YOLO-face: a real-time face detector
Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two cate...
Saved in:
Published in | The Visual computer Vol. 37; no. 4; pp. 805 - 813 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two categories, i.e., two-stage detector like Faster R-CNN and one-stage detector like YOLO. Although YOLO and its varieties are not so good as two-stage detectors in terms of accuracy, they outperform the counterparts by a large margin in speed. YOLO performs well when facing normal size objects, but is incapable of detecting small objects. The accuracy decreases notably when dealing with objects that have large-scale changing like faces. Aimed to solve the detection problem of varying face scales, we propose a face detector named YOLO-face based on YOLOv3 to improve the performance for face detection. The present approach includes using anchor boxes more appropriate for face detection and a more precise regression loss function. The improved detector significantly increased accuracy while remaining fast detection speed. Experiments on the WIDER FACE and the FDDB datasets show that our improved algorithm outperforms YOLO and its varieties. |
---|---|
AbstractList | Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In recent years, deep learning-based algorithms in object detection have grown rapidly. These algorithms can be generally divided into two categories, i.e., two-stage detector like Faster R-CNN and one-stage detector like YOLO. Although YOLO and its varieties are not so good as two-stage detectors in terms of accuracy, they outperform the counterparts by a large margin in speed. YOLO performs well when facing normal size objects, but is incapable of detecting small objects. The accuracy decreases notably when dealing with objects that have large-scale changing like faces. Aimed to solve the detection problem of varying face scales, we propose a face detector named YOLO-face based on YOLOv3 to improve the performance for face detection. The present approach includes using anchor boxes more appropriate for face detection and a more precise regression loss function. The improved detector significantly increased accuracy while remaining fast detection speed. Experiments on the WIDER FACE and the FDDB datasets show that our improved algorithm outperforms YOLO and its varieties. |
Author | Zhou, Changsheng Zhang, Cuiping Chen, Weijun Peng, Shuai Huang, Hongbo |
Author_xml | – sequence: 1 givenname: Weijun surname: Chen fullname: Chen, Weijun organization: Computer School, Beijing Information Science and Technology University – sequence: 2 givenname: Hongbo surname: Huang fullname: Huang, Hongbo email: hhb@bistu.edu.cn organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University – sequence: 3 givenname: Shuai surname: Peng fullname: Peng, Shuai organization: Computer School, Beijing Information Science and Technology University – sequence: 4 givenname: Changsheng surname: Zhou fullname: Zhou, Changsheng organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University – sequence: 5 givenname: Cuiping surname: Zhang fullname: Zhang, Cuiping organization: Computer School, Beijing Information Science and Technology University, Institute of Computing Intelligence, Beijing Information Science and Technology University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8Leo3OJNkm8SbFf7DQix48hWw2kS3tbk3Sg9_erSsIHnoaZub95g1vRiZd33lCLhFuEEDeJgAukQIDCqg4UnlCpig4o4xjOSFTQKkok0qfkVlKaxh6KfSUXL-vqhUN1vm7whbR2w3N7dYXh0nR-Oxd7uM5OQ12k_zFb52Tt8eH1-UzrVZPL8v7ijqOOlNdghM1a0RZCq5KhyjrIIedDcGJxmLJdRNqaHTQC2zUQgnV1NrCIiAyUfM5uRrv7mL_ufcpm3W_j91gaZhGqYVWoAYVG1Uu9ilFH8wutlsbvwyCOaRhxjTMkIb5ScPIAVL_INdmm9u-y9G2m-MoH9E0-HQfPv59dYT6BvqJcts |
CitedBy_id | crossref_primary_10_3390_app13053095 crossref_primary_10_32604_csse_2021_014086 crossref_primary_10_1109_ACCESS_2020_3047929 crossref_primary_10_48175_IJARSCT_10457 crossref_primary_10_1109_TIFS_2021_3080496 crossref_primary_10_1007_s00371_023_02822_0 crossref_primary_10_1007_s00371_024_03355_w crossref_primary_10_1007_s40313_023_01023_3 crossref_primary_10_1109_ACCESS_2023_3297500 crossref_primary_10_1007_s00371_021_02260_w crossref_primary_10_1109_JSEN_2020_3022958 crossref_primary_10_1016_j_ijcce_2022_05_001 crossref_primary_10_1007_s00521_022_07633_3 crossref_primary_10_1038_s41598_024_68446_z crossref_primary_10_1007_s11042_023_16107_0 crossref_primary_10_1007_s42979_023_02064_w crossref_primary_10_1155_2022_8703380 crossref_primary_10_1002_fsn3_3798 crossref_primary_10_3390_s21103478 crossref_primary_10_48084_etasr_6667 crossref_primary_10_1155_2022_5785108 crossref_primary_10_3390_electronics14010133 crossref_primary_10_1109_MITS_2023_3333882 crossref_primary_10_3389_fpls_2021_634103 crossref_primary_10_3390_s21175918 crossref_primary_10_1155_2021_3225687 crossref_primary_10_3390_jimaging7090161 crossref_primary_10_3390_s24237640 crossref_primary_10_1007_s00371_021_02067_9 crossref_primary_10_3390_app14209342 crossref_primary_10_1080_1206212X_2023_2182966 crossref_primary_10_1007_s00371_023_02827_9 crossref_primary_10_1007_s42452_021_04766_3 crossref_primary_10_3389_fpubh_2023_1225478 crossref_primary_10_1111_jfpe_14480 crossref_primary_10_3390_act10080170 crossref_primary_10_3390_app13063997 crossref_primary_10_1016_j_jvcir_2023_104010 crossref_primary_10_1007_s11042_023_15968_9 crossref_primary_10_1007_s13369_021_06003_w crossref_primary_10_3390_agriengineering6040204 crossref_primary_10_3390_info15010053 crossref_primary_10_1109_JIOT_2023_3294944 crossref_primary_10_1016_j_ecoinf_2024_102913 crossref_primary_10_1016_j_micpro_2022_104573 crossref_primary_10_3390_rs17061012 crossref_primary_10_1007_s11760_021_02057_3 crossref_primary_10_25092_baunfbed_878224 crossref_primary_10_1007_s00371_023_02877_z crossref_primary_10_69955_ajoeee_24_v4i2_70 crossref_primary_10_1007_s00500_023_08708_6 crossref_primary_10_1117_1_JEI_32_6_063021 crossref_primary_10_37391_ijeer_110331 crossref_primary_10_1007_s10694_023_01492_7 crossref_primary_10_1007_s00138_021_01206_5 crossref_primary_10_1007_s00138_021_01245_y crossref_primary_10_1007_s12065_022_00743_w crossref_primary_10_1016_j_jvcir_2021_103400 crossref_primary_10_1007_s00371_023_02982_z crossref_primary_10_3390_app122111201 crossref_primary_10_1007_s00371_023_02808_y crossref_primary_10_1109_TCSVT_2024_3383659 crossref_primary_10_3390_foods11244031 crossref_primary_10_61978_data_v2i3_313 crossref_primary_10_1109_ACCESS_2022_3192467 crossref_primary_10_1088_1361_6501_ac7e1f crossref_primary_10_59313_jsr_a_1257361 crossref_primary_10_3390_app14209430 crossref_primary_10_1016_j_mlwa_2022_100312 crossref_primary_10_1007_s00371_021_02125_2 crossref_primary_10_1016_j_eswa_2024_126238 crossref_primary_10_1088_1742_6596_2858_1_012024 crossref_primary_10_1007_s00371_022_02589_w crossref_primary_10_1088_1742_6596_2678_1_012011 crossref_primary_10_3390_app14135559 crossref_primary_10_1007_s00371_023_02918_7 crossref_primary_10_1007_s00371_022_02425_1 crossref_primary_10_1177_08953996241308770 crossref_primary_10_1016_j_matpr_2020_11_562 crossref_primary_10_1155_2021_7918165 crossref_primary_10_7717_peerj_cs_2277 crossref_primary_10_12720_jait_15_11_1252_1263 crossref_primary_10_1007_s00371_023_02846_6 crossref_primary_10_3390_s25061865 crossref_primary_10_17163_ings_n31_2024_04 crossref_primary_10_3390_s21134323 crossref_primary_10_1117_1_JEI_32_2_023013 crossref_primary_10_1007_s10489_021_03026_6 crossref_primary_10_1109_ACCESS_2024_3366451 crossref_primary_10_1186_s40537_021_00434_w crossref_primary_10_3390_make5040083 crossref_primary_10_1007_s11554_025_01621_1 crossref_primary_10_1007_s11554_023_01284_w crossref_primary_10_3390_app12199820 crossref_primary_10_1109_ACCESS_2024_3393835 crossref_primary_10_7717_peerj_cs_730 crossref_primary_10_1016_j_patcog_2024_110714 crossref_primary_10_1007_s00371_020_01922_5 crossref_primary_10_2147_JPR_S491574 crossref_primary_10_1007_s11042_023_16831_7 crossref_primary_10_1038_s41598_025_86662_z crossref_primary_10_1109_TITS_2022_3177210 crossref_primary_10_1007_s00146_025_02208_x crossref_primary_10_1007_s12145_024_01428_x crossref_primary_10_1007_s42979_024_02792_7 crossref_primary_10_1109_JIOT_2023_3265267 crossref_primary_10_1007_s11554_023_01311_w crossref_primary_10_1007_s00371_021_02357_2 crossref_primary_10_1109_ACCESS_2024_3378568 crossref_primary_10_1007_s11760_024_03074_8 crossref_primary_10_3390_app14093946 crossref_primary_10_32604_cmc_2022_024272 crossref_primary_10_47933_ijeir_1336813 crossref_primary_10_1007_s11042_023_15808_w crossref_primary_10_3390_s23104770 crossref_primary_10_1007_s00521_024_10300_4 crossref_primary_10_1109_TITS_2023_3275070 |
Cites_doi | 10.1023/A:1009715923555 10.1007/s11263-014-0733-5 10.1023/B:VISI.0000013087.49260.fb 10.1109/tpami.2009.167 10.1109/TPAMI.2015.2389824 10.1109/LSP.2016.2603342 10.1109/TPAMI.2017.2738644 10.1109/CVPR.2015.7298965 10.1109/ICCV.2015.169 10.1109/CVPR.2018.00644 10.1109/CVPR.2017.690 10.1109/ICPR.2006.479 10.1109/ICCV.2017.522 10.1109/CVPR.2016.91 10.1109/CVPR.2019.00075 10.1109/CVPR.2014.81 10.1109/CVPR.2016.596 10.1007/978-3-030-01240-3_49 10.1109/CVPR.2017.106 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2017.166 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-020-01831-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 813 |
ExternalDocumentID | 10_1007_s00371_020_01831_7 |
GrantInformation_xml | – fundername: Beijing Municipal Commission of Education grantid: KM201811232024; KM201611232022 funderid: http://dx.doi.org/10.13039/501100002888 – fundername: Beijing excellent talents youth backbone project grantid: 9111524401 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-950c4b2d4554385c117bf7c31affc4da1539dfb0d9f961d86848db9a06f1124b3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Sun Jul 13 04:40:17 EDT 2025 Tue Jul 01 01:05:48 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Fri Feb 21 02:48:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | YOLO Deep learning Loss function Anchor box Face detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-950c4b2d4554385c117bf7c31affc4da1539dfb0d9f961d86848db9a06f1124b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917949808 |
PQPubID | 2043737 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2917949808 crossref_primary_10_1007_s00371_020_01831_7 crossref_citationtrail_10_1007_s00371_020_01831_7 springer_journals_10_1007_s00371_020_01831_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yang, Luo, Loy, Tang (CR22) 2018; 40 Zhang, Zhang, Li, Qiao (CR19) 2016; 23 CR18 CR17 Felzenszwalb, Girshick, McAllester, Ramanan (CR4) 2010; 32 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (CR33) 2014; 111 Dai, Li, He, Sun, Lee, Sugiyama, Luxburg, Guyon, Garnett (CR8) 2016 CR14 CR13 CR35 CR12 CR34 CR11 CR10 CR32 CR30 Dalal, Triggs, Schmid, Soatto, Tomasi (CR16) 2005 CR2 CR3 CR6 CR7 CR29 CR28 CR9 CR27 Krizhevsky, Sutskever, Hinton, Pereira, Burges, Bottou, Weinberger (CR1) 2012 CR26 CR25 CR24 CR23 He, Zhang, Ren, Sun (CR5) 2015; 37 CR21 CR20 Burges (CR31) 1998; 2 Viola, Jones (CR15) 2004; 57 1831_CR29 M Everingham (1831_CR33) 2014; 111 1831_CR20 1831_CR21 P Viola (1831_CR15) 2004; 57 1831_CR23 1831_CR24 1831_CR25 1831_CR26 1831_CR27 1831_CR28 1831_CR18 K Zhang (1831_CR19) 2016; 23 K He (1831_CR5) 2015; 37 S Yang (1831_CR22) 2018; 40 CJC Burges (1831_CR31) 1998; 2 1831_CR9 J Dai (1831_CR8) 2016 A Krizhevsky (1831_CR1) 2012 1831_CR6 1831_CR7 N Dalal (1831_CR16) 2005 1831_CR2 1831_CR3 1831_CR30 1831_CR10 1831_CR32 PF Felzenszwalb (1831_CR4) 2010; 32 1831_CR11 1831_CR12 1831_CR34 1831_CR13 1831_CR35 1831_CR14 1831_CR17 |
References_xml | – ident: CR18 – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 ident: CR31 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: CR14 – ident: CR2 – ident: CR12 – ident: CR30 – start-page: 886 year: 2005 end-page: 893 ident: CR16 article-title: Histograms of oriented gradients for human detection publication-title: International Conference on Computer Vision and Pattern Recognition (CVPR ’05) – ident: CR10 – start-page: 379 year: 2016 end-page: 387 ident: CR8 article-title: R-fcn: object detection via region-based fully convolutional networks publication-title: Advances in Neural Information Processing Systems – ident: CR35 – ident: CR6 – ident: CR29 – volume: 111 start-page: 98 issue: 1 year: 2014 end-page: 136 ident: CR33 article-title: The Pascal visual object classes challenge: a retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – ident: CR25 – volume: 57 start-page: 137 issue: 2 year: 2004 end-page: 154 ident: CR15 article-title: Robust real-time face detection publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000013087.49260.fb – ident: CR27 – ident: CR23 – ident: CR21 – ident: CR3 – volume: 32 start-page: 1627 issue: 9 year: 2010 end-page: 1645 ident: CR4 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2009.167 – ident: CR17 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 ident: CR5 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: CR13 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR34 – start-page: 1097 year: 2012 end-page: 1105 ident: CR1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 23 start-page: 1499 issue: 10 year: 2016 end-page: 1503 ident: CR19 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – volume: 40 start-page: 1845 issue: 8 year: 2018 end-page: 1859 ident: CR22 article-title: Faceness-net: face detection through deep facial part responses publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2738644 – ident: CR7 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 1831_CR7 – ident: 1831_CR11 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 1831_CR1 – volume: 57 start-page: 137 issue: 2 year: 2004 ident: 1831_CR15 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000013087.49260.fb – ident: 1831_CR21 doi: 10.1109/CVPR.2015.7298965 – ident: 1831_CR28 – ident: 1831_CR6 doi: 10.1109/ICCV.2015.169 – ident: 1831_CR17 doi: 10.1109/CVPR.2018.00644 – volume: 40 start-page: 1845 issue: 8 year: 2018 ident: 1831_CR22 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2738644 – ident: 1831_CR32 doi: 10.1109/CVPR.2017.690 – ident: 1831_CR18 doi: 10.1109/ICPR.2006.479 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 1831_CR19 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – start-page: 886 volume-title: International Conference on Computer Vision and Pattern Recognition (CVPR ’05) year: 2005 ident: 1831_CR16 – ident: 1831_CR25 doi: 10.1109/ICCV.2017.522 – ident: 1831_CR9 doi: 10.1109/CVPR.2016.91 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 1831_CR31 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: 1831_CR35 doi: 10.1109/CVPR.2019.00075 – ident: 1831_CR2 doi: 10.1109/CVPR.2014.81 – ident: 1831_CR13 – ident: 1831_CR14 doi: 10.1109/CVPR.2016.596 – volume: 111 start-page: 98 issue: 1 year: 2014 ident: 1831_CR33 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – volume: 32 start-page: 1627 issue: 9 year: 2010 ident: 1831_CR4 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2009.167 – ident: 1831_CR29 – ident: 1831_CR27 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 1831_CR5 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: 1831_CR30 doi: 10.1007/978-3-030-01240-3_49 – ident: 1831_CR12 doi: 10.1109/CVPR.2017.106 – ident: 1831_CR10 doi: 10.1007/978-3-319-46448-0_2 – ident: 1831_CR23 doi: 10.1109/CVPR.2017.166 – ident: 1831_CR20 – start-page: 379 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 1831_CR8 – ident: 1831_CR24 – ident: 1831_CR26 – ident: 1831_CR3 – ident: 1831_CR34 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0017749 |
Score | 2.629498 |
Snippet | Face detection is one of the important tasks of object detection. Typically detection is the first stage of pattern recognition and identity authentication. In... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 805 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Computer Graphics Computer Science Datasets Deep learning Face recognition Image Processing and Computer Vision Machine learning Neural networks Object recognition Original Article Pattern recognition Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXrYDSKaNm0SLgjQpgnBhhCTxqlK8zhN22Dl_-Nk6QZIcG3aSLUTf58dx0aoIw3ARJlarJllmOaSYwm4jXMFYG4sQKSvW_A0yPsj-jDOxiHgtghplbVN9IZaz5SLkV8lwi0dwWN-M3_HrmuUO10NLTQ2URNMMAfnq3nXHTy_rM4RgNx4AkzAV3J3PsO1GX95zlerw859imFdE8x-QtOab_46IvXI09tFO4EyRrdLHe-hDTPdR9vfCgkeoM7b8HGIrVTmOpIR8MAJdk3jI_ck0qbyoflDNOp1X-_7OPQ_wAo2RoVFFitaJpoC5Kc8U4Sw0jIYk9YqqiUYK6FtGWthRU40zznluhQyzi2wKFqmR6gxnU3NMYo0t1yxNGEEdKMSxSloiGRKJBIIBDMtROpfL1QoDu56VEyKVVljL64CxFV4cRWshS5W38yXpTH-fbtdS7QI22RRrJXaQpe1lNfDf8928v9sp2grcbknPsOmjRrVx6c5A_JQledhhXwBljC7fw priority: 102 providerName: ProQuest |
Title | YOLO-face: a real-time face detector |
URI | https://link.springer.com/article/10.1007/s00371-020-01831-7 https://www.proquest.com/docview/2917949808 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKFWGbmApDye22QrqQzxahKjUTpFjx1NVEA3_n4ubpIAAiSlS7Hj47uzvc-y7A-jKFGkiCQzRzDBCI8mJRN4mkUIyTw1SpM1b8DCORlN6OwtnRVDYqrztXh5J2pW6Cnaz2eVIvt1x0Q89wmrQCPO9O3rx1O9VZwcoaKzo9XB_lMd5FqEyP4_xlY42GvPbsahlm8E-7BYy0emt7XoAW-myCXtlCQanmJFN2PmUT_AQuvPJ_YQYqdIrRzooBxckrx3v5G8cnWb2D_0RTAf955sRKcogEIXzIyMidBVNfE2R-QMeKs9jiWHYJo1RVEtcs4Q2iauFEZGnecQp14mQbmRQTNEkOIb68mWZnoCjueGKBT7z0ETKV5yiobxQCV-ijmBpC7wSjVgVOcLzUhWLuMpubBGMEcHYIhizFlxU37yuM2T82btdghwXs2UV-yJfFgR3eQsuS-A3zb-Pdvq_7mew7edXUuzFmzbUs7f39Bw1RZZ0oMYHww40esP5XR-f1_3x41PHOtYH5T3BLg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzaGcwCKLG9tICCGgtHThAhKcguPlhMpWhPgpvpGxm7SABLde48RSJs9-z5kNoCoN0kSeWKKZZYSmkhOJvE1ShWRuLFKkr1vQ6aaNG3p5W7udgM8yF8aFVZZ7ot-o9aNy_8gPYuGgI3jIj5-eiesa5byrZQuNASxa5uMdj2yvR80z_L67cVw_vz5tkKKrAFEItz4RtVDRPNYUiTThNRVFLLcMx6S1imqJW4DQNg-1sCKNNE855ToXMkwtahOaJzjvJEzTJBFuRfH6xdBrgVLKy-0IT2Yuw7RI0vGper42HnGHtRBXUUTYTyIcqdtfDlnPc_UFmC8EanAyQNQiTJjeEsx9K1u4DNW7q_YVsVKZw0AGqDofiGtRH7grgTZ97whYgZux2GUVpnqPPbMGgeaWK5bELEIkqFhxiniIakrEEuUKMxWIylfPVFGK3HXEeMiGRZS9uTI0V-bNlbEK7A2feRoU4vj37s3SolmxKF-zEYQqsF9aeTT892zr_8-2AzON6047aze7rQ2YjV3Ui4_t2YSp_sub2ULZ0s-3PVYCuB83OL8AnAr2yw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAedoOIpq-k3CZgGjA2DkwapypNmtNUJij_Hydru4EAiWuTRqrt2F8a-zNAR2QYJlJfE8U0I0EkOBEYt0kkMZhnGkOk5S14HEb9cXA_CSdLVfw22726kpzXNBiWpry4nCl9WRe-WaY5Yo4-LtokJWwV1tAdU2PXY69b3yMguLEAmOJZydR8lmUzP6_xNTQt8Oa3K1IbeXo7sFVCRqc71_EurGR5E7ardgxOuTubsLnELbgHnZfRYES0kNmVIxyEhlNi-sg75omjssL-rd-Hce_2-bpPypYIROLHFSQOXRmkngoQBfg8lJSyVDMcE1rLQAn0X7HSqatiHUdU8YgHXKWxcCONwCpI_QNo5K95dgiO4ppL5nuMorqkJ3mASqOhjD2BmIJlLaCVNBJZ8oWbthXTpGY6thJMUIKJlWDCWnBevzObs2X8ObtdCTkpd8574sXGRcTc5S24qAS_GP59taP_TT-D9aebXjK4Gz4cw4ZnMlVsPk4bGsXbR3aCUKNIT601fQJB_sRJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-face%3A+a+real-time+face+detector&rft.jtitle=The+Visual+computer&rft.au=Chen%2C+Weijun&rft.au=Huang%2C+Hongbo&rft.au=Peng%2C+Shuai&rft.au=Zhou%2C+Changsheng&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=4&rft.spage=805&rft.epage=813&rft_id=info:doi/10.1007%2Fs00371-020-01831-7&rft.externalDocID=10_1007_s00371_020_01831_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |