Quantum Stochastic Cocycles and Completely Bounded Semigroups on Operator Spaces II
Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were establis...
Saved in:
Published in | Communications in mathematical physics Vol. 383; no. 1; pp. 153 - 199 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or
C
∗
-algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a
C
∗
-algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two. |
---|---|
AbstractList | Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or
C
∗
-algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a
C
∗
-algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two. Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or C∗-algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a C∗-algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two. |
Author | Wills, Stephen J. Lindsay, J. Martin |
Author_xml | – sequence: 1 givenname: J. Martin surname: Lindsay fullname: Lindsay, J. Martin organization: Department of Mathematics and Statistics, Lancaster University – sequence: 2 givenname: Stephen J. orcidid: 0000-0002-6260-5115 surname: Wills fullname: Wills, Stephen J. email: s.wills@ucc.ie organization: School of Mathematical Sciences, University College Cork |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXkdPPtoulzr8GAyGVK9DmiZzo01q0sL2741O8M6rw4H3ec_hmaGJ884gdE3glgCUdxGAUsBACQYmSsCHMzQlnFEMghQTNAUggFlBigs0i3EPAIIWxRRVr6Nyw9hl1eD1h4rDTmdLr4-6NTFTrklL17dmMO0xe_Cja0yTVabbbYMf-5h5l216E9TgQ1b1SidotbpE51a10Vz9zjl6f3p8W77g9eZ5tbxfY82IGLBIj1qmS2s4yfMFkIVlIJQgDc9VDbW1uSJmkdOCccJLBdQSKqwyjBe85jWbo5tTbx_852jiIPd-DC6dlDSHnIlEkZSip5QOPsZgrOzDrlPhKAnIb3nyJE8mefJHnjwkiJ2gmMJua8Jf9T_UF_wCc3c |
CitedBy_id | crossref_primary_10_1007_s13226_024_00648_7 |
Cites_doi | 10.1007/BF01205670 10.1007/s004400050261 10.1006/jfan.2000.3658 10.1214/13-AIHP578 10.1007/s00220-014-1993-1 10.1093/imrn/rnt001 10.2977/prims/1249478964 10.1142/S0219025709003781 10.1016/j.anihpb.2004.12.003 10.1007/BF01258530 10.1017/CBO9781107360235 10.1016/0022-1236(80)90087-7 10.1017/CBO9780511618864 10.1007/BF01608499 10.2977/prims/1195184017 10.1006/jfan.1997.3194 10.1016/S0960-0779(01)00079-0 10.1016/j.jmaa.2013.01.067 10.1017/S1446788700001439 10.1112/jlms/s2-20.2.358 10.1142/9789812704290_0013 10.1093/oso/9780198511755.001.0001 10.1007/11376569_3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00220-021-03970-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1432-0916 |
EndPage | 199 |
ExternalDocumentID | 10_1007_s00220_021_03970_x |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIPV ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFFNX AFFOW AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E3Z EAD EAP EAS EBLON EBS EIOEI EJD EMI EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RBV REI RHV RIG RNI RNS ROL RPE RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TR2 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WS9 XJT YLTOR Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z92 ZMTXR ZY4 ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c319t-9397f3c7fe41558018f309a91d45ab0bff5a1e852634147a02f129fae3464b4b3 |
IEDL.DBID | AGYKE |
ISSN | 0010-3616 |
IngestDate | Wed Nov 06 08:27:06 EST 2024 Thu Sep 12 20:31:10 EDT 2024 Sat Dec 16 12:10:11 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9397f3c7fe41558018f309a91d45ab0bff5a1e852634147a02f129fae3464b4b3 |
ORCID | 0000-0002-6260-5115 |
PQID | 2505391471 |
PQPubID | 2043584 |
PageCount | 47 |
ParticipantIDs | proquest_journals_2505391471 crossref_primary_10_1007_s00220_021_03970_x springer_journals_10_1007_s00220_021_03970_x |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Communications in mathematical physics |
PublicationTitleAbbrev | Commun. Math. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Accardi, Kozyrev (CR3) 2001; 12 Christensen, Evans (CR10) 1979; 20 Das, Goswami, Sinha (CR11) 2014; 330 Paulsen (CR31) 2002 Elliott (CR15) 2000; 68 Lindblad (CR21) 1976; 48 CR18 Accardi (CR1) 1980; 48 Sahu, Schürmann, Sinha (CR34) 2009; 45 CR35 Hudson, Parthasarathy (CR19) 1984; 93 Pisier (CR32) 2003 Effros, Ruan (CR14) 2000 Rebolledo (CR33) 2005; 41 Wills (CR36) 2007; 13 Davies (CR13) 2007 Evans, Kawahigashi (CR16) 1998 Accardi, Frigerio, Lewis (CR2) 1982; 18 Bratteli, Robinson (CR8) 2002 CR5 Lindsay, Wills (CR24) 2000; 116 Parthasarathy (CR30) 1992 CR9 CR27 Blecher, Le Merdy (CR6) 2005 CR26 Lindsay, Parthasarathy (CR23) 1998; 158 Belton, Wills (CR4) 2015; 51 CR22 Lindsay, Wills (CR25) 2000; 178 Pantaleón-Martinez, Quezada (CR29) 2009; 12 Bratteli, Kishimoto (CR7) 1980; 35 Kümmerer, Maassen (CR20) 1987; 109 Das, Lindsay, Tripak (CR12) 2014; 409 Fagnola (CR17) 1999; 18 Lindsay, Wills (CR28) 2014; 11 G Lindblad (3970_CR21) 1976; 48 JM Lindsay (3970_CR25) 2000; 178 RL Hudson (3970_CR19) 1984; 93 ACR Belton (3970_CR4) 2015; 51 3970_CR27 KR Parthasarathy (3970_CR30) 1992 E Christensen (3970_CR10) 1979; 20 B Das (3970_CR11) 2014; 330 3970_CR26 O Bratteli (3970_CR7) 1980; 35 3970_CR22 EG Effros (3970_CR14) 2000 JM Lindsay (3970_CR28) 2014; 11 L Pantaleón-Martinez (3970_CR29) 2009; 12 V Paulsen (3970_CR31) 2002 L Accardi (3970_CR2) 1982; 18 G Pisier (3970_CR32) 2003 SJ Wills (3970_CR36) 2007; 13 3970_CR9 GA Elliott (3970_CR15) 2000; 68 3970_CR18 BK Das (3970_CR12) 2014; 409 L Accardi (3970_CR1) 1980; 48 L Accardi (3970_CR3) 2001; 12 F Fagnola (3970_CR17) 1999; 18 DP Blecher (3970_CR6) 2005 3970_CR5 R Rebolledo (3970_CR33) 2005; 41 L Sahu (3970_CR34) 2009; 45 3970_CR35 JM Lindsay (3970_CR24) 2000; 116 O Bratteli (3970_CR8) 2002 B Kümmerer (3970_CR20) 1987; 109 DE Evans (3970_CR16) 1998 JM Lindsay (3970_CR23) 1998; 158 EB Davies (3970_CR13) 2007 |
References_xml | – year: 2002 ident: CR8 publication-title: Operator Algebras and Quantum Statistical Mechanics I: - and -Algebras, Symmetry Groups, Decompositions of States Corrected contributor: fullname: Robinson – ident: CR22 – ident: CR18 – volume: 109 start-page: 1 issue: 1 year: 1987 end-page: 22 ident: CR20 article-title: The essentially commutative dilations of dynamical semigroups on publication-title: Comm. Math. Phys. doi: 10.1007/BF01205670 contributor: fullname: Maassen – volume: 116 start-page: 505 issue: 4 year: 2000 end-page: 543 ident: CR24 article-title: Existence, positivity, and contractivity for quantum stochastic flows with infinite dimensional noise publication-title: Probab. Theory Related Fields doi: 10.1007/s004400050261 contributor: fullname: Wills – volume: 178 start-page: 269 issue: 2 year: 2000 end-page: 305 ident: CR25 article-title: Markovian cocycles on operator algebras, adapted to a Fock filtration publication-title: J. Funct. Anal. doi: 10.1006/jfan.2000.3658 contributor: fullname: Wills – volume: 13 start-page: 191 issue: 1 year: 2007 end-page: 211 ident: CR36 article-title: On the generators of operator Markovian cocycles publication-title: Markov Proc. Related Fields contributor: fullname: Wills – volume: 51 start-page: 349 issue: 1 year: 2015 end-page: 375 ident: CR4 article-title: An algebraic construction of quantum stochastic flows with unbounded generators publication-title: Ann. Inst. H. Poincaré Probab. Statist. doi: 10.1214/13-AIHP578 contributor: fullname: Wills – year: 2005 ident: CR6 publication-title: Operator Algebras and Their Modules: An Operator Space Approach contributor: fullname: Le Merdy – year: 1992 ident: CR30 publication-title: Introduction to Quantum Stochastic Calculus, [2012 reprint of the 1992 original] Modern Birkhäuser Classics contributor: fullname: Parthasarathy – volume: 330 start-page: 435 issue: 2 year: 2014 end-page: 467 ident: CR11 article-title: A homomorphism theorem and a Trotter product formula for quantum stochastic flows with unbounded coefficients publication-title: Comm. Math. Phys. doi: 10.1007/s00220-014-1993-1 contributor: fullname: Sinha – volume: 11 start-page: 3096 year: 2014 end-page: 3139 ident: CR28 article-title: Quantum stochastic cocycles and completely bounded semigroups on operator spaces Int publication-title: Math. Res. Not. IMRN doi: 10.1093/imrn/rnt001 contributor: fullname: Wills – volume: 45 start-page: 745 issue: 3 year: 2009 end-page: 785 ident: CR34 article-title: Unitary processes with independent increments and representations of Hilbert tensor algebras publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1249478964 contributor: fullname: Sinha – volume: 12 start-page: 367 issue: 3 year: 2009 end-page: 385 ident: CR29 article-title: The asymmetric exclusion quantum Markov semigroup, Infin publication-title: Dimens. Anal. Quantum Probab. Relat. Top. doi: 10.1142/S0219025709003781 contributor: fullname: Quezada – volume: 41 start-page: 349 issue: 3 year: 2005 end-page: 373 ident: CR33 article-title: Decoherence of quantum Markov semigroups publication-title: Ann. Inst. H. Poincaré Probab. Statist. doi: 10.1016/j.anihpb.2004.12.003 contributor: fullname: Rebolledo – ident: CR35 – volume: 93 start-page: 301 issue: 3 year: 1984 end-page: 323 ident: CR19 article-title: Quantum Itô’s formula and stochastic evolutions publication-title: Comm. Math. Phys. doi: 10.1007/BF01258530 contributor: fullname: Parthasarathy – year: 2003 ident: CR32 publication-title: Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series 294 doi: 10.1017/CBO9781107360235 contributor: fullname: Pisier – ident: CR27 – volume: 35 start-page: 344 issue: 3 year: 1980 end-page: 368 ident: CR7 article-title: Generation of semigroups, and two-dimensional quantum lattice systems publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(80)90087-7 contributor: fullname: Kishimoto – year: 2007 ident: CR13 publication-title: Linear Operators and their Spectra doi: 10.1017/CBO9780511618864 contributor: fullname: Davies – volume: 48 start-page: 119 issue: 2 year: 1976 end-page: 130 ident: CR21 article-title: On the generators of quantum dynamical semigroups publication-title: Comm. Math. Phys. doi: 10.1007/BF01608499 contributor: fullname: Lindblad – year: 2000 ident: CR14 publication-title: Operator Spaces contributor: fullname: Ruan – year: 2002 ident: CR31 publication-title: Completely Bounded Maps and Operator Algebras contributor: fullname: Paulsen – volume: 18 start-page: 97 issue: 1 year: 1982 end-page: 133 ident: CR2 article-title: Quantum stochastic processes publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195184017 contributor: fullname: Lewis – volume: 48 start-page: 135 issue: 1978 year: 1980 end-page: 180 ident: CR1 article-title: On the quantum Feynman-Kac formula publication-title: Rend. Sem. Mat. Fis. Milano contributor: fullname: Accardi – volume: 158 start-page: 521 issue: 2 year: 1998 end-page: 549 ident: CR23 article-title: On the generators of quantum stochastic flows publication-title: J. Funct. Anal. doi: 10.1006/jfan.1997.3194 contributor: fullname: Parthasarathy – volume: 12 start-page: 2639 issue: 14–15 year: 2001 end-page: 2655 ident: CR3 article-title: On the structure of Markov flows publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(01)00079-0 contributor: fullname: Kozyrev – volume: 409 start-page: 1032 issue: 2 year: 2014 end-page: 1051 ident: CR12 article-title: Sesquilinear quantum stochastic analysis in Banach space publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.01.067 contributor: fullname: Tripak – ident: CR9 – volume: 18 start-page: 144 issue: 3 year: 1999 ident: CR17 article-title: Quantum Markov semigroups and quantum flows publication-title: Proyecciones contributor: fullname: Fagnola – year: 1998 ident: CR16 publication-title: Quantum Symmetries on Operator Algebras contributor: fullname: Kawahigashi – ident: CR5 – volume: 68 start-page: 340 issue: 3 year: 2000 end-page: 348 ident: CR15 article-title: On the convergence of a sequence of completely positive maps to the identity publication-title: J. Austral. Math. Soc. Ser. A doi: 10.1017/S1446788700001439 contributor: fullname: Elliott – ident: CR26 – volume: 20 start-page: 358 issue: 2 year: 1979 end-page: 368 ident: CR10 article-title: Cohomology of operator algebras and quantum dynamical semigroups publication-title: J. London Math. Soc. doi: 10.1112/jlms/s2-20.2.358 contributor: fullname: Evans – ident: 3970_CR9 – volume: 178 start-page: 269 issue: 2 year: 2000 ident: 3970_CR25 publication-title: J. Funct. Anal. doi: 10.1006/jfan.2000.3658 contributor: fullname: JM Lindsay – ident: 3970_CR27 doi: 10.1142/9789812704290_0013 – volume: 93 start-page: 301 issue: 3 year: 1984 ident: 3970_CR19 publication-title: Comm. Math. Phys. doi: 10.1007/BF01258530 contributor: fullname: RL Hudson – ident: 3970_CR5 – volume-title: Introduction to Quantum Stochastic Calculus, [2012 reprint of the 1992 original] Modern Birkhäuser Classics year: 1992 ident: 3970_CR30 contributor: fullname: KR Parthasarathy – volume: 11 start-page: 3096 year: 2014 ident: 3970_CR28 publication-title: Math. Res. Not. IMRN doi: 10.1093/imrn/rnt001 contributor: fullname: JM Lindsay – volume-title: Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series 294 year: 2003 ident: 3970_CR32 doi: 10.1017/CBO9781107360235 contributor: fullname: G Pisier – volume: 158 start-page: 521 issue: 2 year: 1998 ident: 3970_CR23 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1997.3194 contributor: fullname: JM Lindsay – volume: 116 start-page: 505 issue: 4 year: 2000 ident: 3970_CR24 publication-title: Probab. Theory Related Fields doi: 10.1007/s004400050261 contributor: fullname: JM Lindsay – volume: 35 start-page: 344 issue: 3 year: 1980 ident: 3970_CR7 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(80)90087-7 contributor: fullname: O Bratteli – volume: 13 start-page: 191 issue: 1 year: 2007 ident: 3970_CR36 publication-title: Markov Proc. Related Fields contributor: fullname: SJ Wills – volume-title: Linear Operators and their Spectra year: 2007 ident: 3970_CR13 doi: 10.1017/CBO9780511618864 contributor: fullname: EB Davies – ident: 3970_CR35 – volume: 41 start-page: 349 issue: 3 year: 2005 ident: 3970_CR33 publication-title: Ann. Inst. H. Poincaré Probab. Statist. doi: 10.1016/j.anihpb.2004.12.003 contributor: fullname: R Rebolledo – volume: 20 start-page: 358 issue: 2 year: 1979 ident: 3970_CR10 publication-title: J. London Math. Soc. doi: 10.1112/jlms/s2-20.2.358 contributor: fullname: E Christensen – volume-title: Completely Bounded Maps and Operator Algebras year: 2002 ident: 3970_CR31 contributor: fullname: V Paulsen – volume-title: Quantum Symmetries on Operator Algebras year: 1998 ident: 3970_CR16 doi: 10.1093/oso/9780198511755.001.0001 contributor: fullname: DE Evans – volume: 51 start-page: 349 issue: 1 year: 2015 ident: 3970_CR4 publication-title: Ann. Inst. H. Poincaré Probab. Statist. doi: 10.1214/13-AIHP578 contributor: fullname: ACR Belton – volume: 48 start-page: 119 issue: 2 year: 1976 ident: 3970_CR21 publication-title: Comm. Math. Phys. doi: 10.1007/BF01608499 contributor: fullname: G Lindblad – volume: 12 start-page: 367 issue: 3 year: 2009 ident: 3970_CR29 publication-title: Dimens. Anal. Quantum Probab. Relat. Top. doi: 10.1142/S0219025709003781 contributor: fullname: L Pantaleón-Martinez – volume: 109 start-page: 1 issue: 1 year: 1987 ident: 3970_CR20 publication-title: Comm. Math. Phys. doi: 10.1007/BF01205670 contributor: fullname: B Kümmerer – volume: 45 start-page: 745 issue: 3 year: 2009 ident: 3970_CR34 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1249478964 contributor: fullname: L Sahu – ident: 3970_CR18 – volume: 330 start-page: 435 issue: 2 year: 2014 ident: 3970_CR11 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-014-1993-1 contributor: fullname: B Das – volume: 18 start-page: 97 issue: 1 year: 1982 ident: 3970_CR2 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195184017 contributor: fullname: L Accardi – ident: 3970_CR26 – volume: 68 start-page: 340 issue: 3 year: 2000 ident: 3970_CR15 publication-title: J. Austral. Math. Soc. Ser. A doi: 10.1017/S1446788700001439 contributor: fullname: GA Elliott – volume-title: Operator Spaces year: 2000 ident: 3970_CR14 contributor: fullname: EG Effros – ident: 3970_CR22 doi: 10.1007/11376569_3 – volume: 409 start-page: 1032 issue: 2 year: 2014 ident: 3970_CR12 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.01.067 contributor: fullname: BK Das – volume-title: Operator Algebras and Quantum Statistical Mechanics I: $$C^*$$- and $$W^*$$-Algebras, Symmetry Groups, Decompositions of States Corrected year: 2002 ident: 3970_CR8 contributor: fullname: O Bratteli – volume: 18 start-page: 144 issue: 3 year: 1999 ident: 3970_CR17 publication-title: Proyecciones contributor: fullname: F Fagnola – volume: 48 start-page: 135 issue: 1978 year: 1980 ident: 3970_CR1 publication-title: Rend. Sem. Mat. Fis. Milano contributor: fullname: L Accardi – volume: 12 start-page: 2639 issue: 14–15 year: 2001 ident: 3970_CR3 publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(01)00079-0 contributor: fullname: L Accardi – volume-title: Operator Algebras and Their Modules: An Operator Space Approach year: 2005 ident: 3970_CR6 contributor: fullname: DP Blecher |
SSID | ssj0009266 |
Score | 2.3798232 |
Snippet | Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 153 |
SubjectTerms | AC generators Algebra Classical and Quantum Gravitation Complex Systems Existence theorems Lattices (mathematics) Markov processes Mathematical and Computational Physics Mathematical Physics Operators (mathematics) Physics Physics and Astronomy Quantum Physics Random walk Relativity Theory Theoretical |
Title | Quantum Stochastic Cocycles and Completely Bounded Semigroups on Operator Spaces II |
URI | https://link.springer.com/article/10.1007/s00220-021-03970-x https://www.proquest.com/docview/2505391471 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5B0UpwoMAuojwqH7jtGjmJ8zq2iPISrFCpxJ4i2xkLBKQVTSXg12O7SavlceAYORo58_B80XwzBthPE0_FTCkqNAsozzWnEjnSJBQBQ-R5LO2P4sVldDLgZzfhzbyP25Hd64qkO6hnvW422zBqGQXM5FBGDXBcqhpPlzrH_86P5rN2_WmJ0tZ5g8iLql6Zz6X8n4_mIPNdXdSlm14TruumnSnL5P5gUsoD9fpxhuN3vmQNViv4STpTf1mHBSw2oFlBUVIF-ngDVi5m41zN0w_HE1Xjn9C_mhhTTB5JvxyqW2GHPJPDoXqx3DoiipzY88W4Aj68kK69sclKxcc71zwyJsOC_B2hq-yT_siywcjp6S8Y9I6uD09odS8DVSZgS5qaXetAxRotGjEpLtEBS0Xq5TwUkkmtQ-FhEvqRSZE8FszXBlVogQGPuOQy2IRGMSxwC0iiUSbIDOhRERfIEuXHORep0CIJeYQt-F1bJxtNx29ks0HLTo-Z0WPm9Jg9t2C3NmBWheI4sxgvSM0-vBb8qQ0yX_5a2vb3Xt-BZd_Z1LJ6dqFRPk1wzwCWUraNg_a63ct25ahtWBz4nTcx_-MB |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9Nraaxh3V8aYUCfuBtM3IS5-uxVEA7KGgqleApsp2zNkHTiqTSyl-PnSathsYDj5Gj0-XO5_tF97szwHEcOSpkSlGhmUd5qjmVyJFGvvAYIk9DaX8Uh9dBf8x_3vl3VVNYXrPd65JkeVKvmt1sumHUUgqYSaKMGuTY5K4TuA1odi_uL8_Ww3bdZY3SFnq9wAmqZpn_S_k3Ia1R5qvCaJlvzlswrjVd0kweTuaFPFHPr4Y4vvdTvsKXCoCS7nLHbMIHzLagVYFRUoV6vgWfh6uBrubpY8kUVfk2jH7NjTPmEzIqpuq3sGOeSW-qFpZdR0SWEnvCmM2Ajwtyau9sslJx8qdsH8nJNCM3Myxr-2Q0s3wwMhjswPj87LbXp9XNDFSZkC1obLTWngo1WjxiklykPRaL2Em5LySTWvvCwch3A5MkeSiYqw2u0AI9HnDJpbcLjWya4TcgkUYZITOwRwVcIIuUG6ZcxEKLyOcBtuF77Z5kthzAkaxGLZd2TIwdk9KOyd82dGoPJlUw5olFeV5s9HDa8KN2yHr5bWl773v9CD71b4dXydXg-nIfNtzSv5bj04FG8TTHAwNfCnlY7dYXI8_kcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hRFTlQChtRSBQH7i1Bu-u93UMj0DKo63SSOlpZXvHatWyGzUbCfj12PtIKCqHqseVV5Z3Zuz5VvPNZ4D9OHJUyJSiQjOP8lRzKpEjjXzhMUSehtL-KF5dB-dj_nHiTx518Zds96YkWfU0WJWmrDicpvpw0fhmUw-jll7ATEJl1KDINrfKSC1o98--XZwuhXfdql5pi75e4AR148zfZ_kzOS0R55MiaZl7Bh0QzaorysnPg3khD9T9E0HH__msDVivgSnpV5H0ClYw24RODVJJfQTMNmHtaiH0ap5WSwapmr2G0Ze5cdL8hoyKXH0XVv6ZHOfqzrLuiMhSYk8eEyT4644c2buc7Kx486NsK5mRPCOfpljW_MloanliZDh8A-PB6dfjc1rf2ECV2coFjc2qtadCjRanmOQXaY_FInZS7gvJpNa-cDDy3cAkTx4K5mqDN7RAjwdccum9hVaWZ7gFJNIoI2QGDqmAC2SRcsOUi1hoEfk8wC68b1yVTCthjmQhwVzaMTF2TEo7Jrdd6DXeTOpNOkss-vNisw6nCx8a5yyHn59t-99efwcvPp8Mksvh9cUOvHRL91rqTw9axe857hpUU8i9OnAfAOXI7VQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Stochastic+Cocycles+and+Completely+Bounded+Semigroups+on+Operator+Spaces+II&rft.jtitle=Communications+in+mathematical+physics&rft.au=Martin%2C+Lindsay+J&rft.au=Wills%2C+Stephen+J&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=383&rft.issue=1&rft.spage=153&rft.epage=199&rft_id=info:doi/10.1007%2Fs00220-021-03970-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon |