachon University – sequence: 2 givenname: Zulfiqar Ahmad surname: Khan fullname: Khan, Zulfiqar Ahmad organization: Sejong University – sequence: 3 givenname: Chang orcidid: 0000-0002-2276-2378 surname: Choi fullname: Choi, Chang email: changchoi@gachon.ac.kr organization: Department of Computer Engineering, Gachon University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqP53E28SakfIHjRo4Ts7mybfmRrNlX67826guChpzDM80xm3gka-dYDQpeUXFNCipuOEMkoJoxjoplW-HCCxlRwjjmRaoTGRIvUzgU_Q5OuWxFCRK7kGL3P_dL6yvlFFsBucHRbyBoXIKshQhVd628z6zNomr76hGy730SHbYzg-27mIX61YZ2gOrODWoKvllsb1ufotLGbDi5-3yl6u5-_zh7x88vD0-zuGVec6oi10gUprbRMiLzJGQCjTaEsrYWQElReaULLvFQ1q4pC1U1poZQ1p7nkjCrJp-hqmLsL7cceumhW7T749KVJgBZK54VIlBqoKrRdF6AxlYu2PyIG6zaGEtOHaYYwTQrT_IRpDkll_9RdcOnCw3GJD1KXYL-A8LfVEesbCXaKFQ |
CitedBy_id | crossref_primary_10_1007_s10044_024_01267_y crossref_primary_10_54565_jphcfum_1501853 crossref_primary_10_1080_00102202_2024_2372689 crossref_primary_10_1007_s11760_024_03508_3 crossref_primary_10_3390_s25072044 crossref_primary_10_3390_fire7110422 crossref_primary_10_3390_fire7120430 crossref_primary_10_3390_fire8030085 crossref_primary_10_1038_s41598_024_81742_y |
Cites_doi | 10.1109/SMC.2017.8122904 10.1109/JIOT.2023.3259343 10.1016/j.patrec.2005.06.015 10.1007/978-3-319-65172-9_16 10.1016/j.eswa.2023.120465 10.3390/s18030712 10.1109/CVPR.2016.249 10.1016/j.firesaf.2008.05.005 10.1109/TIP.2020.3016431 10.23919/ChiCC.2018.8483118 10.1007/978-3-031-34873-0_13 10.1109/ICCRD.2011.5764295 10.1109/CVPR52688.2022.01167 10.1109/CADSM.2017.7916148 10.1016/j.engappai.2022.105403 10.1007/978-3-319-59081-3_36 10.1109/ICIP.2018.8451657 10.1109/TCSVT.2014.2339592 10.1109/TII.2019.2897594 10.1109/TPAMI.2021.3050918 10.1109/TIP.2013.2258353 10.1016/j.proeng.2013.08.140 10.1016/j.neucom.2017.04.083 10.32604/csse.2023.034475 10.1109/ACCESS.2018.2812835 10.1109/JCAI.2009.79 10.1109/ICASSP.2007.366130 10.1007/s00521-023-08260-2 10.3390/s21144932 10.1016/j.jvcir.2006.12.003 10.1109/SIBGRAPI.2015.19 10.1007/978-3-319-11758-4_52 10.1155/2021/5195508 10.1109/TCSVT.2010.2045813 10.1007/s10694-017-0695-6 10.1007/978-3-319-63315-2_60 10.1109/TCSVT.2018.2872503 10.1016/j.engappai.2023.106397 10.1109/MNET.011.1900257 10.3390/s23083835 10.1109/TIP.2022.3207006 10.1109/JSTSP.2023.3260627 10.1109/TSMC.2018.2830099 10.1109/ICIP.2004.1421401 10.1155/2014/923609 10.1007/s00521-023-08809-1 10.1016/j.knosys.2023.110525 10.1016/j.firesaf.2006.02.001 10.1016/j.eswa.2023.120599 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 corrected publication 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 corrected publication 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00521-023-09298-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 11707 |
ExternalDocumentID | 10_1007_s00521_023_09298_y |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABRTQ CITATION PQGLB |
ID | FETCH-LOGICAL-c319t-98970ba5a2446f62ee21f78a1d4455e86c901b6b8d2c778dfbaeb5d3165321853 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Sat Aug 23 12:51:57 EDT 2025 Wed Aug 20 07:45:28 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Wed Jun 18 01:18:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Deep learning Disaster management system Attention module Fire detection Machine learning MAFire-Net |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-98970ba5a2446f62ee21f78a1d4455e86c901b6b8d2c778dfbaeb5d3165321853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2276-2378 |
PQID | 3219489674 |
PQPubID | 2043988 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3219489674 crossref_citationtrail_10_1007_s00521_023_09298_y crossref_primary_10_1007_s00521_023_09298_y springer_journals_10_1007_s00521_023_09298_y |
PublicationCentury | 2000 |
PublicationDate | 20250600 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | T Celik (9298_CR12) 2009; 44 K Mustaqeem (9298_CR47) 2023; 270 G Marbach (9298_CR10) 2006; 41 W Mao (9298_CR25) 2018; 54 K Muhammad (9298_CR31) 2018; 49 J Sharma (9298_CR24) 2017 C Shen (9298_CR41) 2018; 29 X Shu (9298_CR42) 2021; 44 9298_CR33 L Shi (9298_CR37) 2017 T Celik (9298_CR13) 2007; 18 9298_CR39 9298_CR35 9298_CR36 H Yar (9298_CR3) 2021; 21 M Mueller (9298_CR20) 2013; 22 K Muhammad (9298_CR30) 2018; 6 T Khan (9298_CR52) 2023; 23 Z Wang (9298_CR34) 2017 K Muhammad (9298_CR57) 2018; 288 PVK Borges (9298_CR19) 2010; 20 K Muhammad (9298_CR7) 2019; 15 K Dimitropoulos (9298_CR21) 2014; 25 9298_CR23 X Qi (9298_CR17) 2009; 2 S Li (9298_CR22) 2020; 29 Y Zhao (9298_CR38) 2018; 18 9298_CR28 9298_CR29 9298_CR8 9298_CR9 H Yar (9298_CR26) 2021; 17 9298_CR53 9298_CR54 9298_CR11 9298_CR55 9298_CR56 AI Filkov (9298_CR2) 2020; 1 9298_CR50 H Yar (9298_CR43) 2023; 231 9298_CR51 9298_CR14 BU Töreyin (9298_CR5) 2006; 27 C Yu (9298_CR16) 2013; 62 PVA de Venâncio (9298_CR45) 2023; 35 ZA Khan (9298_CR4) 2022; 116 N Dilshad (9298_CR27) 2023; 46 Y-H Kim (9298_CR15) 2014; 10 9298_CR44 K Muhammad (9298_CR32) 2020; 34 9298_CR40 9298_CR1 9298_CR46 M Lin (9298_CR49) 2023; 123 R Di Lascio (9298_CR18) 2014 9298_CR48 H Yar (9298_CR6) 2022; 31 |
References_xml | – ident: 9298_CR35 doi: 10.1109/SMC.2017.8122904 – volume: 17 start-page: 21 issue: 5 year: 2021 ident: 9298_CR26 publication-title: J Korean Inst Next Gener Comput – ident: 9298_CR50 doi: 10.1109/JIOT.2023.3259343 – volume: 27 start-page: 49 issue: 1 year: 2006 ident: 9298_CR5 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.06.015 – start-page: 183 volume-title: Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings year: 2017 ident: 9298_CR24 doi: 10.1007/978-3-319-65172-9_16 – volume: 231 year: 2023 ident: 9298_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120465 – volume: 18 start-page: 712 issue: 3 year: 2018 ident: 9298_CR38 publication-title: Sensors doi: 10.3390/s18030712 – ident: 9298_CR33 – ident: 9298_CR40 doi: 10.1109/CVPR.2016.249 – volume: 44 start-page: 147 issue: 2 year: 2009 ident: 9298_CR12 publication-title: Fire Saf J doi: 10.1016/j.firesaf.2008.05.005 – volume: 29 start-page: 8467 year: 2020 ident: 9298_CR22 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3016431 – ident: 9298_CR39 doi: 10.23919/ChiCC.2018.8483118 – ident: 9298_CR46 doi: 10.1007/978-3-031-34873-0_13 – ident: 9298_CR9 doi: 10.1109/ICCRD.2011.5764295 – ident: 9298_CR53 doi: 10.1109/CVPR52688.2022.01167 – ident: 9298_CR36 doi: 10.1109/CADSM.2017.7916148 – ident: 9298_CR1 – ident: 9298_CR23 – volume: 116 year: 2022 ident: 9298_CR4 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105403 – start-page: 299 volume-title: Advances in Neural Networks-ISNN 2017: 14th International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017, Proceedings, Part II 14 year: 2017 ident: 9298_CR37 doi: 10.1007/978-3-319-59081-3_36 – ident: 9298_CR29 doi: 10.1109/ICIP.2018.8451657 – volume: 25 start-page: 339 issue: 2 year: 2014 ident: 9298_CR21 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2014.2339592 – volume: 15 start-page: 3113 issue: 5 year: 2019 ident: 9298_CR7 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2897594 – volume: 44 start-page: 3300 issue: 6 year: 2021 ident: 9298_CR42 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3050918 – volume: 22 start-page: 2786 issue: 7 year: 2013 ident: 9298_CR20 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2258353 – volume: 62 start-page: 891 year: 2013 ident: 9298_CR16 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2013.08.140 – ident: 9298_CR28 – volume: 288 start-page: 30 year: 2018 ident: 9298_CR57 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.083 – volume: 46 start-page: 749 issue: 1 year: 2023 ident: 9298_CR27 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2023.034475 – volume: 6 start-page: 18174 year: 2018 ident: 9298_CR30 publication-title: Ieee Access doi: 10.1109/ACCESS.2018.2812835 – volume: 2 start-page: 22 issue: S09 year: 2009 ident: 9298_CR17 publication-title: Int J Imag – ident: 9298_CR56 doi: 10.1109/JCAI.2009.79 – ident: 9298_CR14 doi: 10.1109/ICASSP.2007.366130 – volume: 35 start-page: 9349 issue: 13 year: 2023 ident: 9298_CR45 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08260-2 – volume: 21 start-page: 4932 issue: 14 year: 2021 ident: 9298_CR3 publication-title: Sensors doi: 10.3390/s21144932 – volume: 18 start-page: 176 issue: 2 year: 2007 ident: 9298_CR13 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2006.12.003 – ident: 9298_CR55 doi: 10.1109/SIBGRAPI.2015.19 – start-page: 477 volume-title: Image Analysis and Recognition: 11th International Conference, ICIAR 2014, Vilamoura, Portugal, October 22–24, 2014, Proceedings, Part I 11 year: 2014 ident: 9298_CR18 doi: 10.1007/978-3-319-11758-4_52 – ident: 9298_CR54 doi: 10.1155/2021/5195508 – volume: 20 start-page: 721 issue: 5 year: 2010 ident: 9298_CR19 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2010.2045813 – volume: 1 start-page: 44 issue: 1 year: 2020 ident: 9298_CR2 publication-title: J Saf Sci Resil – volume: 54 start-page: 531 year: 2018 ident: 9298_CR25 publication-title: Fire Technol doi: 10.1007/s10694-017-0695-6 – start-page: 682 volume-title: Intelligent Computing Methodologies: 13th International Conference, ICIC 2017, Liverpool, UK, August 7–10, 2017, Proceedings, Part III 13 year: 2017 ident: 9298_CR34 doi: 10.1007/978-3-319-63315-2_60 – volume: 29 start-page: 3016 issue: 10 year: 2018 ident: 9298_CR41 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2018.2872503 – volume: 123 year: 2023 ident: 9298_CR49 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106397 – volume: 34 start-page: 108 issue: 3 year: 2020 ident: 9298_CR32 publication-title: IEEE Network doi: 10.1109/MNET.011.1900257 – volume: 23 start-page: 3835 issue: 8 year: 2023 ident: 9298_CR52 publication-title: Sensors doi: 10.3390/s23083835 – ident: 9298_CR8 – volume: 31 start-page: 6331 year: 2022 ident: 9298_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3207006 – ident: 9298_CR51 doi: 10.1109/JSTSP.2023.3260627 – volume: 49 start-page: 1419 issue: 7 year: 2018 ident: 9298_CR31 publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2018.2830099 – ident: 9298_CR11 doi: 10.1109/ICIP.2004.1421401 – volume: 10 issue: 4 year: 2014 ident: 9298_CR15 publication-title: Int J Distrib Sens Netw doi: 10.1155/2014/923609 – ident: 9298_CR44 doi: 10.1007/s00521-023-08809-1 – volume: 270 year: 2023 ident: 9298_CR47 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110525 – volume: 41 start-page: 285 issue: 4 year: 2006 ident: 9298_CR10 publication-title: Fire Saf J doi: 10.1016/j.firesaf.2006.02.001 – ident: 9298_CR48 doi: 10.1016/j.eswa.2023.120599 |
SSID | ssj0004685 |
Score | 2.467362 |
SecondaryResourceType | review_article |
Snippet | Over the past decades, fire has been considered one of the most serious natural disasters because of its devastating nature, rapid spread, and high impact on... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11693 |
SubjectTerms | Artificial Intelligence Benchmarks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer vision Data Mining and Knowledge Discovery Datasets Deep learning Feature maps Fire detection Forest & brush fires Image Processing and Computer Vision Inference Machine learning Modules Natural disasters Probability and Statistics in Computer Science Real time S.I.: Innovations in AI-based Systems and Software Sensors Special Issue on Innovations in AI-based Systems and Software Subject specialists |
Title | Enhancing real-time fire detection: an effective multi-attention network and a fire benchmark |
URI | https://link.springer.com/article/10.1007/s00521-023-09298-y https://www.proquest.com/docview/3219489674 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagXVi4EYVSeWADS83hI2wVaqlAMFGpDCiyHZtKlIDaMPTf8-wkLSBAYo6P6NnvsP299yF0aiNpdcYMEdpQEnNFibKJo3thNlAGNpXPhbm9Y8NRfD2m4yopbF6j3esnSW-pl8lu7gYTjr5hRLrg0wVZrKMmdWd32MWjsPcpG9ITccK5xWF64qhKlfl5jK_uaBVjfnsW9d5msI02qzAR98p13UFrJt9FWzUFA640cg899vOJq5iRP2GI_qbEUcVjC2YMZ6bwKKv8Asscl7ANsGzYIwiJq6rpcY44L3Hg0CjDsuyqYOzJi5w976PRoH9_OSQVYwLRoEoFSUTCu0pSCU6bWRYaEwaWCxlkcUypEUyD-1dMiSzUnIvMKmkUzaKA0Sh0nvsANfLX3BwimKobCMGstBBw8FgmgTaai0horrTlvIWCWnCprsqJO1aLaboshOyFnYKwUy_sdNFCZ8s-b2UxjT9bt-v1SCvFmqfwm0ksEsbjFjqv12j1-ffRjv7X_BhthI7p19-3tFGjmL2bEwg_CtVBzd7Vw02_43fdBzth0z0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxbURRe_CmTdhX2_VGDAQVOEHCxWzabiuJuBpYD_x7p91dUKMmnrePzbTzaPvNfAhdmkAYlVJNuNIRCZmMiDSxpXuhxpMaNpXLhekPaHcU3o-jcZkUNq_Q7tWTpLPUy2Q3e4MJR18_IE3w6Zws1tEGBAPcArlGfutTNqQj4oRzi8X0hEGZKvPzGF_d0SrG_PYs6rxNZxdtl2EibhXruofWdLaPdioKBlxq5AF6bGcTWzEje8IQ_U2JpYrHBswYTnXuUFbZDRYZLmAbYNmwQxASW1XT4RxxVuDAoVGKRdFVwtiTFzF7PkSjTnt42yUlYwJRoEo5iXnMmlJEApw2NdTX2vcM48JLwzCKNKcK3L-kkqe-YoynRgotozTwaBT41nMfoVr2muljBFM1Pc6pEQYCDhaK2FNaMR5wxaQyjNWRVwkuUWU5cctqMU2WhZCdsBMQduKEnSzq6GrZ560opvFn60a1HkmpWPMEfjMOeUxZWEfX1RqtPv8-2sn_ml-gze6w30t6d4OHU7TlW9Zfd_fSQLV89q7PIBTJ5bnbeR-zANSc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-QLz4FuszB28a7L6SrLeiFt94sOBFljwtqFHqeui_d5LdbVVU8LyTZJkkM5Pkm_kQ2rWJsEpTQ7gyGUmZzIi0uad7oTaSBhZVyIW5uqanvfT8Lrv7lMUf0O7Nk2SV0-CrNLny4FXbg1Him7_NhGNwnJA2-HdOhpNoGsxx5Nd1L-58yowMpJxwhvH4njSp02Z-7uOraxrHm9-eSIPn6S6guTpkxJ1qjhfRhHFLaL6hY8D17lxG9yeu76tnuAcMkeAT8bTx2IJJw9qUAXHlDrFwuIJwgJXDAU1IfIXNgHnErsKEg5DGomoqoe_-sxg8rqBe9-T26JTU7AlEgR5KkvOctaXIBDhwamlsTBxZxkWk0zTLDKcKQgFJJdexYoxrK4WRmU4imiWx9-KraMq9OLOGYKh2xDm1wkLwwVKRR8ooxhOumFSWsRaKGsUVqi4t7hkunopRUeSg7AKUXQRlF8MW2hu1ea0Ka_wpvdnMR1FvsrcCfjNPeU5Z2kL7zRyNP__e2_r_xHfQzM1xt7g8u77YQLOxJwAO1zCbaKocvJstiEpKuR0W3gcggtjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+real-time+fire+detection%3A+an+effective+multi-attention+network+and+a+fire+benchmark&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=18&rft.spage=11693&rft.epage=11707&rft_id=info:doi/10.1007%2Fs00521-023-09298-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |