Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in Water for Anti-Bacterial Applications

Titanium oxide nanoparticles (TiO 2 ) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), transmission electron m...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 31; no. 9; pp. 3649 - 3656
Main Authors Bahjat, Hasan H., Ismail, Raid A., Sulaiman, Ghassan M., Jabir, Majid S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Titanium oxide nanoparticles (TiO 2 ) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), UV–Vis spectroscopy, and Raman spectroscopy were used to characterize the TiO 2 nanoparticles. The XRD analysis of titanium oxide nanoparticles revealed that the synthesized nanoparticles were polycrystalline with mixed of tetragonal anatase and rutile TiO 2 . Scanning electron microscope shows the formation of spherical nanoparticles and the particles agglomeration decreases and the particle size from increases from 25 to 35 nm when the magnetic field applied. The optical energy gap of TiO 2 nanoparticles decreased from 4.6 to 3.4 eV after using the magnetic field during the ablation. Raman studies show the existence of five vibration modes belong to TiO 2 . The antibacterial effect assay revealed a largest inhibition zone in S. aureus and E. coli , with a more potent effect for TiO 2 NPs prepared by magnetic field when compared with that prepared without presence of magnetic field.
AbstractList Titanium oxide nanoparticles (TiO 2 ) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), UV–Vis spectroscopy, and Raman spectroscopy were used to characterize the TiO 2 nanoparticles. The XRD analysis of titanium oxide nanoparticles revealed that the synthesized nanoparticles were polycrystalline with mixed of tetragonal anatase and rutile TiO 2 . Scanning electron microscope shows the formation of spherical nanoparticles and the particles agglomeration decreases and the particle size from increases from 25 to 35 nm when the magnetic field applied. The optical energy gap of TiO 2 nanoparticles decreased from 4.6 to 3.4 eV after using the magnetic field during the ablation. Raman studies show the existence of five vibration modes belong to TiO 2 . The antibacterial effect assay revealed a largest inhibition zone in S. aureus and E. coli , with a more potent effect for TiO 2 NPs prepared by magnetic field when compared with that prepared without presence of magnetic field.
Titanium oxide nanoparticles (TiO2) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), UV–Vis spectroscopy, and Raman spectroscopy were used to characterize the TiO2 nanoparticles. The XRD analysis of titanium oxide nanoparticles revealed that the synthesized nanoparticles were polycrystalline with mixed of tetragonal anatase and rutile TiO2. Scanning electron microscope shows the formation of spherical nanoparticles and the particles agglomeration decreases and the particle size from increases from 25 to 35 nm when the magnetic field applied. The optical energy gap of TiO2 nanoparticles decreased from 4.6 to 3.4 eV after using the magnetic field during the ablation. Raman studies show the existence of five vibration modes belong to TiO2. The antibacterial effect assay revealed a largest inhibition zone in S. aureus and E. coli, with a more potent effect for TiO2 NPs prepared by magnetic field when compared with that prepared without presence of magnetic field.
Author Bahjat, Hasan H.
Jabir, Majid S.
Sulaiman, Ghassan M.
Ismail, Raid A.
Author_xml – sequence: 1
  givenname: Hasan H.
  surname: Bahjat
  fullname: Bahjat, Hasan H.
  organization: Laser Physics Division, Applied Sciences Department, University of Technology
– sequence: 2
  givenname: Raid A.
  orcidid: 0000-0002-6629-3630
  surname: Ismail
  fullname: Ismail, Raid A.
  email: raidismail@yahoo.com
  organization: Laser Physics Division, Applied Sciences Department, University of Technology
– sequence: 3
  givenname: Ghassan M.
  surname: Sulaiman
  fullname: Sulaiman, Ghassan M.
  organization: Biotechnology Division, Applied Sciences Department, University of Technology
– sequence: 4
  givenname: Majid S.
  surname: Jabir
  fullname: Jabir, Majid S.
  organization: Biotechnology Division, Applied Sciences Department, University of Technology
BookMark eNp9kE1LAzEQhoMo-PkHPAU8R2c2u83mWD-qQtVLxWNIs1mJrMmapKD_3tiKggdPMwPvM_POu0-2ffCWkGOEUwQQZwlBQs2gQgYoBWftFtnDRtQM6wa3f_qa75L9lF4AeAsN7pG3O_3sbXaGzpwdOjZNyaVsOzrXyUY6XQ46u-Bp6OnCZe3d6pVeuvDuOkvvtQ-jjgUebKLO0yedC9OHwvns2Lk2ZXZ6oNNxHJxZb0qHZKfXQ7JH3_WAPM6uFhc3bP5wfXsxnTPDUWYmm8o0WFuBDedWTGSHfc9rvcQJWCllb3qEliMsDeCyFRK61tYddlxogRb4ATnZ7B1jeFvZlNVLWEVfTqqqmaDkkleiqNqNysSQUrS9MuXNL6M5ajcoBPUVsNoErErAah2wagta_UHH6F51_Pgf4hsoFbF_tvHX1T_UJ4qnj8I
CitedBy_id crossref_primary_10_1007_s10904_022_02227_x
crossref_primary_10_1007_s11696_023_02691_w
crossref_primary_10_1007_s11468_024_02450_x
crossref_primary_10_1002_bab_2416
crossref_primary_10_1007_s12596_024_02204_2
crossref_primary_10_1088_2043_6262_aca60a
crossref_primary_10_1515_gps_2022_0086
crossref_primary_10_1016_j_inoche_2023_110994
crossref_primary_10_1038_s41598_023_30436_y
crossref_primary_10_1155_2023_2855788
crossref_primary_10_3390_met13040735
crossref_primary_10_1021_acsomega_4c00841
crossref_primary_10_1186_s12645_023_00243_1
crossref_primary_10_3389_fbioe_2023_1150892
crossref_primary_10_1039_D3MA00222E
crossref_primary_10_1007_s10965_024_04064_7
crossref_primary_10_1016_j_matpr_2021_11_016
crossref_primary_10_1088_2043_6262_ad0106
crossref_primary_10_52711_0974_360X_2023_00209
crossref_primary_10_1016_j_ceramint_2023_06_251
crossref_primary_10_1186_s43141_023_00481_1
crossref_primary_10_1111_ijac_14195
crossref_primary_10_1515_jmbm_2022_0019
crossref_primary_10_1007_s42250_024_00912_7
crossref_primary_10_21070_acopen_9_2024_8121
crossref_primary_10_1007_s10904_022_02470_2
crossref_primary_10_1007_s11468_023_02150_y
crossref_primary_10_1142_S0218625X2350066X
crossref_primary_10_3390_biomimetics9110656
crossref_primary_10_1038_s41598_024_58751_y
crossref_primary_10_1016_j_jmrt_2023_04_017
crossref_primary_10_1142_S021797922350100X
crossref_primary_10_1016_j_cplett_2023_140523
crossref_primary_10_1186_s11671_021_03602_2
crossref_primary_10_1155_2022_1854473
crossref_primary_10_1155_2022_8511601
crossref_primary_10_1515_npprj_2022_0057
crossref_primary_10_1016_j_tox_2024_153734
crossref_primary_10_1142_S0217979223500364
crossref_primary_10_1155_2023_4219841
crossref_primary_10_1007_s12648_025_03581_5
crossref_primary_10_1007_s13204_024_03080_9
crossref_primary_10_1016_j_bioorg_2023_106414
crossref_primary_10_1016_j_jics_2023_101010
crossref_primary_10_1016_j_surfin_2021_101561
crossref_primary_10_1016_j_jddst_2023_104211
crossref_primary_10_1016_j_nanoso_2025_101455
crossref_primary_10_1155_2022_9989282
crossref_primary_10_1007_s12633_023_02349_y
crossref_primary_10_1039_D1NR08144F
crossref_primary_10_1007_s13399_023_04100_4
crossref_primary_10_1016_j_nanoso_2024_101225
crossref_primary_10_1155_2023_8717655
crossref_primary_10_1016_j_apsadv_2022_100213
crossref_primary_10_3390_ijms251910519
crossref_primary_10_3390_molecules27196306
crossref_primary_10_1007_s10924_023_03184_3
crossref_primary_10_2147_IJN_S394953
crossref_primary_10_1016_j_surfin_2022_102306
crossref_primary_10_1016_j_jddst_2022_103811
crossref_primary_10_1088_2043_6262_ad010c
crossref_primary_10_1007_s11468_024_02626_5
crossref_primary_10_1088_1742_6596_2974_1_012025
crossref_primary_10_1007_s00339_022_06161_0
crossref_primary_10_1016_j_jddst_2022_103577
crossref_primary_10_1016_j_inoche_2022_110227
crossref_primary_10_1016_j_optlastec_2021_107828
crossref_primary_10_1016_j_jddst_2023_104325
crossref_primary_10_1038_s41598_023_32330_z
Cites_doi 10.1007/s10876-019-01701-w
10.1080/10420151003722974
10.1186/s11671-016-1608-1
10.1039/C4CP02201G
10.2138/am.2012.4027
10.1016/j.mssp.2006.12.001
10.1016/j.cis.2019.07.005
10.1016/j.msec.2015.04.047
10.2147/IJN.S121956
10.1016/j.commatsci.2019.03.003
10.1088/2053-1591/ab47c2
10.1007/s11595-011-0169-5
10.1039/C7NR00201G
10.1016/j.cap.2015.11.018
10.1007/s10904-020-01522-9
10.1246/cl.2012.1468
10.1002/btpr.2568
10.1134/S001814390802015X
10.1016/j.jallcom.2014.11.117
10.1016/j.apsusc.2008.06.206
10.1063/1.3668085
10.1088/0957-4484/19/30/305706
10.1021/ja037474t
10.2109/jcersj1950.92.1064_219
10.1016/j.mssp.2017.06.035
10.1016/S0920-5861(02)00207-9
10.1016/j.cis.2020.102140
10.1155/2014/124814
10.3390/microorganisms9010101
10.1155/2018/1062562
10.1080/10584587.2010.492020
10.1142/S0217979216500946
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10904-021-01973-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1574-1451
EndPage 3656
ExternalDocumentID 10_1007_s10904_021_01973_8
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z86
Z8P
Z8S
ZE2
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-952c514e71533e769d1ff34ab160e999fcf108310bc01b8790d8e4d1d37a71e03
IEDL.DBID U2A
ISSN 1574-1443
IngestDate Fri Jul 25 11:08:58 EDT 2025
Tue Jul 01 01:45:34 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Water
nanoparticles
TiO
Laser ablation
Antibacterial
Magnetic field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-952c514e71533e769d1ff34ab160e999fcf108310bc01b8790d8e4d1d37a71e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6629-3630
PQID 2561939327
PQPubID 2044289
PageCount 8
ParticipantIDs proquest_journals_2561939327
crossref_citationtrail_10_1007_s10904_021_01973_8
crossref_primary_10_1007_s10904_021_01973_8
springer_journals_10_1007_s10904_021_01973_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of inorganic and organometallic polymers and materials
PublicationTitleAbbrev J Inorg Organomet Polym
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Seki, Ishizawa, Mizutani, Kato (CR25) 1984; 92
Ma, Tschauner, Beckett, Rossman, Liu (CR26) 2012; 97
Yousefi, Ehsani, Jafari (CR5) 2019; 270
Jawad, Hasoon, Hussein (CR22) 2019; 12
Ismail, Mousa, Khashan, Mohsin, Hamid (CR29) 2016; 27
Sulaiman, Tawfeeq, Jaaffer (CR8) 2018; 34
Fusi, Russo, Casari, Bassi, Bottani (CR27) 2009; 255
Singh, Vihinen, Frankberg, Hyvarinen, Honkanen, Levanen (CR16) 2016; 11
Ismail (CR33) 2009; 20
Solati, Aghazadeh, Dorranian (CR19) 2020; 31
Nath, Laha, Khare (CR20) 2010; 121
Philip, Shima, Raj (CR28) 2008; 19
Shi (CR1) 2011; 26
Wang, Hu, Shao (CR38) 2017; 12
Attan, Nur, Efendi, Lintang, Lee, Sumpono (CR21) 2012; 41
Rugaie (CR40) 2021; 9
Wypych, Bobowska, Tracz, Opasinska, Kadlubowski, Krzywania-Kaliszewska, Grobelny, Wojciechowski (CR37) 2014
Bahrami, Delshadi, Assadpour, Jafari, Williams (CR4) 2020; 278
Hernández, Hernández, Cid, García, Villanueva (CR13) 2019; 162
Khashan, Sulaiman, Hussain, Marzoog, Jabir (CR6) 2020; 30
Salazar-Villanueva, Hernandez, Briones, Anota, Carrillo (CR14) 2016; 16
Meagher, Lager (CR24) 1979; 17
Chiodo, Salazar, Romero, Laricchia, Sala, Rubio (CR12) 2011; 135
Barreca, Acacia, Barletta, Spadaro, Curro, Neri (CR2) 2010; 165
Malekshahi Byranvand, Nemati Kharat, Fatholahi, Malekshahi Beiranvand (CR3) 2013; 3
Giorgetti, Miranda, Caporali, Canton, Marsili, Vergari, Giammanco (CR23) 2015; 643
Song, Yang, Medforth, Pereira, Singh, Xu, Jiang, Brinker, van Swol, Shelnutt (CR15) 2004; 126
Colon, Hidalgo, Navio (CR17) 2002; 76
Ismail, Hassan, Abdulrazaq, Abode (CR31) 2007; 10
Ismail, Sulaiman, Abdulrahman (CR35) 2016; 30
Khashan, Sulaiman, AbdulAmeer, Napolitano (CR7) 2016; 29
Ismail, Fadhil (CR34) 2014; 25
Ismail, Khashan, Mahdi (CR36) 2017; 68
Khashan, Sulaiman, Hussain, Marzoog, Jabir (CR9) 2020
Salim, Ismail, Halbos (CR32) 2019; 6
Shakhatov, Gordeev (CR18) 2008; 42
Zhang, Zhou, Liu, Yu (CR30) 2014; 16
Ismail, Sulaiman, Abdulrahman, Marzoog (CR10) 2015; 53
Russo, Liang, He, Zhou (CR11) 2017; 9
Jiang, Pi, Cai (CR39) 2018
RA Ismail (1973_CR33) 2009; 20
C Ma (1973_CR26) 2012; 97
RA Ismail (1973_CR31) 2007; 10
X Shi (1973_CR1) 2011; 26
L Wang (1973_CR38) 2017; 12
P Russo (1973_CR11) 2017; 9
F Barreca (1973_CR2) 2010; 165
J Zhang (1973_CR30) 2014; 16
RA Ismail (1973_CR34) 2014; 25
J Jiang (1973_CR39) 2018
Y Song (1973_CR15) 2004; 126
G Colon (1973_CR17) 2002; 76
M Yousefi (1973_CR5) 2019; 270
KS Khashan (1973_CR9) 2020
N Attan (1973_CR21) 2012; 41
RA Ismail (1973_CR29) 2016; 27
A Singh (1973_CR16) 2016; 11
A Hernández (1973_CR13) 2019; 162
M Fusi (1973_CR27) 2009; 255
A Wypych (1973_CR37) 2014
VA Shakhatov (1973_CR18) 2008; 42
A Bahrami (1973_CR4) 2020; 278
KH Jawad (1973_CR22) 2019; 12
H Seki (1973_CR25) 1984; 92
KS Khashan (1973_CR6) 2020; 30
KS Khashan (1973_CR7) 2016; 29
A Nath (1973_CR20) 2010; 121
E Giorgetti (1973_CR23) 2015; 643
J Philip (1973_CR28) 2008; 19
RA Ismail (1973_CR35) 2016; 30
L Chiodo (1973_CR12) 2011; 135
RA Ismail (1973_CR36) 2017; 68
EP Meagher (1973_CR24) 1979; 17
M Malekshahi Byranvand (1973_CR3) 2013; 3
ET Salim (1973_CR32) 2019; 6
M Salazar-Villanueva (1973_CR14) 2016; 16
E Solati (1973_CR19) 2020; 31
OA Rugaie (1973_CR40) 2021; 9
RA Ismail (1973_CR10) 2015; 53
GM Sulaiman (1973_CR8) 2018; 34
References_xml – volume: 31
  start-page: 961
  issue: 5
  year: 2020
  end-page: 969
  ident: CR19
  article-title: Effects of liquid ablation environment on the characteristics of TiO Nanoparticles
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01701-w
– volume: 12
  start-page: 10
  year: 2019
  ident: CR22
  article-title: Biological application of titanium dioxide nanoparticles prepared through laser ablation in liquid
  publication-title: Drug Invent. Today
– volume: 25
  start-page: 1435
  year: 2014
  end-page: 1440
  ident: CR34
  article-title: Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water
  publication-title: J. Mater. Sci.
– volume: 165
  start-page: 573
  year: 2010
  end-page: 578
  ident: CR2
  article-title: Titanium oxide nanoparticles prepared by laser ablation in water
  publication-title: Radiat. Eff. Def. Solids
  doi: 10.1080/10420151003722974
– volume: 11
  start-page: 1
  issue: 1
  year: 2016
  end-page: 9
  ident: CR16
  article-title: Pulsed laser ablation-induced green synthesis of TiO nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1608-1
– volume: 17
  start-page: 77
  year: 1979
  end-page: 85
  ident: CR24
  article-title: Polyhedral thermal expansion in the TiO polymorphs: refinement of the crystal structures of rutile and brookite at high temperature
  publication-title: Can. Mineral.
– volume: 16
  start-page: 20382
  year: 2014
  end-page: 20386
  ident: CR30
  article-title: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02201G
– volume: 97
  start-page: 1219
  year: 2012
  end-page: 1225
  ident: CR26
  article-title: Panguite (Ti , Sc, Al, Mg, Zr, Ca) O , a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD
  publication-title: Am. Miner.
  doi: 10.2138/am.2012.4027
– volume: 10
  start-page: 19
  issue: 1
  year: 2007
  end-page: 23
  ident: CR31
  article-title: Optoelectronic properties of CdTe/Si heterojunction prepared by pulsed Nd: YAG-laser deposition technique
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2006.12.001
– volume: 270
  start-page: 263
  year: 2019
  end-page: 277
  ident: CR5
  article-title: Lipid-based nano delivery of antimicrobials to control food-borne bacteria
  publication-title: Adv. Coll. Interface Sci.
  doi: 10.1016/j.cis.2019.07.005
– volume: 53
  start-page: 286
  year: 2015
  end-page: 297
  ident: CR10
  article-title: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.04.047
– volume: 12
  start-page: 1227
  year: 2017
  end-page: 1249
  ident: CR38
  article-title: The antimicrobial activity of nanoparticles: present situation and prospects for the future
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S121956
– volume: 162
  start-page: 228
  year: 2019
  end-page: 235
  ident: CR13
  article-title: Prediction, and physic-chemical properties of (TiO ) = 15–20 clusters and their possible catalytic application: A DFT study
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.03.003
– volume: 6
  start-page: 116429
  year: 2019
  ident: CR32
  article-title: Growth of Nb O film using hydrothermal method: effect of Nb concentration on physical properties
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab47c2
– volume: 26
  start-page: 65
  issue: 1
  year: 2011
  end-page: 69
  ident: CR1
  article-title: Photocatalytic degradation of rhodamine B dye with MWCNT/TiO /C60 composites by a hydrothermal method
  publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed.
  doi: 10.1007/s11595-011-0169-5
– volume: 20
  start-page: 1219
  year: 2009
  ident: CR33
  article-title: Improved characteristics of sprayed CdO films by rapid thermal annealing
  publication-title: J. Mater. Sci.
– volume: 9
  start-page: 6167
  issue: 18
  year: 2017
  end-page: 6177
  ident: CR11
  article-title: Phase transformation of TiO nanoparticles by femtosecond laser ablation in aqueous solutions and deposition on conductive substrates
  publication-title: Nanoscale
  doi: 10.1039/C7NR00201G
– volume: 16
  start-page: 197
  year: 2016
  end-page: 206
  ident: CR14
  article-title: Influence of doping on chain-like TiO clusters: a DFT study
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.11.018
– year: 2020
  ident: CR9
  article-title: Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles
  publication-title: J. Inorg. Organomet Polym. Mater.
  doi: 10.1007/s10904-020-01522-9
– volume: 41
  start-page: 1468
  issue: 11
  year: 2012
  end-page: 1470
  ident: CR21
  article-title: Well-aligned titanium dioxide with very high length-to-diameter ratio synthesized under magnetic field
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.1468
– volume: 34
  start-page: 218
  issue: 1
  year: 2018
  end-page: 230
  ident: CR8
  article-title: Biogenic synthesis of copper oxide nanoparticles using leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2568
– volume: 29
  start-page: 541
  issue: 2
  year: 2016
  end-page: 546
  ident: CR7
  article-title: Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles
  publication-title: Pak. J. Pharm. Sci.
– volume: 42
  start-page: 141
  issue: 2
  year: 2008
  end-page: 144
  ident: CR18
  article-title: Thin film deposition by means of laser ablation of titanium oxide targets in oxygen radiofrequency electrode plasma
  publication-title: High Energy Chem.
  doi: 10.1134/S001814390802015X
– volume: 643
  start-page: S75
  year: 2015
  end-page: S79
  ident: CR23
  article-title: TiO nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2014.11.117
– volume: 255
  start-page: 5334
  issue: 10
  year: 2009
  end-page: 5337
  ident: CR27
  article-title: Titanium oxide nanostructured films by reactive pulsed laser deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.206
– volume: 30
  start-page: 3677
  year: 2020
  end-page: 3693
  ident: CR6
  article-title: Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-020-01522-9
– volume: 135
  start-page: 244704
  year: 2011
  ident: CR12
  article-title: Structure, electronic, and optical properties of TiO atomic clusters: an ab initio study
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3668085
– volume: 19
  start-page: 305706
  year: 2008
  ident: CR28
  article-title: Evidence for enhanced thermal conduction through percolating structures in nanofluids
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/30/305706
– volume: 126
  start-page: 635
  issue: 2
  year: 2004
  end-page: 645
  ident: CR15
  article-title: Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037474t
– volume: 92
  start-page: 219
  year: 1984
  ident: CR25
  article-title: High temperature structures of the rutile-type oxides, TiO and SnO . Yogyo Kyokai Shi
  publication-title: J. Ceram. Assoc. Jpn.
  doi: 10.2109/jcersj1950.92.1064_219
– volume: 68
  start-page: 252
  year: 2017
  end-page: 261
  ident: CR36
  article-title: Characterization of high photosensitivity nanostructured 4H-SiC/p-Si heterostructure prepared by laser ablation of silicon in ethanol
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.06.035
– volume: 76
  start-page: 91
  issue: 2–4
  year: 2002
  end-page: 101
  ident: CR17
  article-title: A novel preparation of high surface area TiO nanoparticles from alkoxide precursor and using active carbon as additive
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(02)00207-9
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  end-page: 9
  ident: CR3
  article-title: A review on synthesis of nano-TiO via different methods
  publication-title: J. Nanostruct.
– volume: 278
  start-page: 102140
  year: 2020
  ident: CR4
  article-title: Antimicrobial-loaded nanocarriers for food packaging applications
  publication-title: Adv. Coll. Interface Sci.
  doi: 10.1016/j.cis.2020.102140
– year: 2014
  ident: CR37
  article-title: Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods
  publication-title: J. Nanomater.
  doi: 10.1155/2014/124814
– volume: 9
  start-page: 101
  issue: 1
  year: 2021
  ident: CR40
  article-title: Gold nanoparticles and graphene oxide flakes synergistic partaking in cytosolic bactericidal augmentation: role of ROS and NOX activity
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9010101
– year: 2018
  ident: CR39
  article-title: The advancing of zinc oxide nanoparticles for biomedical applications
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2018/1062562
– volume: 121
  start-page: 58
  issue: 1
  year: 2010
  end-page: 64
  ident: CR20
  article-title: Synthesis of TiO nanoparticles via laser ablation at titanium-water interface
  publication-title: Integ. Ferro.
  doi: 10.1080/10584587.2010.492020
– volume: 30
  start-page: 1650094
  issue: 206
  year: 2016
  ident: CR35
  article-title: Preparation of iron oxide nanoparticles by laser ablation in DMF under effect of external magnetic field
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979216500946
– volume: 27
  start-page: 10696
  issue: 10
  year: 2016
  end-page: 10700
  ident: CR29
  article-title: Synthesis of PbI nanoparticles by laser ablation in methanol
  publication-title: J. Mater. Sci.
– volume: 126
  start-page: 635
  issue: 2
  year: 2004
  ident: 1973_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037474t
– volume: 17
  start-page: 77
  year: 1979
  ident: 1973_CR24
  publication-title: Can. Mineral.
– volume: 255
  start-page: 5334
  issue: 10
  year: 2009
  ident: 1973_CR27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.206
– volume: 162
  start-page: 228
  year: 2019
  ident: 1973_CR13
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.03.003
– volume: 92
  start-page: 219
  year: 1984
  ident: 1973_CR25
  publication-title: J. Ceram. Assoc. Jpn.
  doi: 10.2109/jcersj1950.92.1064_219
– volume: 12
  start-page: 1227
  year: 2017
  ident: 1973_CR38
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S121956
– volume: 68
  start-page: 252
  year: 2017
  ident: 1973_CR36
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.06.035
– volume: 53
  start-page: 286
  year: 2015
  ident: 1973_CR10
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.04.047
– year: 2020
  ident: 1973_CR9
  publication-title: J. Inorg. Organomet Polym. Mater.
  doi: 10.1007/s10904-020-01522-9
– volume: 6
  start-page: 116429
  year: 2019
  ident: 1973_CR32
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab47c2
– volume: 270
  start-page: 263
  year: 2019
  ident: 1973_CR5
  publication-title: Adv. Coll. Interface Sci.
  doi: 10.1016/j.cis.2019.07.005
– volume: 643
  start-page: S75
  year: 2015
  ident: 1973_CR23
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2014.11.117
– volume: 25
  start-page: 1435
  year: 2014
  ident: 1973_CR34
  publication-title: J. Mater. Sci.
– volume: 31
  start-page: 961
  issue: 5
  year: 2020
  ident: 1973_CR19
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01701-w
– year: 2014
  ident: 1973_CR37
  publication-title: J. Nanomater.
  doi: 10.1155/2014/124814
– volume: 135
  start-page: 244704
  year: 2011
  ident: 1973_CR12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3668085
– volume: 121
  start-page: 58
  issue: 1
  year: 2010
  ident: 1973_CR20
  publication-title: Integ. Ferro.
  doi: 10.1080/10584587.2010.492020
– volume: 9
  start-page: 101
  issue: 1
  year: 2021
  ident: 1973_CR40
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9010101
– volume: 76
  start-page: 91
  issue: 2–4
  year: 2002
  ident: 1973_CR17
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(02)00207-9
– year: 2018
  ident: 1973_CR39
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2018/1062562
– volume: 30
  start-page: 3677
  year: 2020
  ident: 1973_CR6
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-020-01522-9
– volume: 30
  start-page: 1650094
  issue: 206
  year: 2016
  ident: 1973_CR35
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979216500946
– volume: 42
  start-page: 141
  issue: 2
  year: 2008
  ident: 1973_CR18
  publication-title: High Energy Chem.
  doi: 10.1134/S001814390802015X
– volume: 20
  start-page: 1219
  year: 2009
  ident: 1973_CR33
  publication-title: J. Mater. Sci.
– volume: 26
  start-page: 65
  issue: 1
  year: 2011
  ident: 1973_CR1
  publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed.
  doi: 10.1007/s11595-011-0169-5
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  ident: 1973_CR3
  publication-title: J. Nanostruct.
– volume: 29
  start-page: 541
  issue: 2
  year: 2016
  ident: 1973_CR7
  publication-title: Pak. J. Pharm. Sci.
– volume: 19
  start-page: 305706
  year: 2008
  ident: 1973_CR28
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/30/305706
– volume: 16
  start-page: 20382
  year: 2014
  ident: 1973_CR30
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02201G
– volume: 16
  start-page: 197
  year: 2016
  ident: 1973_CR14
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.11.018
– volume: 97
  start-page: 1219
  year: 2012
  ident: 1973_CR26
  publication-title: Am. Miner.
  doi: 10.2138/am.2012.4027
– volume: 165
  start-page: 573
  year: 2010
  ident: 1973_CR2
  publication-title: Radiat. Eff. Def. Solids
  doi: 10.1080/10420151003722974
– volume: 41
  start-page: 1468
  issue: 11
  year: 2012
  ident: 1973_CR21
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.1468
– volume: 34
  start-page: 218
  issue: 1
  year: 2018
  ident: 1973_CR8
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2568
– volume: 278
  start-page: 102140
  year: 2020
  ident: 1973_CR4
  publication-title: Adv. Coll. Interface Sci.
  doi: 10.1016/j.cis.2020.102140
– volume: 10
  start-page: 19
  issue: 1
  year: 2007
  ident: 1973_CR31
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2006.12.001
– volume: 11
  start-page: 1
  issue: 1
  year: 2016
  ident: 1973_CR16
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1608-1
– volume: 9
  start-page: 6167
  issue: 18
  year: 2017
  ident: 1973_CR11
  publication-title: Nanoscale
  doi: 10.1039/C7NR00201G
– volume: 12
  start-page: 10
  year: 2019
  ident: 1973_CR22
  publication-title: Drug Invent. Today
– volume: 27
  start-page: 10696
  issue: 10
  year: 2016
  ident: 1973_CR29
  publication-title: J. Mater. Sci.
SSID ssj0038051
Score 2.5467472
Snippet Titanium oxide nanoparticles (TiO 2 ) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques...
Titanium oxide nanoparticles (TiO2) were produced by pulsed Nd:YAG laser ablation in water under the effect of an external magnetic field. Various techniques...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3649
SubjectTerms Ablation
Anatase
Antiinfectives and antibacterials
Chemistry
Chemistry and Materials Science
E coli
Electron microscopes
Electron microscopy
Energy gap
Field emission microscopy
Inorganic Chemistry
Laser ablation
Magnetic fields
Microscopy
Nanoparticles
Neodymium lasers
Organic Chemistry
Polymer Sciences
Raman spectroscopy
Semiconductor lasers
Spectrum analysis
Titanium
Titanium dioxide
Titanium oxides
Vibration mode
X-ray diffraction
YAG lasers
Title Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in Water for Anti-Bacterial Applications
URI https://link.springer.com/article/10.1007/s10904-021-01973-8
https://www.proquest.com/docview/2561939327
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaADrAgnqI8Kg9sYCl-JE7GFFoqoJ1aUaaojm0UCVJoi8TP55wHBQRITBliO9Hd-e473QuhU6Uto5z6RIWTgAiAzEQpYQlPreSKWs1SV-DcHwS9kbge--OqKGxeZ7vXIclCU38qdotcxgRz7m8kOQlXUcN3vjtI8YjFtf7loeeXXVKlIOAu8KpU5uczvpqjJcb8FhYtrE13C21WMBHHJV-30YrJd9D6RT2dbRe99CcPuStAxF2Xg0aAzI5hGt-CWZrhWJU5bnhq8RDc_zx7fcKX2fQt0waDRgVXucqIw1mO7wBwzjDAVxzni4y0yw7O7vufwtt7aNTtDC96pBqfQFK4VwsS-SwFOGSkg3RGBpGm1nIxUTTwDOBCm1pazBlTqUdVKCNPh0ZoqrmcSGo8vo_W8mluDhCmYOCMjUJrtBBMWCW4VmmkGVXKME82Ea2pmKRVb3E34uIxWXZFdpRPgPJJQfkkbKKzjz3PZWeNP1cf18xJqls2TwCuAf4EBAo_cF4zbPn699MO_7f8CG2wQmZcatkxWlvMXs0JYJGFaqFG3G23B-55dX_TaRWi-A4ldteQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHMYF8RSDATlwg0jNY017LINpwLbTJnarliZBlaCDPSR-Pk4fDBAgcW6aVnZif5Y_2widK20Z5bRFVDDxiQDITJQSlvDESq6o1SxxBc79gd8dibtxa1wWhc0rtnuVkswt9adit9AxJpgLf0PJSbCONgAMBI7INWJRZX954LWKLqlSEAgXeFkq8_MeX93RCmN-S4vm3qazjbZKmIijQq87aM1ku6jerqaz7aHX_uQxcwWIuOM4aATE7BSmcQ_c0gxHquC44anFQwj_s3T5jK_T6VuqDQaLCqFyyYjDaYYfAHDOMMBXHGWLlFwVHZzd9z-lt_fRqHMzbHdJOT6BJHCvFiRssQTgkJEO0hnph5pay8VEUd8zgAttYmk-Z0wlHlWBDD0dGKGp5nIiqfH4Aapl08wcIkzBwRkbBtZoIZiwSnCtklAzqpRhnmwgWkkxTsre4m7ExVO86orsJB-D5ONc8nHQQBcf77wUnTX-XN2slBOXt2weA1wD_AkIFH7gslLY6vHvux39b_kZqneH_V7cux3cH6NNlp8fRzNrotpitjQngEsW6jQ_hu_yBtdz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEEAtKBJwQayiUMAHbmARL42TY1gitlYcqOAW1bGNIkEKJUh8PuMstCBA4hzHiWbGnmd5FoT2lbaMctolKhj6RAAyE6WEJTy1kitqNUtdgnOv758PxOV9934qi7-Mdm-uJKucBlelKS-OnrU9mkp8C130BHNH4VByEsyiOdiOqbPrAYuavZgHXreqmCoFgaMDr9Nmfp7jq2ua8Oa3K9LS88TLaKlGRhxVOl5BMyZfRQsnTae2NfTSGz7kLhkRxy4ejYDInfI0vgYXNcaRquLd8Mji2wxgMHt7wqfZ6D3TBsPuCsfmOjoOZzm-A_gcY0BZHOVFRo6ras7u-1NX3etoEJ_dnpyTupUCSUEoBQm7LAU0MtLhnZF-qKm1XAwV9T0DjGhTS8ueYyr1qApk6OnACE01l0NJjcc3UCsf5WYTYQrOztgwsEYLwYRVgmuVhppRpQzzZBvRRopJWtcZd-0uHpNJhWQn-QQkn5SST4I2Ovh857mqsvHn6E6jnKReca8JoBuwKNAo_MBho7DJ499n2_rf8D00f3MaJ9cX_atttMhK83ERZx3UKsZvZgcQpVC7pRV-AJm4268
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Field-Assisted+Laser+Ablation+of+Titanium+Dioxide+Nanoparticles+in+Water+for+Anti-Bacterial+Applications&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=Bahjat%2C+Hasan+H.&rft.au=Ismail%2C+Raid+A.&rft.au=Sulaiman%2C+Ghassan+M.&rft.au=Jabir%2C+Majid+S.&rft.date=2021-09-01&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=31&rft.issue=9&rft.spage=3649&rft.epage=3656&rft_id=info:doi/10.1007%2Fs10904-021-01973-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10904_021_01973_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon