Quantum Stochastic Cocycles and Completely Bounded Semigroups on Operator Spaces II

Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were establis...

Full description

Saved in:
Bibliographic Details
Published inCommunications in mathematical physics Vol. 383; no. 1; pp. 153 - 199
Main Authors Lindsay, J. Martin, Wills, Stephen J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or C ∗ -algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a C ∗ -algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two.
AbstractList Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or C ∗ -algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a C ∗ -algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two.
Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrödinger and Heisenberg pictures. This paper is a sequel to one in which correspondences were established between classes of quantum stochastic cocycle on an operator space or C∗-algebra, and classes of Schur-action ‘global’ semigroup on associated matrix spaces over the operator space. In this paper we investigate the stochastic generation of cocycles via the generation of their corresponding global semigroups, with the primary purpose of strengthening the scope of applicability of semigroup theory to the analysis and construction of quantum stochastic cocycles. An explicit description is given of the affine relationship between the stochastic generator of a completely bounded cocycle and the generator of any one of its associated global semigroups. Using this, the structure of the stochastic generator of a completely positive quasicontractive quantum stochastic cocycle on a C∗-algebra whose expectation semigroup is norm continuous is derived, giving a comprehensive stochastic generalisation of the Christensen–Evans extension of the GKS&L theorem of Gorini, Kossakowski and Sudarshan, and Lindblad. The transformation also provides a new existence theorem for cocycles with unbounded structure map as stochastic generator. The latter is applied to a model of interacting particles known as the quantum exclusion Markov process, in particular on integer lattices in dimensions one and two.
Author Wills, Stephen J.
Lindsay, J. Martin
Author_xml – sequence: 1
  givenname: J. Martin
  surname: Lindsay
  fullname: Lindsay, J. Martin
  organization: Department of Mathematics and Statistics, Lancaster University
– sequence: 2
  givenname: Stephen J.
  orcidid: 0000-0002-6260-5115
  surname: Wills
  fullname: Wills, Stephen J.
  email: s.wills@ucc.ie
  organization: School of Mathematical Sciences, University College Cork
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXkdPPtoulzr8GAyGVK9DmiZzo01q0sL2741O8M6rw4H3ec_hmaGJ884gdE3glgCUdxGAUsBACQYmSsCHMzQlnFEMghQTNAUggFlBigs0i3EPAIIWxRRVr6Nyw9hl1eD1h4rDTmdLr4-6NTFTrklL17dmMO0xe_Cja0yTVabbbYMf-5h5l216E9TgQ1b1SidotbpE51a10Vz9zjl6f3p8W77g9eZ5tbxfY82IGLBIj1qmS2s4yfMFkIVlIJQgDc9VDbW1uSJmkdOCccJLBdQSKqwyjBe85jWbo5tTbx_852jiIPd-DC6dlDSHnIlEkZSip5QOPsZgrOzDrlPhKAnIb3nyJE8mefJHnjwkiJ2gmMJua8Jf9T_UF_wCc3c
CitedBy_id crossref_primary_10_1007_s13226_024_00648_7
Cites_doi 10.1007/BF01205670
10.1007/s004400050261
10.1006/jfan.2000.3658
10.1214/13-AIHP578
10.1007/s00220-014-1993-1
10.1093/imrn/rnt001
10.2977/prims/1249478964
10.1142/S0219025709003781
10.1016/j.anihpb.2004.12.003
10.1007/BF01258530
10.1017/CBO9781107360235
10.1016/0022-1236(80)90087-7
10.1017/CBO9780511618864
10.1007/BF01608499
10.2977/prims/1195184017
10.1006/jfan.1997.3194
10.1016/S0960-0779(01)00079-0
10.1016/j.jmaa.2013.01.067
10.1017/S1446788700001439
10.1112/jlms/s2-20.2.358
10.1142/9789812704290_0013
10.1093/oso/9780198511755.001.0001
10.1007/11376569_3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00220-021-03970-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0916
EndPage 199
ExternalDocumentID 10_1007_s00220_021_03970_x
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFFOW
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RBV
REI
RHV
RIG
RNI
RNS
ROL
RPE
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WS9
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c319t-9397f3c7fe41558018f309a91d45ab0bff5a1e852634147a02f129fae3464b4b3
IEDL.DBID AGYKE
ISSN 0010-3616
IngestDate Wed Nov 06 08:27:06 EST 2024
Thu Sep 12 20:31:10 EDT 2024
Sat Dec 16 12:10:11 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9397f3c7fe41558018f309a91d45ab0bff5a1e852634147a02f129fae3464b4b3
ORCID 0000-0002-6260-5115
PQID 2505391471
PQPubID 2043584
PageCount 47
ParticipantIDs proquest_journals_2505391471
crossref_primary_10_1007_s00220_021_03970_x
springer_journals_10_1007_s00220_021_03970_x
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Communications in mathematical physics
PublicationTitleAbbrev Commun. Math. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Accardi, Kozyrev (CR3) 2001; 12
Christensen, Evans (CR10) 1979; 20
Das, Goswami, Sinha (CR11) 2014; 330
Paulsen (CR31) 2002
Elliott (CR15) 2000; 68
Lindblad (CR21) 1976; 48
CR18
Accardi (CR1) 1980; 48
Sahu, Schürmann, Sinha (CR34) 2009; 45
CR35
Hudson, Parthasarathy (CR19) 1984; 93
Pisier (CR32) 2003
Effros, Ruan (CR14) 2000
Rebolledo (CR33) 2005; 41
Wills (CR36) 2007; 13
Davies (CR13) 2007
Evans, Kawahigashi (CR16) 1998
Accardi, Frigerio, Lewis (CR2) 1982; 18
Bratteli, Robinson (CR8) 2002
CR5
Lindsay, Wills (CR24) 2000; 116
Parthasarathy (CR30) 1992
CR9
CR27
Blecher, Le Merdy (CR6) 2005
CR26
Lindsay, Parthasarathy (CR23) 1998; 158
Belton, Wills (CR4) 2015; 51
CR22
Lindsay, Wills (CR25) 2000; 178
Pantaleón-Martinez, Quezada (CR29) 2009; 12
Bratteli, Kishimoto (CR7) 1980; 35
Kümmerer, Maassen (CR20) 1987; 109
Das, Lindsay, Tripak (CR12) 2014; 409
Fagnola (CR17) 1999; 18
Lindsay, Wills (CR28) 2014; 11
G Lindblad (3970_CR21) 1976; 48
JM Lindsay (3970_CR25) 2000; 178
RL Hudson (3970_CR19) 1984; 93
ACR Belton (3970_CR4) 2015; 51
3970_CR27
KR Parthasarathy (3970_CR30) 1992
E Christensen (3970_CR10) 1979; 20
B Das (3970_CR11) 2014; 330
3970_CR26
O Bratteli (3970_CR7) 1980; 35
3970_CR22
EG Effros (3970_CR14) 2000
JM Lindsay (3970_CR28) 2014; 11
L Pantaleón-Martinez (3970_CR29) 2009; 12
V Paulsen (3970_CR31) 2002
L Accardi (3970_CR2) 1982; 18
G Pisier (3970_CR32) 2003
SJ Wills (3970_CR36) 2007; 13
3970_CR9
GA Elliott (3970_CR15) 2000; 68
3970_CR18
BK Das (3970_CR12) 2014; 409
L Accardi (3970_CR1) 1980; 48
L Accardi (3970_CR3) 2001; 12
F Fagnola (3970_CR17) 1999; 18
DP Blecher (3970_CR6) 2005
3970_CR5
R Rebolledo (3970_CR33) 2005; 41
L Sahu (3970_CR34) 2009; 45
3970_CR35
JM Lindsay (3970_CR24) 2000; 116
O Bratteli (3970_CR8) 2002
B Kümmerer (3970_CR20) 1987; 109
DE Evans (3970_CR16) 1998
JM Lindsay (3970_CR23) 1998; 158
EB Davies (3970_CR13) 2007
References_xml – year: 2002
  ident: CR8
  publication-title: Operator Algebras and Quantum Statistical Mechanics I: - and -Algebras, Symmetry Groups, Decompositions of States Corrected
  contributor:
    fullname: Robinson
– ident: CR22
– ident: CR18
– volume: 109
  start-page: 1
  issue: 1
  year: 1987
  end-page: 22
  ident: CR20
  article-title: The essentially commutative dilations of dynamical semigroups on
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01205670
  contributor:
    fullname: Maassen
– volume: 116
  start-page: 505
  issue: 4
  year: 2000
  end-page: 543
  ident: CR24
  article-title: Existence, positivity, and contractivity for quantum stochastic flows with infinite dimensional noise
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s004400050261
  contributor:
    fullname: Wills
– volume: 178
  start-page: 269
  issue: 2
  year: 2000
  end-page: 305
  ident: CR25
  article-title: Markovian cocycles on operator algebras, adapted to a Fock filtration
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.2000.3658
  contributor:
    fullname: Wills
– volume: 13
  start-page: 191
  issue: 1
  year: 2007
  end-page: 211
  ident: CR36
  article-title: On the generators of operator Markovian cocycles
  publication-title: Markov Proc. Related Fields
  contributor:
    fullname: Wills
– volume: 51
  start-page: 349
  issue: 1
  year: 2015
  end-page: 375
  ident: CR4
  article-title: An algebraic construction of quantum stochastic flows with unbounded generators
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1214/13-AIHP578
  contributor:
    fullname: Wills
– year: 2005
  ident: CR6
  publication-title: Operator Algebras and Their Modules: An Operator Space Approach
  contributor:
    fullname: Le Merdy
– year: 1992
  ident: CR30
  publication-title: Introduction to Quantum Stochastic Calculus, [2012 reprint of the 1992 original] Modern Birkhäuser Classics
  contributor:
    fullname: Parthasarathy
– volume: 330
  start-page: 435
  issue: 2
  year: 2014
  end-page: 467
  ident: CR11
  article-title: A homomorphism theorem and a Trotter product formula for quantum stochastic flows with unbounded coefficients
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-014-1993-1
  contributor:
    fullname: Sinha
– volume: 11
  start-page: 3096
  year: 2014
  end-page: 3139
  ident: CR28
  article-title: Quantum stochastic cocycles and completely bounded semigroups on operator spaces Int
  publication-title: Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnt001
  contributor:
    fullname: Wills
– volume: 45
  start-page: 745
  issue: 3
  year: 2009
  end-page: 785
  ident: CR34
  article-title: Unitary processes with independent increments and representations of Hilbert tensor algebras
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1249478964
  contributor:
    fullname: Sinha
– volume: 12
  start-page: 367
  issue: 3
  year: 2009
  end-page: 385
  ident: CR29
  article-title: The asymmetric exclusion quantum Markov semigroup, Infin
  publication-title: Dimens. Anal. Quantum Probab. Relat. Top.
  doi: 10.1142/S0219025709003781
  contributor:
    fullname: Quezada
– volume: 41
  start-page: 349
  issue: 3
  year: 2005
  end-page: 373
  ident: CR33
  article-title: Decoherence of quantum Markov semigroups
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1016/j.anihpb.2004.12.003
  contributor:
    fullname: Rebolledo
– ident: CR35
– volume: 93
  start-page: 301
  issue: 3
  year: 1984
  end-page: 323
  ident: CR19
  article-title: Quantum Itô’s formula and stochastic evolutions
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01258530
  contributor:
    fullname: Parthasarathy
– year: 2003
  ident: CR32
  publication-title: Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series 294
  doi: 10.1017/CBO9781107360235
  contributor:
    fullname: Pisier
– ident: CR27
– volume: 35
  start-page: 344
  issue: 3
  year: 1980
  end-page: 368
  ident: CR7
  article-title: Generation of semigroups, and two-dimensional quantum lattice systems
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(80)90087-7
  contributor:
    fullname: Kishimoto
– year: 2007
  ident: CR13
  publication-title: Linear Operators and their Spectra
  doi: 10.1017/CBO9780511618864
  contributor:
    fullname: Davies
– volume: 48
  start-page: 119
  issue: 2
  year: 1976
  end-page: 130
  ident: CR21
  article-title: On the generators of quantum dynamical semigroups
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01608499
  contributor:
    fullname: Lindblad
– year: 2000
  ident: CR14
  publication-title: Operator Spaces
  contributor:
    fullname: Ruan
– year: 2002
  ident: CR31
  publication-title: Completely Bounded Maps and Operator Algebras
  contributor:
    fullname: Paulsen
– volume: 18
  start-page: 97
  issue: 1
  year: 1982
  end-page: 133
  ident: CR2
  article-title: Quantum stochastic processes
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195184017
  contributor:
    fullname: Lewis
– volume: 48
  start-page: 135
  issue: 1978
  year: 1980
  end-page: 180
  ident: CR1
  article-title: On the quantum Feynman-Kac formula
  publication-title: Rend. Sem. Mat. Fis. Milano
  contributor:
    fullname: Accardi
– volume: 158
  start-page: 521
  issue: 2
  year: 1998
  end-page: 549
  ident: CR23
  article-title: On the generators of quantum stochastic flows
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1997.3194
  contributor:
    fullname: Parthasarathy
– volume: 12
  start-page: 2639
  issue: 14–15
  year: 2001
  end-page: 2655
  ident: CR3
  article-title: On the structure of Markov flows
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(01)00079-0
  contributor:
    fullname: Kozyrev
– volume: 409
  start-page: 1032
  issue: 2
  year: 2014
  end-page: 1051
  ident: CR12
  article-title: Sesquilinear quantum stochastic analysis in Banach space
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.01.067
  contributor:
    fullname: Tripak
– ident: CR9
– volume: 18
  start-page: 144
  issue: 3
  year: 1999
  ident: CR17
  article-title: Quantum Markov semigroups and quantum flows
  publication-title: Proyecciones
  contributor:
    fullname: Fagnola
– year: 1998
  ident: CR16
  publication-title: Quantum Symmetries on Operator Algebras
  contributor:
    fullname: Kawahigashi
– ident: CR5
– volume: 68
  start-page: 340
  issue: 3
  year: 2000
  end-page: 348
  ident: CR15
  article-title: On the convergence of a sequence of completely positive maps to the identity
  publication-title: J. Austral. Math. Soc. Ser. A
  doi: 10.1017/S1446788700001439
  contributor:
    fullname: Elliott
– ident: CR26
– volume: 20
  start-page: 358
  issue: 2
  year: 1979
  end-page: 368
  ident: CR10
  article-title: Cohomology of operator algebras and quantum dynamical semigroups
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/s2-20.2.358
  contributor:
    fullname: Evans
– ident: 3970_CR9
– volume: 178
  start-page: 269
  issue: 2
  year: 2000
  ident: 3970_CR25
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.2000.3658
  contributor:
    fullname: JM Lindsay
– ident: 3970_CR27
  doi: 10.1142/9789812704290_0013
– volume: 93
  start-page: 301
  issue: 3
  year: 1984
  ident: 3970_CR19
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01258530
  contributor:
    fullname: RL Hudson
– ident: 3970_CR5
– volume-title: Introduction to Quantum Stochastic Calculus, [2012 reprint of the 1992 original] Modern Birkhäuser Classics
  year: 1992
  ident: 3970_CR30
  contributor:
    fullname: KR Parthasarathy
– volume: 11
  start-page: 3096
  year: 2014
  ident: 3970_CR28
  publication-title: Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnt001
  contributor:
    fullname: JM Lindsay
– volume-title: Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series 294
  year: 2003
  ident: 3970_CR32
  doi: 10.1017/CBO9781107360235
  contributor:
    fullname: G Pisier
– volume: 158
  start-page: 521
  issue: 2
  year: 1998
  ident: 3970_CR23
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1997.3194
  contributor:
    fullname: JM Lindsay
– volume: 116
  start-page: 505
  issue: 4
  year: 2000
  ident: 3970_CR24
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s004400050261
  contributor:
    fullname: JM Lindsay
– volume: 35
  start-page: 344
  issue: 3
  year: 1980
  ident: 3970_CR7
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(80)90087-7
  contributor:
    fullname: O Bratteli
– volume: 13
  start-page: 191
  issue: 1
  year: 2007
  ident: 3970_CR36
  publication-title: Markov Proc. Related Fields
  contributor:
    fullname: SJ Wills
– volume-title: Linear Operators and their Spectra
  year: 2007
  ident: 3970_CR13
  doi: 10.1017/CBO9780511618864
  contributor:
    fullname: EB Davies
– ident: 3970_CR35
– volume: 41
  start-page: 349
  issue: 3
  year: 2005
  ident: 3970_CR33
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1016/j.anihpb.2004.12.003
  contributor:
    fullname: R Rebolledo
– volume: 20
  start-page: 358
  issue: 2
  year: 1979
  ident: 3970_CR10
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/s2-20.2.358
  contributor:
    fullname: E Christensen
– volume-title: Completely Bounded Maps and Operator Algebras
  year: 2002
  ident: 3970_CR31
  contributor:
    fullname: V Paulsen
– volume-title: Quantum Symmetries on Operator Algebras
  year: 1998
  ident: 3970_CR16
  doi: 10.1093/oso/9780198511755.001.0001
  contributor:
    fullname: DE Evans
– volume: 51
  start-page: 349
  issue: 1
  year: 2015
  ident: 3970_CR4
  publication-title: Ann. Inst. H. Poincaré Probab. Statist.
  doi: 10.1214/13-AIHP578
  contributor:
    fullname: ACR Belton
– volume: 48
  start-page: 119
  issue: 2
  year: 1976
  ident: 3970_CR21
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01608499
  contributor:
    fullname: G Lindblad
– volume: 12
  start-page: 367
  issue: 3
  year: 2009
  ident: 3970_CR29
  publication-title: Dimens. Anal. Quantum Probab. Relat. Top.
  doi: 10.1142/S0219025709003781
  contributor:
    fullname: L Pantaleón-Martinez
– volume: 109
  start-page: 1
  issue: 1
  year: 1987
  ident: 3970_CR20
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01205670
  contributor:
    fullname: B Kümmerer
– volume: 45
  start-page: 745
  issue: 3
  year: 2009
  ident: 3970_CR34
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1249478964
  contributor:
    fullname: L Sahu
– ident: 3970_CR18
– volume: 330
  start-page: 435
  issue: 2
  year: 2014
  ident: 3970_CR11
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-014-1993-1
  contributor:
    fullname: B Das
– volume: 18
  start-page: 97
  issue: 1
  year: 1982
  ident: 3970_CR2
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195184017
  contributor:
    fullname: L Accardi
– ident: 3970_CR26
– volume: 68
  start-page: 340
  issue: 3
  year: 2000
  ident: 3970_CR15
  publication-title: J. Austral. Math. Soc. Ser. A
  doi: 10.1017/S1446788700001439
  contributor:
    fullname: GA Elliott
– volume-title: Operator Spaces
  year: 2000
  ident: 3970_CR14
  contributor:
    fullname: EG Effros
– ident: 3970_CR22
  doi: 10.1007/11376569_3
– volume: 409
  start-page: 1032
  issue: 2
  year: 2014
  ident: 3970_CR12
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.01.067
  contributor:
    fullname: BK Das
– volume-title: Operator Algebras and Quantum Statistical Mechanics I: $$C^*$$- and $$W^*$$-Algebras, Symmetry Groups, Decompositions of States Corrected
  year: 2002
  ident: 3970_CR8
  contributor:
    fullname: O Bratteli
– volume: 18
  start-page: 144
  issue: 3
  year: 1999
  ident: 3970_CR17
  publication-title: Proyecciones
  contributor:
    fullname: F Fagnola
– volume: 48
  start-page: 135
  issue: 1978
  year: 1980
  ident: 3970_CR1
  publication-title: Rend. Sem. Mat. Fis. Milano
  contributor:
    fullname: L Accardi
– volume: 12
  start-page: 2639
  issue: 14–15
  year: 2001
  ident: 3970_CR3
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(01)00079-0
  contributor:
    fullname: L Accardi
– volume-title: Operator Algebras and Their Modules: An Operator Space Approach
  year: 2005
  ident: 3970_CR6
  contributor:
    fullname: DP Blecher
SSID ssj0009266
Score 2.3798232
Snippet Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 153
SubjectTerms AC generators
Algebra
Classical and Quantum Gravitation
Complex Systems
Existence theorems
Lattices (mathematics)
Markov processes
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Random walk
Relativity Theory
Theoretical
Title Quantum Stochastic Cocycles and Completely Bounded Semigroups on Operator Spaces II
URI https://link.springer.com/article/10.1007/s00220-021-03970-x
https://www.proquest.com/docview/2505391471
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5B0UpwoMAuojwqH7jtGjmJ8zq2iPISrFCpxJ4i2xkLBKQVTSXg12O7SavlceAYORo58_B80XwzBthPE0_FTCkqNAsozzWnEjnSJBQBQ-R5LO2P4sVldDLgZzfhzbyP25Hd64qkO6hnvW422zBqGQXM5FBGDXBcqhpPlzrH_86P5rN2_WmJ0tZ5g8iLql6Zz6X8n4_mIPNdXdSlm14TruumnSnL5P5gUsoD9fpxhuN3vmQNViv4STpTf1mHBSw2oFlBUVIF-ngDVi5m41zN0w_HE1Xjn9C_mhhTTB5JvxyqW2GHPJPDoXqx3DoiipzY88W4Aj68kK69sclKxcc71zwyJsOC_B2hq-yT_siywcjp6S8Y9I6uD09odS8DVSZgS5qaXetAxRotGjEpLtEBS0Xq5TwUkkmtQ-FhEvqRSZE8FszXBlVogQGPuOQy2IRGMSxwC0iiUSbIDOhRERfIEuXHORep0CIJeYQt-F1bJxtNx29ks0HLTo-Z0WPm9Jg9t2C3NmBWheI4sxgvSM0-vBb8qQ0yX_5a2vb3Xt-BZd_Z1LJ6dqFRPk1wzwCWUraNg_a63ct25ahtWBz4nTcx_-MB
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9Nraaxh3V8aYUCfuBtM3IS5-uxVEA7KGgqleApsp2zNkHTiqTSyl-PnSathsYDj5Gj0-XO5_tF97szwHEcOSpkSlGhmUd5qjmVyJFGvvAYIk9DaX8Uh9dBf8x_3vl3VVNYXrPd65JkeVKvmt1sumHUUgqYSaKMGuTY5K4TuA1odi_uL8_Ww3bdZY3SFnq9wAmqZpn_S_k3Ia1R5qvCaJlvzlswrjVd0kweTuaFPFHPr4Y4vvdTvsKXCoCS7nLHbMIHzLagVYFRUoV6vgWfh6uBrubpY8kUVfk2jH7NjTPmEzIqpuq3sGOeSW-qFpZdR0SWEnvCmM2Ajwtyau9sslJx8qdsH8nJNCM3Myxr-2Q0s3wwMhjswPj87LbXp9XNDFSZkC1obLTWngo1WjxiklykPRaL2Em5LySTWvvCwch3A5MkeSiYqw2u0AI9HnDJpbcLjWya4TcgkUYZITOwRwVcIIuUG6ZcxEKLyOcBtuF77Z5kthzAkaxGLZd2TIwdk9KOyd82dGoPJlUw5olFeV5s9HDa8KN2yHr5bWl773v9CD71b4dXydXg-nIfNtzSv5bj04FG8TTHAwNfCnlY7dYXI8_kcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hRFTlQChtRSBQH7i1Bu-u93UMj0DKo63SSOlpZXvHatWyGzUbCfj12PtIKCqHqseVV5Z3Zuz5VvPNZ4D9OHJUyJSiQjOP8lRzKpEjjXzhMUSehtL-KF5dB-dj_nHiTx518Zds96YkWfU0WJWmrDicpvpw0fhmUw-jll7ATEJl1KDINrfKSC1o98--XZwuhXfdql5pi75e4AR148zfZ_kzOS0R55MiaZl7Bh0QzaorysnPg3khD9T9E0HH__msDVivgSnpV5H0ClYw24RODVJJfQTMNmHtaiH0ap5WSwapmr2G0Ze5cdL8hoyKXH0XVv6ZHOfqzrLuiMhSYk8eEyT4644c2buc7Kx486NsK5mRPCOfpljW_MloanliZDh8A-PB6dfjc1rf2ECV2coFjc2qtadCjRanmOQXaY_FInZS7gvJpNa-cDDy3cAkTx4K5mqDN7RAjwdccum9hVaWZ7gFJNIoI2QGDqmAC2SRcsOUi1hoEfk8wC68b1yVTCthjmQhwVzaMTF2TEo7Jrdd6DXeTOpNOkss-vNisw6nCx8a5yyHn59t-99efwcvPp8Mksvh9cUOvHRL91rqTw9axe857hpUU8i9OnAfAOXI7VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Stochastic+Cocycles+and+Completely+Bounded+Semigroups+on+Operator+Spaces+II&rft.jtitle=Communications+in+mathematical+physics&rft.au=Martin%2C+Lindsay+J&rft.au=Wills%2C+Stephen+J&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=383&rft.issue=1&rft.spage=153&rft.epage=199&rft_id=info:doi/10.1007%2Fs00220-021-03970-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon