Strategies of binder design for high-performance lithium-ion batteries: a mini review

Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 41; no. 3; pp. 745 - 761
Main Authors Wang, Yan-Bo, Yang, Qi, Guo, Xun, Yang, Shuo, Chen, Ao, Liang, Guo-Jin, Zhi, Chun-Yi
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement of battery performance, in spite of a low usage amount. The main function of binder is to bond the active material, conductive additive and current collector together and provide electron and ion channels to improve the kinetics of electrochemical reaction. With the ever-increasing requirement of high energy density by LIBs, technical challenges such as volume expansion and active material dissolution are attracting worldwide attentions, where binder is thought to provide a new solution. There are two main categories (organic solvent soluble binder and water-soluble binder) and abundant polar functional groups providing adhesion ability. It is of great significance to timely summarize the latest progress in battery binders and present the principles for designing novel binders with both robust binding interaction and outstanding electrode stabilization function. This review begins with an introduction of the binding mechanism and the related binding forces, including mechanical interlocking forces and interfacial forces. Then, we discussed four different strategies (the enhancement of binding force, the formation of three-dimensional (3D) network, the enhancement of conductivity and binders with special functions) for constructing ideal binder system in order to satisfy the specific demands of different batteries, such as LIBs and lithium–sulfur (Li–S) batteries. Finally, some prospective and promising directions of binder design are proposed based on the existing and emerging binders and guide the development of the next-generation LIBs. Graphical abstract
AbstractList Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement of battery performance, in spite of a low usage amount. The main function of binder is to bond the active material, conductive additive and current collector together and provide electron and ion channels to improve the kinetics of electrochemical reaction. With the ever-increasing requirement of high energy density by LIBs, technical challenges such as volume expansion and active material dissolution are attracting worldwide attentions, where binder is thought to provide a new solution. There are two main categories (organic solvent soluble binder and water-soluble binder) and abundant polar functional groups providing adhesion ability. It is of great significance to timely summarize the latest progress in battery binders and present the principles for designing novel binders with both robust binding interaction and outstanding electrode stabilization function. This review begins with an introduction of the binding mechanism and the related binding forces, including mechanical interlocking forces and interfacial forces. Then, we discussed four different strategies (the enhancement of binding force, the formation of three-dimensional (3D) network, the enhancement of conductivity and binders with special functions) for constructing ideal binder system in order to satisfy the specific demands of different batteries, such as LIBs and lithium–sulfur (Li–S) batteries. Finally, some prospective and promising directions of binder design are proposed based on the existing and emerging binders and guide the development of the next-generation LIBs.
Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement of battery performance, in spite of a low usage amount. The main function of binder is to bond the active material, conductive additive and current collector together and provide electron and ion channels to improve the kinetics of electrochemical reaction. With the ever-increasing requirement of high energy density by LIBs, technical challenges such as volume expansion and active material dissolution are attracting worldwide attentions, where binder is thought to provide a new solution. There are two main categories (organic solvent soluble binder and water-soluble binder) and abundant polar functional groups providing adhesion ability. It is of great significance to timely summarize the latest progress in battery binders and present the principles for designing novel binders with both robust binding interaction and outstanding electrode stabilization function. This review begins with an introduction of the binding mechanism and the related binding forces, including mechanical interlocking forces and interfacial forces. Then, we discussed four different strategies (the enhancement of binding force, the formation of three-dimensional (3D) network, the enhancement of conductivity and binders with special functions) for constructing ideal binder system in order to satisfy the specific demands of different batteries, such as LIBs and lithium–sulfur (Li–S) batteries. Finally, some prospective and promising directions of binder design are proposed based on the existing and emerging binders and guide the development of the next-generation LIBs. Graphical abstract
Author Liang, Guo-Jin
Zhi, Chun-Yi
Chen, Ao
Yang, Qi
Wang, Yan-Bo
Yang, Shuo
Guo, Xun
Author_xml – sequence: 1
  givenname: Yan-Bo
  surname: Wang
  fullname: Wang, Yan-Bo
  organization: Department of Materials Science and Engineering, City University of Hong Kong
– sequence: 2
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
– sequence: 3
  givenname: Xun
  surname: Guo
  fullname: Guo, Xun
  organization: Department of Materials Science and Engineering, City University of Hong Kong
– sequence: 4
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
  organization: Department of Materials Science and Engineering, City University of Hong Kong
– sequence: 5
  givenname: Ao
  surname: Chen
  fullname: Chen, Ao
  organization: Department of Materials Science and Engineering, City University of Hong Kong
– sequence: 6
  givenname: Guo-Jin
  surname: Liang
  fullname: Liang, Guo-Jin
  organization: Department of Materials Science and Engineering, City University of Hong Kong
– sequence: 7
  givenname: Chun-Yi
  orcidid: 0000-0001-6766-5953
  surname: Zhi
  fullname: Zhi, Chun-Yi
  email: cy.zhi@cityu.edu.hk
  organization: Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
BookMark eNp9kEtLAzEUhYNUsK3-AVcB19E8ZpKMOym-oOBCuw6ZmZtpSpupyVTpvzc6gjtX98A951zuN0OT0AdA6JLRa0apukmMl5UmlDNCmWaSHE_QlGmpiGK6nGRNaV6VnJ2hWUobSotCSjpFq9ch2gE6Dwn3Dtc-tBBxC8l3Abs-4rXv1mQPMeudDQ3grR_W_rAjvg-4tsMAMWdvscU7HzyO8OHh8xydOrtNcPE752j1cP-2eCLLl8fnxd2SNIJVA6lKUeuypkIKzml-QdWttYra1tVMWdDasaqx0HBQSmsQIJ1sCsdV0XLLWjFHV2PvPvbvB0iD2fSHGPJJwyUXBee6LLOLj64m9ilFcGYf_c7Go2HUfOMzIz6T8ZkffOaYQ2IMpWwOHcS_6n9SXxSJdao
CitedBy_id crossref_primary_10_3389_fenrg_2022_909486
crossref_primary_10_1007_s11705_022_2214_7
crossref_primary_10_3390_inorganics10080110
crossref_primary_10_1021_acs_iecr_3c03629
crossref_primary_10_1002_advs_202205443
crossref_primary_10_1021_acssuschemeng_3c07971
crossref_primary_10_1016_j_jpowsour_2023_233601
crossref_primary_10_1016_j_seppur_2024_126322
crossref_primary_10_1063_5_0178707
crossref_primary_10_4271_14_13_03_0019
crossref_primary_10_26599_NRE_2023_9120094
crossref_primary_10_1016_j_nanoen_2022_107204
crossref_primary_10_1002_aenm_202301385
crossref_primary_10_1039_D3CC05608B
crossref_primary_10_1002_adfm_202404192
crossref_primary_10_1007_s12598_024_02695_9
crossref_primary_10_1021_acsami_3c01962
crossref_primary_10_1002_smll_202202027
crossref_primary_10_1149_1945_7111_acc6f4
crossref_primary_10_1007_s12209_023_00381_y
crossref_primary_10_1039_D4SU00098F
crossref_primary_10_1002_inf2_12507
crossref_primary_10_1007_s10338_022_00343_2
crossref_primary_10_1016_j_jallcom_2024_174718
crossref_primary_10_1007_s12598_022_02137_4
crossref_primary_10_1016_j_jiec_2022_12_041
crossref_primary_10_1016_j_jiec_2023_04_025
crossref_primary_10_1039_D4EE00791C
crossref_primary_10_3390_ma16227232
crossref_primary_10_1007_s12598_022_02207_7
crossref_primary_10_1155_2024_8893580
crossref_primary_10_3390_ma16165540
Cites_doi 10.1039/C6NR01559J
10.1002/anie.201201568
10.1126/science.aal4373
10.1016/j.actbio.2014.02.015
10.1016/j.electacta.2017.05.094
10.1016/j.compositesb.2008.01.002
10.1002/cssc.201902079
10.1149/2.024203jes
10.1016/0032-5910(69)80003-3
10.1016/S0378-7753(02)00363-4
10.1002/eom2.12008
10.1016/j.nanoen.2015.05.036
10.1002/aenm.202000035
10.1002/adma.201605160
10.1016/j.nanoen.2019.01.087
10.1021/am507376f
10.1002/smll.201600800
10.1038/ncomms2941
10.1002/adma.201102421
10.1021/acsami.9b16387
10.1002/adfm.201804560
10.1039/C6RA20560G
10.1149/1.3291976
10.1002/jbm.a.31448
10.1016/S0928-0987(02)00081-7
10.1021/acsami.5b08887
10.1002/ente.201500250
10.1371/journal.pone.0102815
10.1021/acs.nanolett.5b00795
10.1038/srep38050
10.1126/science.1209150
10.1039/b417803n
10.1002/adfm.202005699
10.1016/j.jpowsour.2011.10.085
10.1016/j.jpowsour.2006.09.084
10.1002/aenm.201803046
10.1002/aenm.201802288
10.1002/aenm.201501008
10.1007/s41664-019-00116-w
10.1002/app.1994.070521302
10.1016/j.jpowsour.2015.04.007
10.1016/j.nanoen.2017.05.020
10.1039/D0TA10525B
10.1016/j.cej.2013.08.119
10.1002/aenm.201802107
10.1016/j.jpowsour.2011.12.061
10.1016/j.jpowsour.2016.12.003
10.1021/cen-v041n015.p067
10.7569/RAA.2014.097304
10.1021/acsnano.5b05030
10.1002/aenm.201702314
10.1016/j.jpowsour.2005.05.062
10.1039/C8EE00640G
10.1002/smm2.1015
10.1016/S0014-3057(97)00204-8
10.1039/C7CS00858A
10.1016/j.electacta.2013.03.010
10.1038/nature07853
10.1002/adma.201402950
10.1039/C6RA12232A
10.1002/aenm.201502130
10.1021/ja511181p
10.1021/j150248a008
10.1002/anie.202012202
10.1021/nl403860k
10.1002/adfm.201801188
10.1002/adfm.201201847
10.1063/1.329320
10.1002/aenm.202001024
10.1021/nl503490h
10.1016/j.postharvbio.2011.04.002
10.1039/C7TA03843G
10.1002/adma.201606823
10.1016/j.tsf.2014.10.084
10.1016/j.jpowsour.2015.03.036
10.1002/smll.201801189
10.1038/nchem.1802
10.1016/j.jpowsour.2010.07.020
10.1021/acsami.5b06682
10.1016/j.electacta.2019.07.012
10.1149/1.2976031
10.1016/j.jpowsour.2010.10.025
10.1038/s41467-017-02410-6
10.1039/C8TA01138A
10.1016/j.electacta.2018.02.168
10.1002/anie.201805618
10.1021/la500783n
10.1016/j.nanoen.2017.01.028
10.1126/science.1212741
10.1021/cm901452z
10.1016/S0378-7753(97)02637-2
10.1039/C5TA02367J
10.1016/j.elecom.2008.04.016
10.1038/nmat1368
10.1016/S0378-7753(03)00277-5
10.1002/aenm.201601767
10.1016/j.crci.2010.01.018
10.1038/nnano.2017.16
10.1149/1.3581024
10.1016/j.jfoodeng.2011.03.035
10.1002/adfm.201401269
10.1016/j.joule.2018.02.012
10.1021/acs.nanolett.6b05227
10.1007/BF00550796
10.1021/ja00752a010
10.1021/ja4054465
10.1016/j.jpowsour.2007.06.050
10.1021/la302917p
10.1021/ja3091438
10.1016/S0378-7753(02)00107-6
10.1021/acs.chemrev.8b00241
10.1039/C4TA04320K
10.1016/S0378-7753(99)00135-4
10.1126/science.1171541
10.1002/anie.201705212
10.1149/1.3086262
10.1007/s11706-011-0152-2
10.1016/j.renene.2014.11.058
10.1002/cssc.201700070
10.1016/S0378-7753(96)02547-5
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2021
Youke Publishing Co.,Ltd 2021.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2021
– notice: Youke Publishing Co.,Ltd 2021.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-021-01816-y
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 761
ExternalDocumentID 10_1007_s12598_021_01816_y
GrantInformation_xml – fundername: Guangdong Province Science and Technology Department under Project
  grantid: 2020A0505100014
– fundername: the National Key R&D Program of China under Project
  grantid: 2019YFA0705104
GroupedDBID --K
-EM
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AAEDT
AAFGU
AAHNG
AAIAL
AAJKR
AALRI
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U2A
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
-SB
-S~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEB
CITATION
H13
Q--
SJYHP
U1G
U5L
UY8
8BQ
8FD
JG9
ID FETCH-LOGICAL-c319t-953b85b03632201257bdaa70adfb17ae88f19caec2e7788e3e6f6c4f274d2a1d3
IEDL.DBID U2A
ISSN 1001-0521
IngestDate Fri Sep 13 06:10:00 EDT 2024
Thu Sep 12 16:31:08 EDT 2024
Sat Dec 16 12:08:37 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Lithium-ion batteries
Binder
Binder design
Binding mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-953b85b03632201257bdaa70adfb17ae88f19caec2e7788e3e6f6c4f274d2a1d3
ORCID 0000-0001-6766-5953
PQID 2623422855
PQPubID 326325
PageCount 17
ParticipantIDs proquest_journals_2623422855
crossref_primary_10_1007_s12598_021_01816_y
springer_journals_10_1007_s12598_021_01816_y
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2022
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References AnderssonAMHenningsonASiegbahnHJanssonUEdströmKElectrochemically lithiated graphite characterised by photoelectron spectroscopyJ Power Sour2003119522
ZhaoHWangZLuPJiangMShiFFSongXYZhengZYZhouXFuYBAbdelbastGXiaoXCLiuZBattagliaVSZaghibKLiuGToward practical application of functional conductive polymer binder for a high-energy lithium-ion battery designNano Lett2014141167041:CAS:528:DC%2BC2cXhslGkt7zE
Kwon Tw, Jeong YK, Lee I, Kim TS, Choi JW, Coskun A. Systematic molecular-level design of binders incorporating meldrum's ccid for silicon anodes in lithium rechargeable batteries. Adv Mater. 2014;26(47):7979.
YuanHHuangJQPengHJTitiriciMMXiangRChenRLiuQZhangQA review of functional binders in lithium-sulfur batteriesAdv Energy Mater20188311802107
PieczonkaNPWBorgelVZivBLeiferNDargelVAurbachDKimJHLiuZHuangXKrachkovskiySAGowardGRHalalayIPowellBRManthiramALithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteriesAdv Energy Mater20155231501008
GuYYYangSMZhuGBYuanYNQuQTWangYZhengHHThe effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binderElectrochim Acta20182694051:CAS:528:DC%2BC1cXkt1Kls7k%3D
GoodenoughJBKimYChallenges for rechargeable Li batteriesChem Mater20102235871:CAS:528:DC%2BD1MXhtVGktbfF
VenablesJDAdhesion and durability of metal-polymer bondsJ Mater Sci19841924311:CAS:528:DyaL2cXltlGgsrs%3D
HuangZDChenAMoFNLiangGJLiXLYangQGuoYChenZLiQDongBBZhiCYPhosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitorsAdv Energy Mater2020102420010241:CAS:528:DC%2BB3cXoslers7g%3D
MoFNChenZLiangGJWangDHZhaoYWLiHFDongBBZhiCYZwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilitiesAdv Energy Mater2020101620000351:CAS:528:DC%2BB3cXktFCnsL8%3D
KirchmeyerSReuterKScientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene)J Mater Chem2005152120771:CAS:528:DC%2BD2MXksVaisb0%3D
WuMYXiaoXCVukmirovicNXunSDasPKSongXYOlalde-VelascoPWangDDWeberAZWangLWBattagliaVSYangWLLiuGToward an ideal polymer binder design for high-capacity battery anodesJ Am Chem Soc201313532120481:CAS:528:DC%2BC3sXhtFSis7vE
ShimJKosteckiRRichardsonTSongXStriebelKAElectrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperatureJ Power Sources200211212221:CAS:528:DC%2BD38XnvVCjurs%3D
BesenhardJOYangJWWill advanced lithium-alloy anodes have a chance in lithium-ion batteries?J Power Sour1997681871:CAS:528:DyaK2sXnt1ersrk%3D
LiuWFHuangXJLiGBWangZXHuangHLuZHXueRJChenLQElectrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteriesJ Power Sour19976823441:CAS:528:DyaK2sXnslKntbc%3D
PalanirajAJayaramanVProduction, recovery and applications of xanthan gum by Xanthomonas campestrisJ Food Eng2011106111:CAS:528:DC%2BC3MXmsVOhs78%3D
LeeJIKangHParkKHShinMHongDChoHJKangNRLeeJLeeSKimJYKimCKParkHChoiNSParkSYangCAmphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteriesSmall2016122331191:CAS:528:DC%2BC28XmvVSnu7c%3D
Mo FN, Liang GJ, Wang DH, Tang ZJ, Li HF, Zhi CY. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat. 2019;1(1): e12008.
Ph Biensan, B Simon, JP Peres, Ade Guibert, M Broussely, JM Bodet, F Perton. On safety of lithium-ion cells. J Power Sour. 1999;81–82:906.
WangYGozenAChenLZhongWHGum-like nanocomposites as conformable, conductive, and adhesive electrode matrix for energy storage devicesAdv Energy Mater2016761601767
LemonMTJonesMSStansburyJWHydrogen bonding interactions in methacrylate monomers and polymersJ Biomed Mater Res A200783A37341:CAS:528:DC%2BD2sXhtlWitLnM
ZhangSSJowTRStudy of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteriesJ Power Sour200210924221:CAS:528:DC%2BD38XktlaqsL4%3D
KangBCederGBattery materials for ultrafast charging and dischargingNature200945872351901:CAS:528:DC%2BD1MXivFeqtLo%3D
SalemNLavrisaMAbu-LebdehYIonically-functionalized poly (thiophene) conductive polymers as binders for silicon and graphite anodes for Li-ion batteriesEnergy Technol2016423311:CAS:528:DC%2BC28Xislahs78%3D
LiuZXLiangGJZhanYXLiHFWangZFMaTWangYKNiuXRZhiCYA soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyteNano Energy2019587321:CAS:528:DC%2BC1MXjt1Skurw%3D
McBainJWHopkinsDGOn adhesives and adhesive actionJ Phys Chem19252921881:CAS:528:DyaB2MXpslKk
Ling M, Zhang L, Zheng TY, Feng J, Guo JH, Mai LQ, Liu G. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy. 2017;38:82.
KumarDSharmaRCAdvances in conductive polymersEur Polym J199834810531:CAS:528:DyaK1cXltlKkur4%3D
WangZFLiHFTangZJLiuZXRuanZHMaLTYangQWangDHZhiCYHydrogel electrolytes for flexible aqueous energy storage devicesAdv Func Mater201828481804560
SunCWLiuJGongYDWilkinsonDPZhangJJRecent advances in all-solid-state rechargeable lithium batteriesNano Energy2017333631:CAS:528:DC%2BC2sXisVent7s%3D
Wu H, Yu GH, Pan LJ, Liu N, McDowell MT, Bao ZD, Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. 2013;4(1).
JiaoXYinJXuXWangJLiuYXiongSZhangQSongJXHighly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteriesAdv Func Mater20203132005699
CourtelFMNiketicSDuguayDAbu-LebdehYDavidsonIJWater-soluble binders for MCMB carbon anodes for lithium-ion batteriesJ Power Sour2011196421281:CAS:528:DC%2BC3cXhsVOnsbfM
BeamanDKRobertsonEJRichmondGLMetal Ions: driving the orderly assembly of polyelectrolytes at a hydrophobic surfaceLangmuir20122840142451:CAS:528:DC%2BC38XhsVeit7zN
SchneiderHGarsuchAPanchenkoAGronwaldOJanssenNNovákPInfluence of different electrode compositions and binder materials on the performance of lithium–sulfur batteriesJ Power Sour20122054201:CAS:528:DC%2BC38XisVKnsLs%3D
KasavajjulaUWangCSApplebyAJNano- and bulk-silicon-based insertion anodes for lithium-ion secondary cellsJ Power Sour2007163210031:CAS:528:DC%2BD28XhtlCmtLfP
ZhaoHYucaNZhengZYFuYBBattagliaVSAbdelbastGZaghibKLiuGHigh capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteriesACS Appl Mater Int201471862
MT Jeena, Taesoo B, Si HK, Sooham P, JY Kim, Soojin P, JH Ryu. Siloxane incorporated copolymer as an in situ cross-linkable binder for high performance silicon anode in Li-ion battery. Nanoscale. 2015;8(17):9245.
GardnerDJBlumentrittMWangLYildirimNAdhesion theories in wood adhesive bondingRev Adhes Adhes20142461271:CAS:528:DC%2BC2MXivFaltbc%3D
LeeYJYiHKimWJKangKYunDSStranoMSCederGBelcherAMFabricating genetically engineered high-power lithium-ion batteries using multiple virus genesScience2009324593010511:CAS:528:DC%2BD1MXmtVKlsLo%3D
LiuGZhengHHKimSDengYHMinorAMSongXYBattagliaVSEffects of various conductive additive and polymeric binder contents on the performance of a lithium-ion composite cathodeJ Electrochem Soc200815512A8871:CAS:528:DC%2BD1cXhtlagsrvP
GoodenoughJBParkKSThe Li-ion rechargeable battery: a perspectiveJ Am Chem Soc2013135411671:CAS:528:DC%2BC3sXktFSisw%3D%3D
LestriezBFunctions of polymers in composite electrodes of lithium ion batteriesC R Chim2010131113411:CAS:528:DC%2BC3cXhtlSnurzM
MaLTChenSMWangDHYangQMoFNLiangGJLiNZhangHYZapienJAZhiCYSuper-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyteAdv Energy Mater20199121803046
ZhuGBGuYYWangYLiuGBattagliaVSQuQTZhengHHSuppressing the dry bed-lake fracture of silicon anode via dispersant modification in electrode processingElectrochim Acta20193196821:CAS:528:DC%2BC1MXhtlKkt7bI
Choi S, Kwon TW. Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017;357(6348):279.
ZengWWWangLPengXLiuTJiangYYQinFHuLChuPKHuoKZhouYHEnhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteriesAdv Energy Mater20188111702314
ValvoMLiivatAErikssonHTaiCWEdströmKIron-based electrodes meet water-based preparation, fluorine-free electrolyte and binder: a chance for more sustainable lithium-ion batteries?Chemsuschem2017101124311:CAS:528:DC%2BC2sXntFajs7g%3D
CaiYJLiYYJinBYAliALingMChengDGLuJGHouYHeQGZhanXLChenFQZhangQHDual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteriesACS Appl Mater Int20191150468001:CAS:528:DC%2BC1MXitFOmtL7E
Liew CW,Durairaj R, Ramesh S. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS One. 2014;9(7):e102815
DragoRSVogelGCNeedhamTEFour-parameter equation for predicting enthalpies of adduct formationJ Am Chem Soc1971932360141:CAS:528:DyaE38XjvVSksA%3D%3D
HuangZDWangTRSongHLiXLLiangGJWangDHYangQChenZMaLTLiuZXGaoBFanJZhiCYEffects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitorAngew Chem Int Ed202160210111:CAS:528:DC%2BB3cXit1aktLnF
WangNNuLiYSuSJYangJWangJLEffects of binders on the electrochemical performance of rechargeable magnesium batteriesJ Power Sour20173412191:CAS:528:DC%2BC28XitVGqtb%2FK
ParkSJZhaoHAiGWangCSongXYYucaNBattagliaVSYangWLLiuGSide-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteriesJ Am Chem Soc2015137725651:CAS:528:DC%2BC2MXhvFehur0%3D
LingMQiuJXLiSYanCKiefelMJLiuGZhangSQMultifunctional SA-PProDOT binder for lithium ion batteriesNano Lett201515744401:CAS:528:DC%2BC2MXhtVaksbzN
WangQYanNWangMRQuCYangXFZhangHZLiXFZhangHMLayer-by-layer assembled C/S cathode with trace binder for Li–S battery applicationACS Appl Mater Int2015745250021:CAS:528:DC%2BC2MXhslygurbI
Wan MX. Conducting poly
Q Cheng (1816_CR56) 2015; 284
CW Sun (1816_CR91) 2017; 33
S Kirchmeyer (1816_CR30) 2005; 15
J Sun (1816_CR15) 2011; 5
1816_CR35
JD Venables (1816_CR40) 1984; 19
RP Fang (1816_CR101) 2017; 29
S Komaba (1816_CR112) 2009; 12
JB Goodenough (1816_CR2) 2013; 135
ZY Wu (1816_CR62) 2017; 245
C Wang (1816_CR121) 2013; 5
1816_CR31
Y Bie (1816_CR19) 2016; 6
M Maqbool (1816_CR23) 2011; 62
JM Burkstrand (1816_CR41) 1981; 52
1816_CR104
ZD Huang (1816_CR4) 2021; 60
J Liu (1816_CR61) 2014; 50
BV Derjaguin (1816_CR47) 1969; 2
1816_CR105
DK Beaman (1816_CR111) 2012; 28
N Wang (1816_CR16) 2017; 341
K Edström (1816_CR108) 2006; 153
S Malmgren (1816_CR109) 2013; 97
DC Lin (1816_CR5) 2017; 12
ZX Liu (1816_CR80) 2019; 58
1816_CR28
AM Andersson (1816_CR106) 2003; 119
WF Liu (1816_CR14) 1997; 68
H Bryngelsson (1816_CR107) 2007; 174
AS Arico (1816_CR114) 2005; 4
J Sun (1816_CR25) 2008; 10
HC Gao (1816_CR32) 2016; 6
ZF Wang (1816_CR71) 2018; 28
RN Guo (1816_CR63) 2019; 12
SH Chung (1816_CR102) 2018; 28
MY Wu (1816_CR87) 2013; 135
SJ Park (1816_CR86) 2015; 137
JH Ku (1816_CR110) 2015; 287
1816_CR18
Y Huang (1816_CR120) 2018; 57
LT Ma (1816_CR76) 2019; 9
P Alfaro (1816_CR68) 2014; 571
G Liu (1816_CR44) 2012; 159
1816_CR123
Q Wang (1816_CR66) 2015; 7
YY Yu (1816_CR84) 2021; 6
1816_CR1
M Valvo (1816_CR59) 2017; 10
SS Zhang (1816_CR55) 2002; 109
GB Zhu (1816_CR65) 2019; 319
A Palaniraj (1816_CR24) 2011; 106
J Shim (1816_CR58) 2002; 112
S Kienle (1816_CR74) 2014; 30
NPW Pieczonka (1816_CR96) 2015; 5
YJ Lee (1816_CR115) 2009; 324
G Ai (1816_CR90) 2015; 16
X Jiao (1816_CR122) 2020; 31
YH Lee (1816_CR124) 2013; 13
N Salem (1816_CR83) 2016; 4
H Chen (1816_CR8) 2018; 118
Z Liu (1816_CR70) 2016; 6
1816_CR113
1816_CR92
RS Drago (1816_CR50) 1971; 93
FN Mo (1816_CR93) 2020; 10
D Bresser (1816_CR7) 2018; 11
JL Wang (1816_CR26) 2013; 23
WW Zeng (1816_CR99) 2018; 8
DJ Gardner (1816_CR45) 2014; 2
B Lestriez (1816_CR51) 2010; 13
DJ Qin (1816_CR95) 2015; 3
1816_CR75
D Kumar (1816_CR27) 1998; 34
1816_CR77
JB Li (1816_CR10) 2019; 43
SF Lux (1816_CR53) 2010; 157
MG Wu (1816_CR12) 2021; 2
Y Wang (1816_CR38) 2016; 7
JX Song (1816_CR37) 2014; 24
1816_CR81
R Balint (1816_CR29) 2014; 10
JI Lee (1816_CR69) 2016; 12
W Chen (1816_CR103) 2017; 29
SJ Hu (1816_CR94) 2014; 237
U Kasavajjula (1816_CR67) 2007; 163
B Kang (1816_CR118) 2009; 458
1816_CR64
H Schneider (1816_CR97) 2012; 205
WJ Zhang (1816_CR119) 2011; 196
1816_CR73
Y Shi (1816_CR78) 2017; 17
B Koo (1816_CR34) 2012; 51
MT Lemon (1816_CR57) 2007; 83A
G Liu (1816_CR82) 2011; 23
SY Jang (1816_CR33) 2016; 6
Y Liang (1816_CR6) 2019; 43
JS Bridel (1816_CR20) 2011; 158
G Liu (1816_CR43) 2008; 155
SG Patnaik (1816_CR85) 2017; 34
JW McBain (1816_CR46) 1925; 29
G Tigari (1816_CR22) 2019; 3
L Sharpe (1816_CR48) 1963; 41
1816_CR54
JO Besenhard (1816_CR116) 1997; 68
YJ Cai (1816_CR60) 2019; 11
H Zhao (1816_CR89) 2014; 14
ZD Huang (1816_CR9) 2020; 10
JB Goodenough (1816_CR117) 2010; 22
Y Huang (1816_CR13) 2017; 56
B Diouf (1816_CR3) 2015; 76
YY Gu (1816_CR79) 2018; 269
I Kovalenko (1816_CR17) 2011; 334
S Lim (1816_CR36) 2015; 7
L Zhang (1816_CR39) 2014; 2
M Ling (1816_CR100) 2015; 15
1816_CR49
H Zhao (1816_CR88) 2014; 7
SY Fu (1816_CR42) 2008; 39
FM Courtel (1816_CR21) 2011; 196
1816_CR52
GZ Zhang (1816_CR72) 2018; 14
Y Huang (1816_CR98) 2018; 8
H Yuan (1816_CR11) 2018; 8
References_xml – ident: 1816_CR31
  doi: 10.1039/C6NR01559J
– volume: 51
  start-page: 8762
  issue: 35
  year: 2012
  ident: 1816_CR34
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201201568
  contributor:
    fullname: B Koo
– ident: 1816_CR123
  doi: 10.1126/science.aal4373
– volume: 10
  start-page: 2341
  issue: 6
  year: 2014
  ident: 1816_CR29
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2014.02.015
  contributor:
    fullname: R Balint
– ident: 1816_CR28
– volume: 245
  start-page: 371
  year: 2017
  ident: 1816_CR62
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.05.094
  contributor:
    fullname: ZY Wu
– volume: 39
  start-page: 933
  issue: 6
  year: 2008
  ident: 1816_CR42
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2008.01.002
  contributor:
    fullname: SY Fu
– volume: 12
  start-page: 4838
  issue: 21
  year: 2019
  ident: 1816_CR63
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201902079
  contributor:
    fullname: RN Guo
– volume: 159
  start-page: A214
  issue: 3
  year: 2012
  ident: 1816_CR44
  publication-title: J Electrochem Soc
  doi: 10.1149/2.024203jes
  contributor:
    fullname: G Liu
– volume: 2
  start-page: 154
  issue: 3
  year: 1969
  ident: 1816_CR47
  publication-title: Powder Technol
  doi: 10.1016/0032-5910(69)80003-3
  contributor:
    fullname: BV Derjaguin
– volume: 112
  start-page: 222
  issue: 1
  year: 2002
  ident: 1816_CR58
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00363-4
  contributor:
    fullname: J Shim
– ident: 1816_CR113
  doi: 10.1002/eom2.12008
– volume: 16
  start-page: 28
  year: 2015
  ident: 1816_CR90
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.036
  contributor:
    fullname: G Ai
– volume: 10
  start-page: 2000035
  issue: 16
  year: 2020
  ident: 1816_CR93
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000035
  contributor:
    fullname: FN Mo
– volume: 29
  start-page: 1605160
  issue: 12
  year: 2017
  ident: 1816_CR103
  publication-title: Adv Mater
  doi: 10.1002/adma.201605160
  contributor:
    fullname: W Chen
– volume: 58
  start-page: 732
  year: 2019
  ident: 1816_CR80
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.087
  contributor:
    fullname: ZX Liu
– volume: 7
  start-page: 862
  issue: 1
  year: 2014
  ident: 1816_CR88
  publication-title: ACS Appl Mater Int
  doi: 10.1021/am507376f
  contributor:
    fullname: H Zhao
– volume: 12
  start-page: 3119
  issue: 23
  year: 2016
  ident: 1816_CR69
  publication-title: Small
  doi: 10.1002/smll.201600800
  contributor:
    fullname: JI Lee
– ident: 1816_CR81
  doi: 10.1038/ncomms2941
– volume: 23
  start-page: 4679
  issue: 40
  year: 2011
  ident: 1816_CR82
  publication-title: Adv Mater
  doi: 10.1002/adma.201102421
  contributor:
    fullname: G Liu
– volume: 11
  start-page: 46800
  issue: 50
  year: 2019
  ident: 1816_CR60
  publication-title: ACS Appl Mater Int
  doi: 10.1021/acsami.9b16387
  contributor:
    fullname: YJ Cai
– volume: 28
  start-page: 1804560
  issue: 48
  year: 2018
  ident: 1816_CR71
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201804560
  contributor:
    fullname: ZF Wang
– volume: 6
  start-page: 97084
  issue: 99
  year: 2016
  ident: 1816_CR19
  publication-title: RSC Adv
  doi: 10.1039/C6RA20560G
  contributor:
    fullname: Y Bie
– volume: 157
  start-page: A320
  issue: 3
  year: 2010
  ident: 1816_CR53
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3291976
  contributor:
    fullname: SF Lux
– volume: 83A
  start-page: 734
  issue: 3
  year: 2007
  ident: 1816_CR57
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31448
  contributor:
    fullname: MT Lemon
– ident: 1816_CR18
  doi: 10.1016/S0928-0987(02)00081-7
– volume: 7
  start-page: 25002
  issue: 45
  year: 2015
  ident: 1816_CR66
  publication-title: ACS Appl Mater Int
  doi: 10.1021/acsami.5b08887
  contributor:
    fullname: Q Wang
– volume: 4
  start-page: 331
  issue: 2
  year: 2016
  ident: 1816_CR83
  publication-title: Energy Technol
  doi: 10.1002/ente.201500250
  contributor:
    fullname: N Salem
– ident: 1816_CR92
  doi: 10.1371/journal.pone.0102815
– volume: 15
  start-page: 4440
  issue: 7
  year: 2015
  ident: 1816_CR100
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b00795
  contributor:
    fullname: M Ling
– volume: 6
  start-page: 38050
  issue: 1
  year: 2016
  ident: 1816_CR33
  publication-title: Sci Rep
  doi: 10.1038/srep38050
  contributor:
    fullname: SY Jang
– volume: 334
  start-page: 75
  issue: 6052
  year: 2011
  ident: 1816_CR17
  publication-title: Science
  doi: 10.1126/science.1209150
  contributor:
    fullname: I Kovalenko
– volume: 15
  start-page: 2077
  issue: 21
  year: 2005
  ident: 1816_CR30
  publication-title: J Mater Chem
  doi: 10.1039/b417803n
  contributor:
    fullname: S Kirchmeyer
– volume: 31
  start-page: 2005699
  issue: 3
  year: 2020
  ident: 1816_CR122
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202005699
  contributor:
    fullname: X Jiao
– ident: 1816_CR54
  doi: 10.1016/j.jpowsour.2011.10.085
– volume: 163
  start-page: 1003
  issue: 2
  year: 2007
  ident: 1816_CR67
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2006.09.084
  contributor:
    fullname: U Kasavajjula
– volume: 9
  start-page: 1803046
  issue: 12
  year: 2019
  ident: 1816_CR76
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803046
  contributor:
    fullname: LT Ma
– volume: 8
  start-page: 1802288
  issue: 31
  year: 2018
  ident: 1816_CR98
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802288
  contributor:
    fullname: Y Huang
– volume: 5
  start-page: 1501008
  issue: 23
  year: 2015
  ident: 1816_CR96
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501008
  contributor:
    fullname: NPW Pieczonka
– volume: 3
  start-page: 331
  year: 2019
  ident: 1816_CR22
  publication-title: J Anal Test
  doi: 10.1007/s41664-019-00116-w
  contributor:
    fullname: G Tigari
– ident: 1816_CR49
  doi: 10.1002/app.1994.070521302
– volume: 287
  start-page: 36
  year: 2015
  ident: 1816_CR110
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.04.007
  contributor:
    fullname: JH Ku
– ident: 1816_CR104
  doi: 10.1016/j.nanoen.2017.05.020
– volume: 6
  start-page: 3472
  issue: 9
  year: 2021
  ident: 1816_CR84
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA10525B
  contributor:
    fullname: YY Yu
– volume: 237
  start-page: 497
  year: 2014
  ident: 1816_CR94
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.08.119
  contributor:
    fullname: SJ Hu
– volume: 8
  start-page: 1802107
  issue: 31
  year: 2018
  ident: 1816_CR11
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802107
  contributor:
    fullname: H Yuan
– volume: 205
  start-page: 420
  year: 2012
  ident: 1816_CR97
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2011.12.061
  contributor:
    fullname: H Schneider
– volume: 341
  start-page: 219
  year: 2017
  ident: 1816_CR16
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2016.12.003
  contributor:
    fullname: N Wang
– volume: 41
  start-page: 67
  issue: 15
  year: 1963
  ident: 1816_CR48
  publication-title: Chem Eng News
  doi: 10.1021/cen-v041n015.p067
  contributor:
    fullname: L Sharpe
– volume: 2
  start-page: 127
  issue: 46
  year: 2014
  ident: 1816_CR45
  publication-title: Rev Adhes Adhes
  doi: 10.7569/RAA.2014.097304
  contributor:
    fullname: DJ Gardner
– ident: 1816_CR75
  doi: 10.1021/acsnano.5b05030
– volume: 8
  start-page: 1702314
  issue: 11
  year: 2018
  ident: 1816_CR99
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201702314
  contributor:
    fullname: WW Zeng
– volume: 153
  start-page: 380
  issue: 2
  year: 2006
  ident: 1816_CR108
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2005.05.062
  contributor:
    fullname: K Edström
– volume: 11
  start-page: 3096
  issue: 11
  year: 2018
  ident: 1816_CR7
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE00640G
  contributor:
    fullname: D Bresser
– volume: 2
  start-page: 5
  issue: 1
  year: 2021
  ident: 1816_CR12
  publication-title: SmartMat
  doi: 10.1002/smm2.1015
  contributor:
    fullname: MG Wu
– volume: 34
  start-page: 1053
  issue: 8
  year: 1998
  ident: 1816_CR27
  publication-title: Eur Polym J
  doi: 10.1016/S0014-3057(97)00204-8
  contributor:
    fullname: D Kumar
– ident: 1816_CR73
  doi: 10.1039/C7CS00858A
– volume: 50
  start-page: 6386
  issue: 48
  year: 2014
  ident: 1816_CR61
  publication-title: ChemComm
  contributor:
    fullname: J Liu
– volume: 97
  start-page: 23
  year: 2013
  ident: 1816_CR109
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.03.010
  contributor:
    fullname: S Malmgren
– volume: 458
  start-page: 190
  issue: 7235
  year: 2009
  ident: 1816_CR118
  publication-title: Nature
  doi: 10.1038/nature07853
  contributor:
    fullname: B Kang
– ident: 1816_CR35
  doi: 10.1002/adma.201402950
– volume: 6
  start-page: 68371
  issue: 72
  year: 2016
  ident: 1816_CR70
  publication-title: RSC Adv
  doi: 10.1039/C6RA12232A
  contributor:
    fullname: Z Liu
– volume: 6
  start-page: 1502130
  issue: 6
  year: 2016
  ident: 1816_CR32
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201502130
  contributor:
    fullname: HC Gao
– volume: 137
  start-page: 2565
  issue: 7
  year: 2015
  ident: 1816_CR86
  publication-title: J Am Chem Soc
  doi: 10.1021/ja511181p
  contributor:
    fullname: SJ Park
– volume: 29
  start-page: 188
  issue: 2
  year: 1925
  ident: 1816_CR46
  publication-title: J Phys Chem
  doi: 10.1021/j150248a008
  contributor:
    fullname: JW McBain
– volume: 43
  start-page: 201
  issue: 2
  year: 2019
  ident: 1816_CR10
  publication-title: Chinese Journal of Rare Metals
  contributor:
    fullname: JB Li
– volume: 60
  start-page: 1011
  issue: 2
  year: 2021
  ident: 1816_CR4
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202012202
  contributor:
    fullname: ZD Huang
– volume: 13
  start-page: 5753
  issue: 11
  year: 2013
  ident: 1816_CR124
  publication-title: Nano Lett
  doi: 10.1021/nl403860k
  contributor:
    fullname: YH Lee
– volume: 28
  start-page: 1801188
  issue: 28
  year: 2018
  ident: 1816_CR102
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201801188
  contributor:
    fullname: SH Chung
– volume: 23
  start-page: 1194
  issue: 9
  year: 2013
  ident: 1816_CR26
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201201847
  contributor:
    fullname: JL Wang
– volume: 52
  start-page: 4795
  issue: 7
  year: 1981
  ident: 1816_CR41
  publication-title: J Appl Phys
  doi: 10.1063/1.329320
  contributor:
    fullname: JM Burkstrand
– volume: 10
  start-page: 2001024
  issue: 24
  year: 2020
  ident: 1816_CR9
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001024
  contributor:
    fullname: ZD Huang
– volume: 14
  start-page: 6704
  issue: 11
  year: 2014
  ident: 1816_CR89
  publication-title: Nano Lett
  doi: 10.1021/nl503490h
  contributor:
    fullname: H Zhao
– volume: 62
  start-page: 71
  issue: 1
  year: 2011
  ident: 1816_CR23
  publication-title: Postharvest Biol Tec
  doi: 10.1016/j.postharvbio.2011.04.002
  contributor:
    fullname: M Maqbool
– volume: 34
  start-page: 17909
  issue: 5
  year: 2017
  ident: 1816_CR85
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA03843G
  contributor:
    fullname: SG Patnaik
– volume: 29
  start-page: 1606823
  issue: 48
  year: 2017
  ident: 1816_CR101
  publication-title: Adv Mater
  doi: 10.1002/adma.201606823
  contributor:
    fullname: RP Fang
– volume: 571
  start-page: 206
  year: 2014
  ident: 1816_CR68
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.10.084
  contributor:
    fullname: P Alfaro
– volume: 284
  start-page: 258
  year: 2015
  ident: 1816_CR56
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.03.036
  contributor:
    fullname: Q Cheng
– volume: 14
  start-page: 1801189
  issue: 29
  year: 2018
  ident: 1816_CR72
  publication-title: Small
  doi: 10.1002/smll.201801189
  contributor:
    fullname: GZ Zhang
– volume: 5
  start-page: 1042
  issue: 12
  year: 2013
  ident: 1816_CR121
  publication-title: Nat Chem
  doi: 10.1038/nchem.1802
  contributor:
    fullname: C Wang
– volume: 196
  start-page: 13
  issue: 1
  year: 2011
  ident: 1816_CR119
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.07.020
  contributor:
    fullname: WJ Zhang
– volume: 7
  start-page: 23545
  issue: 42
  year: 2015
  ident: 1816_CR36
  publication-title: ACS Appl Mater Int
  doi: 10.1021/acsami.5b06682
  contributor:
    fullname: S Lim
– volume: 319
  start-page: 682
  year: 2019
  ident: 1816_CR65
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.07.012
  contributor:
    fullname: GB Zhu
– volume: 155
  start-page: A887
  issue: 12
  year: 2008
  ident: 1816_CR43
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2976031
  contributor:
    fullname: G Liu
– volume: 196
  start-page: 2128
  issue: 4
  year: 2011
  ident: 1816_CR21
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.10.025
  contributor:
    fullname: FM Courtel
– volume: 43
  start-page: 1187
  issue: 11
  year: 2019
  ident: 1816_CR6
  publication-title: Chinese Journal of Rare Metals
  contributor:
    fullname: Y Liang
– ident: 1816_CR105
  doi: 10.1038/s41467-017-02410-6
– ident: 1816_CR64
  doi: 10.1039/C8TA01138A
– volume: 269
  start-page: 405
  year: 2018
  ident: 1816_CR79
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.02.168
  contributor:
    fullname: YY Gu
– volume: 57
  start-page: 9810
  issue: 31
  year: 2018
  ident: 1816_CR120
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201805618
  contributor:
    fullname: Y Huang
– volume: 30
  start-page: 4351
  issue: 15
  year: 2014
  ident: 1816_CR74
  publication-title: Langmuir
  doi: 10.1021/la500783n
  contributor:
    fullname: S Kienle
– volume: 33
  start-page: 363
  year: 2017
  ident: 1816_CR91
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.028
  contributor:
    fullname: CW Sun
– ident: 1816_CR1
  doi: 10.1126/science.1212741
– volume: 22
  start-page: 587
  issue: 3
  year: 2010
  ident: 1816_CR117
  publication-title: Chem Mater
  doi: 10.1021/cm901452z
  contributor:
    fullname: JB Goodenough
– volume: 68
  start-page: 344
  issue: 2
  year: 1997
  ident: 1816_CR14
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(97)02637-2
  contributor:
    fullname: WF Liu
– volume: 3
  start-page: 10928
  issue: 20
  year: 2015
  ident: 1816_CR95
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA02367J
  contributor:
    fullname: DJ Qin
– volume: 10
  start-page: 930
  issue: 6
  year: 2008
  ident: 1816_CR25
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2008.04.016
  contributor:
    fullname: J Sun
– volume: 4
  start-page: 366
  year: 2005
  ident: 1816_CR114
  publication-title: Nat Mater
  doi: 10.1038/nmat1368
  contributor:
    fullname: AS Arico
– volume: 119
  start-page: 522
  year: 2003
  ident: 1816_CR106
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(03)00277-5
  contributor:
    fullname: AM Andersson
– volume: 7
  start-page: 1601767
  issue: 6
  year: 2016
  ident: 1816_CR38
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601767
  contributor:
    fullname: Y Wang
– volume: 13
  start-page: 1341
  issue: 11
  year: 2010
  ident: 1816_CR51
  publication-title: C R Chim
  doi: 10.1016/j.crci.2010.01.018
  contributor:
    fullname: B Lestriez
– volume: 12
  start-page: 194
  issue: 3
  year: 2017
  ident: 1816_CR5
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.16
  contributor:
    fullname: DC Lin
– volume: 158
  start-page: A750
  issue: 6
  year: 2011
  ident: 1816_CR20
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3581024
  contributor:
    fullname: JS Bridel
– volume: 106
  start-page: 1
  issue: 1
  year: 2011
  ident: 1816_CR24
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2011.03.035
  contributor:
    fullname: A Palaniraj
– volume: 24
  start-page: 5904
  issue: 37
  year: 2014
  ident: 1816_CR37
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401269
  contributor:
    fullname: JX Song
– ident: 1816_CR77
  doi: 10.1016/j.joule.2018.02.012
– volume: 17
  start-page: 1906
  issue: 3
  year: 2017
  ident: 1816_CR78
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b05227
  contributor:
    fullname: Y Shi
– volume: 19
  start-page: 2431
  year: 1984
  ident: 1816_CR40
  publication-title: J Mater Sci
  doi: 10.1007/BF00550796
  contributor:
    fullname: JD Venables
– volume: 93
  start-page: 6014
  issue: 23
  year: 1971
  ident: 1816_CR50
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00752a010
  contributor:
    fullname: RS Drago
– volume: 135
  start-page: 12048
  issue: 32
  year: 2013
  ident: 1816_CR87
  publication-title: J Am Chem Soc
  doi: 10.1021/ja4054465
  contributor:
    fullname: MY Wu
– volume: 174
  start-page: 970
  issue: 2
  year: 2007
  ident: 1816_CR107
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2007.06.050
  contributor:
    fullname: H Bryngelsson
– volume: 28
  start-page: 14245
  issue: 40
  year: 2012
  ident: 1816_CR111
  publication-title: Langmuir
  doi: 10.1021/la302917p
  contributor:
    fullname: DK Beaman
– volume: 135
  start-page: 1167
  issue: 4
  year: 2013
  ident: 1816_CR2
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3091438
  contributor:
    fullname: JB Goodenough
– volume: 109
  start-page: 422
  issue: 2
  year: 2002
  ident: 1816_CR55
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(02)00107-6
  contributor:
    fullname: SS Zhang
– volume: 118
  start-page: 8936
  issue: 18
  year: 2018
  ident: 1816_CR8
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00241
  contributor:
    fullname: H Chen
– volume: 2
  start-page: 19036
  issue: 44
  year: 2014
  ident: 1816_CR39
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA04320K
  contributor:
    fullname: L Zhang
– ident: 1816_CR52
  doi: 10.1016/S0378-7753(99)00135-4
– volume: 324
  start-page: 1051
  issue: 5930
  year: 2009
  ident: 1816_CR115
  publication-title: Science
  doi: 10.1126/science.1171541
  contributor:
    fullname: YJ Lee
– volume: 56
  start-page: 9141
  issue: 31
  year: 2017
  ident: 1816_CR13
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201705212
  contributor:
    fullname: Y Huang
– volume: 12
  start-page: A107
  issue: 5
  year: 2009
  ident: 1816_CR112
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.3086262
  contributor:
    fullname: S Komaba
– volume: 5
  start-page: 388
  issue: 4
  year: 2011
  ident: 1816_CR15
  publication-title: Front Mater Sci
  doi: 10.1007/s11706-011-0152-2
  contributor:
    fullname: J Sun
– volume: 76
  start-page: 375
  year: 2015
  ident: 1816_CR3
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2014.11.058
  contributor:
    fullname: B Diouf
– volume: 10
  start-page: 2431
  issue: 11
  year: 2017
  ident: 1816_CR59
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201700070
  contributor:
    fullname: M Valvo
– volume: 68
  start-page: 87
  issue: 1
  year: 1997
  ident: 1816_CR116
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(96)02547-5
  contributor:
    fullname: JO Besenhard
SSID ssj0044660
Score 2.4681215
SecondaryResourceType review_article
Snippet Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 745
SubjectTerms Binding
Biomaterials
Chemistry and Materials Science
Energy
Flux density
Functional groups
Ion channels
Lithium sulfur batteries
Lithium-ion batteries
Materials Engineering
Materials Science
Metallic Materials
Mini Review
Nanoscale Science and Technology
Physical Chemistry
Rechargeable batteries
Title Strategies of binder design for high-performance lithium-ion batteries: a mini review
URI https://link.springer.com/article/10.1007/s12598-021-01816-y
https://www.proquest.com/docview/2623422855/abstract/
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTywgaXGjfNgq1BLBYKJSGWK7NgWDJSqj6H_njsnUQDBgJQtyQ1n--473X2fAS7jIg0DawMuEAvz0MmUp7Hp81hKM5CxSaKAiMKPT9EkC--nctrwuP2we92R9IG64bohUE84TRSQxlTEN9vQJvBAWzkTwzr8Un-ylCCgOhmTU8WU-d3G92zUQMwfXVGfbMb7sFehRDYsl_UAtuzsEHa_aAceQVbrytol-3BMk-zhghk_kMEQiTISIubzhhfAEHC_vq3fOa4E015WE_-9YYqRvAgrOSzHkI1Hz7cTXt2RwAs8PCvqvupEamrHCszleAC1USruK-N0ECubJC5IC2ULYWOsdu3ARi4qQofFqBEqMIMTaM0-ZvYUmAuLvnIIl4STocZHaxEYjGi2UApRQweual_l81IKI29Ej8mzOXo2957NNx3o1u7Mq2OxzAWCLdIck2jsunZx8_pva2f_-_wcdgTRFPysWBdaq8XaXiB4WOketId3Lw-jnt80nzpxvU0
link.rule.ids 315,786,790,27957,27958,41116,41558,42185,42627,52146,52269
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sYKlx4jzYKkRVoO3USN0sO7YFA23VpkP_PXd5KIBgQMqW5Ia7-O473X1fCLmNsiTwrPUYByzMAicSlkSmyyIhjC8iE4ceEoVH43CQBi9TMa1IYat6270eSRaZuiG7AVKPGa4UoMhUyDbbZAf11LHlSnmvzr84oCw1CLBRhupUUWV-t_G9HDUY88dYtKg2_UNyUMFE2ivjekS27OyY7H8RDzwhaS0sa1d07qhG3cMlNcVGBgUoSlGJmC0aYgAFxP32vv5gEAqqC11NePeBKor6IrQksZyStP80eRyw6icJLIPTk-P4VcdC4zyWQzGHE6iNUlFXGae9SNk4dl6SKZtxG0G7a30bujALHHSjhivP-GekNZvP7DmhLsi6ygFe4k4EGi6tuWcgpdlMKYANbXJX-0ouSi0M2ageo2cleFYWnpWbNunU7pTVuVhJCJePomMCjN3XLm5u_23t4n-P35DdwWQ0lMPn8esl2ePIWSgWxzqklS_X9gqQRK6viw_nE2kNvxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UEqMH30YUtQdvWmDLPr0RBVGUeJAET027baMxLgSWA_56p_vIItGDMdnbbpvdTqfzTWa-bxE698LAtpSyCAUsTGztBCTwZIN4jiObjid91zJE4ce-2x3Y90NnuMDiT7rd85JkymkwKk1RXB9LXS-Ib4DafWLaC4zglEvmq6hsg9vCHi-3bl967fw0NuXKVJHApM0QqzLizM-zfA9OBeJcKpImsaezhXj-1mnLyXttFota-Lkk6Pifz9pGmxkwxa10J-2gFRXtoo0FucI9NMilbNUUjzQWRmlxgmXSA4IB_GKjfUzGBRUBA8Z_fZt9EDA-FomSJ4y9whwbRROc0mb20aDTfr7ukuy3DCQEf41NwVf4jjAVYArwAXxeSM69BpdaWB5Xvq-tIOQqpMqDBFs1lavd0NaQ_0rKLdk8QKVoFKlDhLUdNrgGhEa1Ywu4hKCWhENUhZwDUKmgi9webJyqb7BCZ9ksFoPFYslisXkFVXOTscwTp4wCvjMyZw5MdplboLj9-2xHf3v8DK093XTYw12_d4zWqSFJJJ1qVVSKJzN1AtAlFqfZ7vwCm9PlLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+of+binder+design+for+high-performance+lithium-ion+batteries%3A+a+mini+review&rft.jtitle=Rare+metals&rft.au=Wang%2C+Yan-Bo&rft.au=Yang%2C+Qi&rft.au=Guo%2C+Xun&rft.au=Yang%2C+Shuo&rft.date=2022-03-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=41&rft.issue=3&rft.spage=745&rft.epage=761&rft_id=info:doi/10.1007%2Fs12598-021-01816-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_021_01816_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon