YOLO-face: a real-time face detector

Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two cate...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 37; no. 4; pp. 805 - 813
Main Authors Chen, Weijun, Huang, Hongbo, Peng, Shuai, Zhou, Changsheng, Zhang, Cuiping
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two categories, i.e., two-stage detector like Faster R-CNN and one-stage detector like YOLO. Although YOLO and its varieties are not so good as two-stage detectors in terms of accuracy, they outperform the counterparts by a large margin in speed. YOLO performs well when facing normal size objects, but is incapable of detecting small objects. The accuracy decreases notably when dealing with objects that have large-scale changing like faces. Aimed to solve the detection problem of varying face scales, we propose a face detector named YOLO-face based on YOLOv3 to improve the performance for face detection. The present approach includes using anchor boxes more appropriate for face detection and a more precise regression loss function. The improved detector significantly increased accuracy while remaining fast detection speed. Experiments on the WIDER FACE and the FDDB datasets show that our improved algorithm outperforms YOLO and its varieties.
AbstractList Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two categories, i.e., two-stage detector like Faster R-CNN and one-stage detector like YOLO. Although YOLO and its varieties are not so good as two-stage detectors in terms of accuracy, they outperform the counterparts by a large margin in speed. YOLO performs well when facing normal size objects, but is incapable of detecting small objects. The accuracy decreases notably when dealing with objects that have large-scale changing like faces. Aimed to solve the detection problem of varying face scales, we propose a face detector named YOLO-face based on YOLOv3 to improve the performance for face detection. The present approach includes using anchor boxes more appropriate for face detection and a more precise regression loss function. The improved detector significantly increased accuracy while remaining fast detection speed. Experiments on the WIDER FACE and the FDDB datasets show that our improved algorithm outperforms YOLO and its varieties.
Author Zhou, Changsheng
Zhang, Cuiping
Chen, Weijun
Peng, Shuai
Huang, Hongbo
Author_xml – sequence: 1
  givenname: Weijun
  surname: Chen
  fullname: Chen, Weijun
  organization: Computer School, Beijing Information Science and Technology University
– sequence: 2
  givenname: Hongbo
  surname: Huang
  fullname: Huang, Hongbo
  email: hhb@bistu.edu.cn
  organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University
– sequence: 3
  givenname: Shuai
  surname: Peng
  fullname: Peng, Shuai
  organization: Computer School, Beijing Information Science and Technology University
– sequence: 4
  givenname: Changsheng
  surname: Zhou
  fullname: Zhou, Changsheng
  organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University
– sequence: 5
  givenname: Cuiping
  surname: Zhang
  fullname: Zhang, Cuiping
  organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Leo3OJNkm8SbFf7DQix48hWw2kS3tbk3Sg9_erSsIHnoaZub95g1vRiZd33lCLhFuEEDeJgAukQIDCqg4UnlCpig4o4xjOSFTQKkok0qfkVlKaxh6KfSUXL-vqhUN1vm7whbR2w3N7dYXh0nR-Oxd7uM5OQ12k_zFb52Tt8eH1-UzrVZPL8v7ijqOOlNdghM1a0RZCq5KhyjrIIedDcGJxmLJdRNqaHTQC2zUQgnV1NrCIiAyUfM5uRrv7mL_ufcpm3W_j91gaZhGqYVWoAYVG1Uu9ilFH8wutlsbvwyCOaRhxjTMkIb5ScPIAVL_INdmm9u-y9G2m-MoH9E0-HQfPv59dYT6BvqJcts
CitedBy_id crossref_primary_10_3390_app13053095
crossref_primary_10_32604_csse_2021_014086
crossref_primary_10_1109_ACCESS_2020_3047929
crossref_primary_10_48175_IJARSCT_10457
crossref_primary_10_1109_TIFS_2021_3080496
crossref_primary_10_1007_s00371_023_02822_0
crossref_primary_10_1007_s00371_024_03355_w
crossref_primary_10_1007_s40313_023_01023_3
crossref_primary_10_1109_ACCESS_2023_3297500
crossref_primary_10_1007_s00371_021_02260_w
crossref_primary_10_1109_JSEN_2020_3022958
crossref_primary_10_1016_j_ijcce_2022_05_001
crossref_primary_10_1007_s00521_022_07633_3
crossref_primary_10_1038_s41598_024_68446_z
crossref_primary_10_1007_s11042_023_16107_0
crossref_primary_10_1007_s42979_023_02064_w
crossref_primary_10_1155_2022_8703380
crossref_primary_10_1002_fsn3_3798
crossref_primary_10_3390_s21103478
crossref_primary_10_48084_etasr_6667
crossref_primary_10_1155_2022_5785108
crossref_primary_10_3390_electronics14010133
crossref_primary_10_1109_MITS_2023_3333882
crossref_primary_10_3389_fpls_2021_634103
crossref_primary_10_3390_s21175918
crossref_primary_10_1155_2021_3225687
crossref_primary_10_3390_jimaging7090161
crossref_primary_10_3390_s24237640
crossref_primary_10_1007_s00371_021_02067_9
crossref_primary_10_3390_app14209342
crossref_primary_10_1080_1206212X_2023_2182966
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_1007_s42452_021_04766_3
crossref_primary_10_3389_fpubh_2023_1225478
crossref_primary_10_1111_jfpe_14480
crossref_primary_10_3390_act10080170
crossref_primary_10_3390_app13063997
crossref_primary_10_1016_j_jvcir_2023_104010
crossref_primary_10_1007_s11042_023_15968_9
crossref_primary_10_1007_s13369_021_06003_w
crossref_primary_10_3390_agriengineering6040204
crossref_primary_10_3390_info15010053
crossref_primary_10_1109_JIOT_2023_3294944
crossref_primary_10_1016_j_ecoinf_2024_102913
crossref_primary_10_1016_j_micpro_2022_104573
crossref_primary_10_3390_rs17061012
crossref_primary_10_1007_s11760_021_02057_3
crossref_primary_10_25092_baunfbed_878224
crossref_primary_10_1007_s00371_023_02877_z
crossref_primary_10_69955_ajoeee_24_v4i2_70
crossref_primary_10_1007_s00500_023_08708_6
crossref_primary_10_1117_1_JEI_32_6_063021
crossref_primary_10_37391_ijeer_110331
crossref_primary_10_1007_s10694_023_01492_7
crossref_primary_10_1007_s00138_021_01206_5
crossref_primary_10_1007_s00138_021_01245_y
crossref_primary_10_1007_s12065_022_00743_w
crossref_primary_10_1016_j_jvcir_2021_103400
crossref_primary_10_1007_s00371_023_02982_z
crossref_primary_10_3390_app122111201
crossref_primary_10_1007_s00371_023_02808_y
crossref_primary_10_1109_TCSVT_2024_3383659
crossref_primary_10_3390_foods11244031
crossref_primary_10_61978_data_v2i3_313
crossref_primary_10_1109_ACCESS_2022_3192467
crossref_primary_10_1088_1361_6501_ac7e1f
crossref_primary_10_59313_jsr_a_1257361
crossref_primary_10_3390_app14209430
crossref_primary_10_1016_j_mlwa_2022_100312
crossref_primary_10_1007_s00371_021_02125_2
crossref_primary_10_1016_j_eswa_2024_126238
crossref_primary_10_1088_1742_6596_2858_1_012024
crossref_primary_10_1007_s00371_022_02589_w
crossref_primary_10_1088_1742_6596_2678_1_012011
crossref_primary_10_3390_app14135559
crossref_primary_10_1007_s00371_023_02918_7
crossref_primary_10_1007_s00371_022_02425_1
crossref_primary_10_1177_08953996241308770
crossref_primary_10_1016_j_matpr_2020_11_562
crossref_primary_10_1155_2021_7918165
crossref_primary_10_7717_peerj_cs_2277
crossref_primary_10_12720_jait_15_11_1252_1263
crossref_primary_10_1007_s00371_023_02846_6
crossref_primary_10_3390_s25061865
crossref_primary_10_17163_ings_n31_2024_04
crossref_primary_10_3390_s21134323
crossref_primary_10_1117_1_JEI_32_2_023013
crossref_primary_10_1007_s10489_021_03026_6
crossref_primary_10_1109_ACCESS_2024_3366451
crossref_primary_10_1186_s40537_021_00434_w
crossref_primary_10_3390_make5040083
crossref_primary_10_1007_s11554_025_01621_1
crossref_primary_10_1007_s11554_023_01284_w
crossref_primary_10_3390_app12199820
crossref_primary_10_1109_ACCESS_2024_3393835
crossref_primary_10_7717_peerj_cs_730
crossref_primary_10_1016_j_patcog_2024_110714
crossref_primary_10_1007_s00371_020_01922_5
crossref_primary_10_2147_JPR_S491574
crossref_primary_10_1007_s11042_023_16831_7
crossref_primary_10_1038_s41598_025_86662_z
crossref_primary_10_1109_TITS_2022_3177210
crossref_primary_10_1007_s00146_025_02208_x
crossref_primary_10_1007_s12145_024_01428_x
crossref_primary_10_1007_s42979_024_02792_7
crossref_primary_10_1109_JIOT_2023_3265267
crossref_primary_10_1007_s11554_023_01311_w
crossref_primary_10_1007_s00371_021_02357_2
crossref_primary_10_1109_ACCESS_2024_3378568
crossref_primary_10_1007_s11760_024_03074_8
crossref_primary_10_3390_app14093946
crossref_primary_10_32604_cmc_2022_024272
crossref_primary_10_47933_ijeir_1336813
crossref_primary_10_1007_s11042_023_15808_w
crossref_primary_10_3390_s23104770
crossref_primary_10_1007_s00521_024_10300_4
crossref_primary_10_1109_TITS_2023_3275070
Cites_doi 10.1023/A:1009715923555
10.1007/s11263-014-0733-5
10.1023/B:VISI.0000013087.49260.fb
10.1109/tpami.2009.167
10.1109/TPAMI.2015.2389824
10.1109/LSP.2016.2603342
10.1109/TPAMI.2017.2738644
10.1109/CVPR.2015.7298965
10.1109/ICCV.2015.169
10.1109/CVPR.2018.00644
10.1109/CVPR.2017.690
10.1109/ICPR.2006.479
10.1109/ICCV.2017.522
10.1109/CVPR.2016.91
10.1109/CVPR.2019.00075
10.1109/CVPR.2014.81
10.1109/CVPR.2016.596
10.1007/978-3-030-01240-3_49
10.1109/CVPR.2017.106
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2017.166
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-020-01831-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 813
ExternalDocumentID 10_1007_s00371_020_01831_7
GrantInformation_xml – fundername: Beijing Municipal Commission of Education
  grantid: KM201811232024; KM201611232022
  funderid: http://dx.doi.org/10.13039/501100002888
– fundername: Beijing excellent talents youth backbone project
  grantid: 9111524401
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-950c4b2d4554385c117bf7c31affc4da1539dfb0d9f961d86848db9a06f1124b3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Sun Jul 13 04:40:17 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Fri Feb 21 02:48:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords YOLO
Deep learning
Loss function
Anchor box
Face detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-950c4b2d4554385c117bf7c31affc4da1539dfb0d9f961d86848db9a06f1124b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917949808
PQPubID 2043737
PageCount 9
ParticipantIDs proquest_journals_2917949808
crossref_primary_10_1007_s00371_020_01831_7
crossref_citationtrail_10_1007_s00371_020_01831_7
springer_journals_10_1007_s00371_020_01831_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yang, Luo, Loy, Tang (CR22) 2018; 40
Zhang, Zhang, Li, Qiao (CR19) 2016; 23
CR18
CR17
Felzenszwalb, Girshick, McAllester, Ramanan (CR4) 2010; 32
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (CR33) 2014; 111
Dai, Li, He, Sun, Lee, Sugiyama, Luxburg, Guyon, Garnett (CR8) 2016
CR14
CR13
CR35
CR12
CR34
CR11
CR10
CR32
CR30
Dalal, Triggs, Schmid, Soatto, Tomasi (CR16) 2005
CR2
CR3
CR6
CR7
CR29
CR28
CR9
CR27
Krizhevsky, Sutskever, Hinton, Pereira, Burges, Bottou, Weinberger (CR1) 2012
CR26
CR25
CR24
CR23
He, Zhang, Ren, Sun (CR5) 2015; 37
CR21
CR20
Burges (CR31) 1998; 2
Viola, Jones (CR15) 2004; 57
1831_CR29
M Everingham (1831_CR33) 2014; 111
1831_CR20
1831_CR21
P Viola (1831_CR15) 2004; 57
1831_CR23
1831_CR24
1831_CR25
1831_CR26
1831_CR27
1831_CR28
1831_CR18
K Zhang (1831_CR19) 2016; 23
K He (1831_CR5) 2015; 37
S Yang (1831_CR22) 2018; 40
CJC Burges (1831_CR31) 1998; 2
1831_CR9
J Dai (1831_CR8) 2016
A Krizhevsky (1831_CR1) 2012
1831_CR6
1831_CR7
N Dalal (1831_CR16) 2005
1831_CR2
1831_CR3
1831_CR30
1831_CR10
1831_CR32
PF Felzenszwalb (1831_CR4) 2010; 32
1831_CR11
1831_CR12
1831_CR34
1831_CR13
1831_CR35
1831_CR14
1831_CR17
References_xml – ident: CR18
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: CR31
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: CR14
– ident: CR2
– ident: CR12
– ident: CR30
– start-page: 886
  year: 2005
  end-page: 893
  ident: CR16
  article-title: Histograms of oriented gradients for human detection
  publication-title: International Conference on Computer Vision and Pattern Recognition (CVPR ’05)
– ident: CR10
– start-page: 379
  year: 2016
  end-page: 387
  ident: CR8
  article-title: R-fcn: object detection via region-based fully convolutional networks
  publication-title: Advances in Neural Information Processing Systems
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 111
  start-page: 98
  issue: 1
  year: 2014
  end-page: 136
  ident: CR33
  article-title: The Pascal visual object classes challenge: a retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– ident: CR25
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  end-page: 154
  ident: CR15
  article-title: Robust real-time face detection
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR3
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  end-page: 1645
  ident: CR4
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2009.167
– ident: CR17
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  ident: CR5
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  end-page: 1503
  ident: CR19
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– volume: 40
  start-page: 1845
  issue: 8
  year: 2018
  end-page: 1859
  ident: CR22
  article-title: Faceness-net: face detection through deep facial part responses
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2738644
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 1831_CR7
– ident: 1831_CR11
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 1831_CR1
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 1831_CR15
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: 1831_CR21
  doi: 10.1109/CVPR.2015.7298965
– ident: 1831_CR28
– ident: 1831_CR6
  doi: 10.1109/ICCV.2015.169
– ident: 1831_CR17
  doi: 10.1109/CVPR.2018.00644
– volume: 40
  start-page: 1845
  issue: 8
  year: 2018
  ident: 1831_CR22
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2738644
– ident: 1831_CR32
  doi: 10.1109/CVPR.2017.690
– ident: 1831_CR18
  doi: 10.1109/ICPR.2006.479
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 1831_CR19
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– start-page: 886
  volume-title: International Conference on Computer Vision and Pattern Recognition (CVPR ’05)
  year: 2005
  ident: 1831_CR16
– ident: 1831_CR25
  doi: 10.1109/ICCV.2017.522
– ident: 1831_CR9
  doi: 10.1109/CVPR.2016.91
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 1831_CR31
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: 1831_CR35
  doi: 10.1109/CVPR.2019.00075
– ident: 1831_CR2
  doi: 10.1109/CVPR.2014.81
– ident: 1831_CR13
– ident: 1831_CR14
  doi: 10.1109/CVPR.2016.596
– volume: 111
  start-page: 98
  issue: 1
  year: 2014
  ident: 1831_CR33
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 1831_CR4
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2009.167
– ident: 1831_CR29
– ident: 1831_CR27
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 1831_CR5
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 1831_CR30
  doi: 10.1007/978-3-030-01240-3_49
– ident: 1831_CR12
  doi: 10.1109/CVPR.2017.106
– ident: 1831_CR10
  doi: 10.1007/978-3-319-46448-0_2
– ident: 1831_CR23
  doi: 10.1109/CVPR.2017.166
– ident: 1831_CR20
– start-page: 379
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 1831_CR8
– ident: 1831_CR24
– ident: 1831_CR26
– ident: 1831_CR3
– ident: 1831_CR34
  doi: 10.1109/CVPR.2016.90
SSID ssj0017749
Score 2.629498
Snippet Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 805
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Computer Graphics
Computer Science
Datasets
Deep learning
Face recognition
Image Processing and Computer Vision
Machine learning
Neural networks
Object recognition
Original Article
Pattern recognition
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXrYDSKaNm0SLgjQpgnBhhCTxqlK8zhN22Dl_-Nk6QZIcG3aSLUTf58dx0aoIw3ARJlarJllmOaSYwm4jXMFYG4sQKSvW_A0yPsj-jDOxiHgtghplbVN9IZaz5SLkV8lwi0dwWN-M3_HrmuUO10NLTQ2URNMMAfnq3nXHTy_rM4RgNx4AkzAV3J3PsO1GX95zlerw859imFdE8x-QtOab_46IvXI09tFO4EyRrdLHe-hDTPdR9vfCgkeoM7b8HGIrVTmOpIR8MAJdk3jI_ck0qbyoflDNOp1X-_7OPQ_wAo2RoVFFitaJpoC5Kc8U4Sw0jIYk9YqqiUYK6FtGWthRU40zznluhQyzi2wKFqmR6gxnU3NMYo0t1yxNGEEdKMSxSloiGRKJBIIBDMtROpfL1QoDu56VEyKVVljL64CxFV4cRWshS5W38yXpTH-fbtdS7QI22RRrJXaQpe1lNfDf8928v9sp2grcbknPsOmjRrVx6c5A_JQledhhXwBljC7fw
  priority: 102
  providerName: ProQuest
Title YOLO-face: a real-time face detector
URI https://link.springer.com/article/10.1007/s00371-020-01831-7
https://www.proquest.com/docview/2917949808
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKFWGbmApDye22QrqQzxahKjUTpFjx1NVEA3_n4ubpIAAiSlS7Hj47uzvc-y7A-jKFGkiCQzRzDBCI8mJRN4mkUIyTw1SpM1b8DCORlN6OwtnRVDYqrztXh5J2pW6Cnaz2eVIvt1x0Q89wmrQCPO9O3rx1O9VZwcoaKzo9XB_lMd5FqEyP4_xlY42GvPbsahlm8E-7BYy0emt7XoAW-myCXtlCQanmJFN2PmUT_AQuvPJ_YQYqdIrRzooBxckrx3v5G8cnWb2D_0RTAf955sRKcogEIXzIyMidBVNfE2R-QMeKs9jiWHYJo1RVEtcs4Q2iauFEZGnecQp14mQbmRQTNEkOIb68mWZnoCjueGKBT7z0ETKV5yiobxQCV-ijmBpC7wSjVgVOcLzUhWLuMpubBGMEcHYIhizFlxU37yuM2T82btdghwXs2UV-yJfFgR3eQsuS-A3zb-Pdvq_7mew7edXUuzFmzbUs7f39Bw1RZZ0oMYHww40esP5XR-f1_3x41PHOtYH5T3BLg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzaGcwCKLG9tICCGgtHThAhKcguPlhMpWhPgpvpGxm7SABLde48RSJs9-z5kNoCoN0kSeWKKZZYSmkhOJvE1ShWRuLFKkr1vQ6aaNG3p5W7udgM8yF8aFVZZ7ot-o9aNy_8gPYuGgI3jIj5-eiesa5byrZQuNASxa5uMdj2yvR80z_L67cVw_vz5tkKKrAFEItz4RtVDRPNYUiTThNRVFLLcMx6S1imqJW4DQNg-1sCKNNE855ToXMkwtahOaJzjvJEzTJBFuRfH6xdBrgVLKy-0IT2Yuw7RI0vGper42HnGHtRBXUUTYTyIcqdtfDlnPc_UFmC8EanAyQNQiTJjeEsx9K1u4DNW7q_YVsVKZw0AGqDofiGtRH7grgTZ97whYgZux2GUVpnqPPbMGgeaWK5bELEIkqFhxiniIakrEEuUKMxWIylfPVFGK3HXEeMiGRZS9uTI0V-bNlbEK7A2feRoU4vj37s3SolmxKF-zEYQqsF9aeTT892zr_8-2AzON6047aze7rQ2YjV3Ui4_t2YSp_sub2ULZ0s-3PVYCuB83OL8AnAr2yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAedoOIpq-k3CZgGjA2DkwapypNmtNUJij_Hydru4EAiWuTRqrt2F8a-zNAR2QYJlJfE8U0I0EkOBEYt0kkMZhnGkOk5S14HEb9cXA_CSdLVfw22726kpzXNBiWpry4nCl9WRe-WaY5Yo4-LtokJWwV1tAdU2PXY69b3yMguLEAmOJZydR8lmUzP6_xNTQt8Oa3K1IbeXo7sFVCRqc71_EurGR5E7ardgxOuTubsLnELbgHnZfRYES0kNmVIxyEhlNi-sg75omjssL-rd-Hce_2-bpPypYIROLHFSQOXRmkngoQBfg8lJSyVDMcE1rLQAn0X7HSqatiHUdU8YgHXKWxcCONwCpI_QNo5K95dgiO4ppL5nuMorqkJ3mASqOhjD2BmIJlLaCVNBJZ8oWbthXTpGY6thJMUIKJlWDCWnBevzObs2X8ObtdCTkpd8574sXGRcTc5S24qAS_GP59taP_TT-D9aebXjK4Gz4cw4ZnMlVsPk4bGsXbR3aCUKNIT601fQJB_sRJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-face%3A+a+real-time+face+detector&rft.jtitle=The+Visual+computer&rft.au=Chen%2C+Weijun&rft.au=Huang%2C+Hongbo&rft.au=Peng%2C+Shuai&rft.au=Zhou%2C+Changsheng&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=4&rft.spage=805&rft.epage=813&rft_id=info:doi/10.1007%2Fs00371-020-01831-7&rft.externalDocID=10_1007_s00371_020_01831_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon