Synthesis of BiOCl/C/g-C3N4 Z-scheme heterojunction: mercury lamp-driven heterojunction for efficient degradation of phenol
Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C 3 N 4 photocatalyst was synthesized with biochar, BiOCl, and g-C 3 N 4 . Biochar was first used as an electronic medium to accelerate charge carrier separation. Moreover, t...
Saved in:
Published in | Research on chemical intermediates Vol. 49; no. 4; pp. 1665 - 1681 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C
3
N
4
photocatalyst was synthesized with biochar, BiOCl, and g-C
3
N
4
. Biochar was first used as an electronic medium to accelerate charge carrier separation. Moreover, the formation of the built-in electric field between BiOCl and g-C
3
N
4
interface inhibits the electron–hole recombination during the photocatalytic process. The characterization results show that the Z-scheme heterojunction structure was successfully prepared. The BiOCl
(0.5)
C
(0.03)
g-C
3
N
4(0.97)
photocatalyst had up to 96.9% degradation of phenol under mercury lamp irradiation. The rate constant of the photodegradation reaction process is 0.38706 h
−1
, which is 2.1 times that of pure BiOCl. And photocatalyst has satisfactory stability, which a three-cycle retention rate was 97.6%. In addition, the reaction mechanism was studied, and the photogenerated carrier transferring pathways of BiOCl/C/g-C
3
N
4
Z-scheme photocatalysts were proposed. The photocatalyst offers new ideas for the Z-scheme heterojunction photocatalyst.
Graphical Abstract |
---|---|
AbstractList | Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C
3
N
4
photocatalyst was synthesized with biochar, BiOCl, and g-C
3
N
4
. Biochar was first used as an electronic medium to accelerate charge carrier separation. Moreover, the formation of the built-in electric field between BiOCl and g-C
3
N
4
interface inhibits the electron–hole recombination during the photocatalytic process. The characterization results show that the Z-scheme heterojunction structure was successfully prepared. The BiOCl
(0.5)
C
(0.03)
g-C
3
N
4(0.97)
photocatalyst had up to 96.9% degradation of phenol under mercury lamp irradiation. The rate constant of the photodegradation reaction process is 0.38706 h
−1
, which is 2.1 times that of pure BiOCl. And photocatalyst has satisfactory stability, which a three-cycle retention rate was 97.6%. In addition, the reaction mechanism was studied, and the photogenerated carrier transferring pathways of BiOCl/C/g-C
3
N
4
Z-scheme photocatalysts were proposed. The photocatalyst offers new ideas for the Z-scheme heterojunction photocatalyst.
Graphical Abstract Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C3N4 photocatalyst was synthesized with biochar, BiOCl, and g-C3N4. Biochar was first used as an electronic medium to accelerate charge carrier separation. Moreover, the formation of the built-in electric field between BiOCl and g-C3N4 interface inhibits the electron–hole recombination during the photocatalytic process. The characterization results show that the Z-scheme heterojunction structure was successfully prepared. The BiOCl(0.5)C(0.03)g-C3N4(0.97) photocatalyst had up to 96.9% degradation of phenol under mercury lamp irradiation. The rate constant of the photodegradation reaction process is 0.38706 h−1, which is 2.1 times that of pure BiOCl. And photocatalyst has satisfactory stability, which a three-cycle retention rate was 97.6%. In addition, the reaction mechanism was studied, and the photogenerated carrier transferring pathways of BiOCl/C/g-C3N4 Z-scheme photocatalysts were proposed. The photocatalyst offers new ideas for the Z-scheme heterojunction photocatalyst. |
Author | Wang, Run-quan Tian, Yuan Song, Kai Chen, Wan-ping Wang, Guo-ying Zhang, Yue-rong Shi, Gao-feng Li, Jia-xian |
Author_xml | – sequence: 1 givenname: Kai surname: Song fullname: Song, Kai organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 2 givenname: Wan-ping surname: Chen fullname: Chen, Wan-ping organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 3 givenname: Run-quan surname: Wang fullname: Wang, Run-quan organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 4 givenname: Yue-rong surname: Zhang fullname: Zhang, Yue-rong organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 5 givenname: Yuan surname: Tian fullname: Tian, Yuan organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 6 givenname: Jia-xian surname: Li fullname: Li, Jia-xian organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 7 givenname: Guo-ying surname: Wang fullname: Wang, Guo-ying organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province – sequence: 8 givenname: Gao-feng surname: Shi fullname: Shi, Gao-feng email: gaofengshi_Lzh@163.com organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province |
BookMark | eNp9kM1rGzEQxUVJoM7HP9CToGfVo9WuPnJrliYthObQ5JKLUOWRLbOWHGldMP3ns7UDhRxymsO837x574ycpJyQkE8cvnAANa-cc9kyaASD1ijD9Acy453UrJOqOyEzME3DJJf6IzmrdQ3AO61hRv7-2qdxhTVWmgO9jvf9MO_nS9aLny19YtWvcIN0hSOWvN4lP8acrugGi9-VPR3cZssWJf7B9EZDQy4UQ4g-YhrpApfFLdxhM_lsV5jycEFOgxsqXr7Oc_J48-2h_87u7m9_9F_vmBfcjMwARyMbo6XiU4wWO2eg0dIFGRovhBLGS6e4AGjVbyGNVlzKzggIrgUdxDn5fLy7Lfl5h3W067wrabK0jdJaK1AAk6o5qnzJtRYMdlvixpW95WD_lWyPJdupZHso2eoJ0m8gH8dDzLG4OLyPiiNaJ5-0xPL_q3eoF-K-kk8 |
CitedBy_id | crossref_primary_10_1007_s11164_023_05070_y crossref_primary_10_1007_s11164_024_05490_4 crossref_primary_10_1016_j_sna_2023_114313 crossref_primary_10_1007_s11164_023_05051_1 crossref_primary_10_1016_j_jtice_2024_105918 crossref_primary_10_1016_j_jiec_2023_07_029 crossref_primary_10_1007_s11164_024_05380_9 crossref_primary_10_1016_j_jece_2024_112723 |
Cites_doi | 10.1016/j.jwpe.2022.103121 10.1016/j.jece.2020.104698 10.1016/j.ijhydene.2022.03.106 10.12688/f1000research.124267.1 10.1016/j.jssc.2020.121858 10.1039/D0RA04642F 10.1039/C2NR90102A 10.1016/j.jcis.2019.09.105 10.1016/j.colcom.2021.100410 10.1016/j.cej.2022.135944 10.1039/D0NJ90001J 10.1002/cssc.201600279 10.1016/j.diamond.2022.109413 10.1016/j.diamond.2020.108148 10.1039/D0NJ05681B 10.1016/j.jwpe.2019.100968 10.1016/j.mssp.2021.105970 10.1002/jcc.25540 10.1016/j.apsusc.2019.143807 10.1021/acsomega.0c02477 10.1002/slct.202002543 10.1002/slct.201803805 10.1016/S1872-2067(21)63890-1 10.1002/chem.201704693 10.1016/S1872-2067(19)63521-7 10.1007/s11356-016-7724-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11164-023-04979-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1568-5675 |
EndPage | 1681 |
ExternalDocumentID | 10_1007_s11164_023_04979_8 |
GroupedDBID | -EM -~X 06D 0R~ 0VY 123 1N0 2.D 203 29P 2JN 2JY 2KG 2LR 2VQ 30V 4.4 406 408 40D 53G 5VS 63Z 67Z 78A 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAFNC AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAOTM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXJT AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYHW ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEVUW AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMFWP AMKLP AMXSW AMYLF ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B0M BA0 BBWZM BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDH EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR IXC I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- ML- MM1 N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9N PT4 PT5 R4W R89 R9I RHV RIG ROL RSV S1Z S26 S27 S28 S3B SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-901e962986710924e5a90286af6f2c33739c6a7130047b369871665930fa408f3 |
IEDL.DBID | U2A |
ISSN | 0922-6168 |
IngestDate | Fri Jul 25 11:06:34 EDT 2025 Tue Jul 01 04:13:40 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Fri Feb 21 02:43:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Phenol BiOCl g-C Biochar N Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-901e962986710924e5a90286af6f2c33739c6a7130047b369871665930fa408f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2788870700 |
PQPubID | 2043667 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2788870700 crossref_primary_10_1007_s11164_023_04979_8 crossref_citationtrail_10_1007_s11164_023_04979_8 springer_journals_10_1007_s11164_023_04979_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Research on chemical intermediates |
PublicationTitleAbbrev | Res Chem Intermed |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | SunKShenJLiuQTangHZhangMZulfiqarSLeiCChin. J. Catal.20204111:CAS:528:DC%2BB38XisVGhu7fJ10.1016/S1872-2067(19)63521-7 D. Huppmann, J. Browell, B. Nastasi, Z. Vale and D, Susser. F1000Res. 11 (2022) ShiJLingWChengXZhangJCaoCActa Phys. -Chim. Sin.2005219 XiaoYPengZZhangSJiangYJingXYangXZhangJNiLJ. Mater. Sci.20195413 RyuJKumarRSSonY-AJ. Nanosci. Nanotechnol.20202010 LestariPRTakeiTKumadaNJ. Solid State Chem.20212941218581:CAS:528:DC%2BB3cXitlOgu7zO10.1016/j.jssc.2020.121858 LiZChenTChenYChenXLiLKuangSGaoJGuoYLoTWBDuJJ. Mater. Chem. A20221028 LiangCNiuCGGuoHHuangDWWenXJYangSFZengGMCatal Sci. Technol.201884 ShrotriAKobayashiHFukuokaAChemsuschem201691110.1002/cssc.201600279 PalanivelBLallimathiMArjunkumarBShkirMAlshahraniTAl-NamshahKSHamdyMSShanavasSVenkatachalamMRamalingamGJ. Environ. Chem. Eng.20219110.1016/j.jece.2020.104698 HuangHLiY-XJiangG-JWangH-LJiangW-FInorg. Chem.20216022 ZhangLWangWJiangDGaoESunSNano Res.201583 YanYTangXMaCHuangHYuKLiuYLuZLiCZhuZHuoPNew J. Chem.202044110.1039/D0NJ90001J ChenHFanYFanZXuHCuiDXueCZhangWCeram. Int.20214724 B. Palanivel, C.C. Hu, M. Shkir, S. AlFaify, F.A. Ibrahim, M.S. Hamdy and A. Mani. Colloid Interface Sci. Commun. 42, (2021) FanSTangXZhangDHuXLiuJYangLSuJNanoscale20191132 B. Palanivel, M.S. Hossain, I.N. Reddy, E.M. Abhinav, A.M. Al-Enizi, M. Ubaidullah, R.R. Macadangdang and J. Shim. Diamond Relat. Mater. 130, (2022) YuHCaoCWangXYuJJ. Phys. Chem. C201712124 FuC-FZhangRLuoQLiXYangJJ. Comput. Chem.20194091:CAS:528:DC%2BC1cXhsVOmsr%2FF10.1002/jcc.25540 BaiJHanQChengZQuLChem. Asian J.20181321 HuangHHeYLiXLiMZengCDongFDuXZhangTZhangYJ. Mater. Chem. A2015348 MaMChenYJiangJBiYLiaoZMaYEnviron. Sci. Pollut. Res.20222942 JiangJZhangLLiHHeWYinJJNanoscale201352110.1039/C2NR90102A YangJGaoGZhuZYu ResXChem. Intermed.20224861:CAS:528:DC%2BB38XjtFKhtrrM MaHLiuJZuoSYuYLiuWWangYLiBChemistrySelect2021637 LiYLuYJiaXMaZZhangJJ. Phys. D: Appl. Phys.20225543 KimSWangYZhuMFujitsukaMMajimaTChem. Eur. J.2018245610.1002/chem.201704693 LiXHanBWangXBaiPSunLHaoQYuKLiangCNew J. Chem.2020445 LiuWXuRWangYHuangNShimadaTYeLInt. J. Hydrogen Energy20224736160051:CAS:528:DC%2BB38XovFSjs7c%3D10.1016/j.ijhydene.2022.03.106 ChenDYangLLiJWuQChemistrySelect20194510.1002/slct.201803805 B. Palanivel, S.D.M. perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan and M. Alagiri, Appl. Surf. Sci. 498, (2019) WangJCaoFDengRHuangLLiSCaiJLuXQinGChem. Res. Chin. Univ.2016323 PalanivelBShkirMAlshahraniTManiADiamond Relat. Mater.20211121081481:CAS:528:DC%2BB3cXit12ns7rM10.1016/j.diamond.2020.108148 QianKXiaLJiangZWeiWChenLXieJCatal. Sci. Technol.2017717 LiHJYaoYTYangXYZhouXSLeiRHeSFEnviron Sci Pollut. Res.20222945 ThilagavathiTVenugopalDThangarajuDMarnaduRPalanivelBImranMShkirMUbaidullahMAlFaifySMater. Sci. Semicond. Process.20211331059701:CAS:528:DC%2BB3MXht1Kgu7rF10.1016/j.mssp.2021.105970 ZhengTHeJZhaoYXiaWHeJJ. Rare Earths2014322 H. Liang, T.R. Li, J. Zhang, D.D. Zhou, C.Z. Hu, X.Q. An, R.P. Liu and H.J. Liu, J. Colloid Interface Sci. 558, (2020) WangSZhaoTTTianYYanLKSuZMNew J. Chem.20214526114741:CAS:528:DC%2BB3MXhtFKrtL%2FP10.1039/D0NJ05681B KuilaSKKumbhakarPTiwaryCSKunduTKJ. Mater. Sci.20225719 LallimathiMKalisamyPSuryamathiMAlshahraniTShkirMVenkatachalamMPalanivelBChemistrySelect202053410.1002/slct.202002543 BashirSZhuJFuQHuHEnviron. Sci. Pollut. Res.2018251210.1007/s11356-016-7724-8 LiKBaoLCaoSXueYYanSGaoHApplACSEnergy Mater.2021411 WuSXiongJSunJHoodZDZengWYangZGuLZhangXYangS-ZApplACSMater. Interfaces2017919 Al-HasaniHAl-SabahiJAl-GhafriBAl-HajriRAl-AbriMJ. Water Process. Eng.20224910312110.1016/j.jwpe.2022.103121 PalanivelBManiAACS Omega202053110.1021/acsomega.0c02477 WangSAnWLuJLiuLHuJLiangYCuiWChem. Eng. J.20224411359441:CAS:528:DC%2BB38XotlGiu7c%3D10.1016/j.cej.2022.135944 KalisamyPLallimathiMSuryamathiMPalanivelBVenkatachalamMRSC Adv.2020104710.1039/D0RA04642F WangHLiXZhaoXLiCSongXZhangPHuoPLiXChin. J. Catal.202243210.1016/S1872-2067(21)63890-1 PalanivelBJayaramanVAyyappanCAlagiriMJ. Water Process. Eng.20193210096810.1016/j.jwpe.2019.100968 YangFZhangHTangQLuSZhangHZhengXRes. Chem. Intermed.20224810 S Wang (4979_CR47) 2022; 441 K Qian (4979_CR22) 2017; 7 X Li (4979_CR44) 2020; 44 Z Li (4979_CR37) 2022; 10 Y Li (4979_CR8) 2022; 55 H Huang (4979_CR14) 2015; 3 J Jiang (4979_CR16) 2013; 5 T Thilagavathi (4979_CR3) 2021; 133 4979_CR23 PR Lestari (4979_CR49) 2021; 294 J Bai (4979_CR4) 2018; 13 4979_CR1 T Zheng (4979_CR25) 2014; 32 4979_CR5 A Shrotri (4979_CR31) 2016; 9 H Wang (4979_CR2) 2022; 43 J Yang (4979_CR28) 2022; 48 H Al-Hasani (4979_CR48) 2022; 49 D Chen (4979_CR27) 2019; 4 S Bashir (4979_CR35) 2018; 25 4979_CR34 Y Xiao (4979_CR29) 2019; 54 HJ Li (4979_CR38) 2022; 29 4979_CR7 B Palanivel (4979_CR6) 2019; 32 C-F Fu (4979_CR21) 2019; 40 S Fan (4979_CR41) 2019; 11 W Liu (4979_CR9) 2022; 47 B Palanivel (4979_CR10) 2021; 112 C Liang (4979_CR42) 2018; 8 P Kalisamy (4979_CR36) 2020; 10 S Kim (4979_CR43) 2018; 24 H Yu (4979_CR17) 2017; 121 F Yang (4979_CR50) 2022; 48 SK Kuila (4979_CR11) 2022; 57 J Wang (4979_CR20) 2016; 32 M Lallimathi (4979_CR24) 2020; 5 L Zhang (4979_CR19) 2015; 8 S Wu (4979_CR33) 2017; 9 K Sun (4979_CR15) 2020; 41 M Ma (4979_CR46) 2022; 29 H Chen (4979_CR26) 2021; 47 B Palanivel (4979_CR13) 2020; 5 B Palanivel (4979_CR12) 2021; 9 H Ma (4979_CR40) 2021; 6 J Ryu (4979_CR30) 2020; 20 J Shi (4979_CR45) 2005; 21 Y Yan (4979_CR39) 2020; 44 S Wang (4979_CR51) 2021; 45 K Li (4979_CR32) 2021; 4 H Huang (4979_CR18) 2021; 60 |
References_xml | – reference: MaMChenYJiangJBiYLiaoZMaYEnviron. Sci. Pollut. Res.20222942 – reference: BashirSZhuJFuQHuHEnviron. Sci. Pollut. Res.2018251210.1007/s11356-016-7724-8 – reference: QianKXiaLJiangZWeiWChenLXieJCatal. Sci. Technol.2017717 – reference: FuC-FZhangRLuoQLiXYangJJ. Comput. Chem.20194091:CAS:528:DC%2BC1cXhsVOmsr%2FF10.1002/jcc.25540 – reference: LiYLuYJiaXMaZZhangJJ. Phys. D: Appl. Phys.20225543 – reference: ShrotriAKobayashiHFukuokaAChemsuschem201691110.1002/cssc.201600279 – reference: ShiJLingWChengXZhangJCaoCActa Phys. -Chim. Sin.2005219 – reference: HuangHHeYLiXLiMZengCDongFDuXZhangTZhangYJ. Mater. Chem. A2015348 – reference: LiZChenTChenYChenXLiLKuangSGaoJGuoYLoTWBDuJJ. Mater. Chem. A20221028 – reference: KimSWangYZhuMFujitsukaMMajimaTChem. Eur. J.2018245610.1002/chem.201704693 – reference: Al-HasaniHAl-SabahiJAl-GhafriBAl-HajriRAl-AbriMJ. Water Process. Eng.20224910312110.1016/j.jwpe.2022.103121 – reference: RyuJKumarRSSonY-AJ. Nanosci. Nanotechnol.20202010 – reference: KalisamyPLallimathiMSuryamathiMPalanivelBVenkatachalamMRSC Adv.2020104710.1039/D0RA04642F – reference: PalanivelBManiAACS Omega202053110.1021/acsomega.0c02477 – reference: B. Palanivel, S.D.M. perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan and M. Alagiri, Appl. Surf. Sci. 498, (2019) – reference: ThilagavathiTVenugopalDThangarajuDMarnaduRPalanivelBImranMShkirMUbaidullahMAlFaifySMater. Sci. Semicond. Process.20211331059701:CAS:528:DC%2BB3MXht1Kgu7rF10.1016/j.mssp.2021.105970 – reference: PalanivelBLallimathiMArjunkumarBShkirMAlshahraniTAl-NamshahKSHamdyMSShanavasSVenkatachalamMRamalingamGJ. Environ. Chem. Eng.20219110.1016/j.jece.2020.104698 – reference: SunKShenJLiuQTangHZhangMZulfiqarSLeiCChin. J. Catal.20204111:CAS:528:DC%2BB38XisVGhu7fJ10.1016/S1872-2067(19)63521-7 – reference: ZhangLWangWJiangDGaoESunSNano Res.201583 – reference: H. Liang, T.R. Li, J. Zhang, D.D. Zhou, C.Z. Hu, X.Q. An, R.P. Liu and H.J. Liu, J. Colloid Interface Sci. 558, (2020) – reference: WangJCaoFDengRHuangLLiSCaiJLuXQinGChem. Res. Chin. Univ.2016323 – reference: LallimathiMKalisamyPSuryamathiMAlshahraniTShkirMVenkatachalamMPalanivelBChemistrySelect202053410.1002/slct.202002543 – reference: LiKBaoLCaoSXueYYanSGaoHApplACSEnergy Mater.2021411 – reference: LiXHanBWangXBaiPSunLHaoQYuKLiangCNew J. Chem.2020445 – reference: XiaoYPengZZhangSJiangYJingXYangXZhangJNiLJ. Mater. Sci.20195413 – reference: HuangHLiY-XJiangG-JWangH-LJiangW-FInorg. Chem.20216022 – reference: LestariPRTakeiTKumadaNJ. Solid State Chem.20212941218581:CAS:528:DC%2BB3cXitlOgu7zO10.1016/j.jssc.2020.121858 – reference: YangFZhangHTangQLuSZhangHZhengXRes. Chem. Intermed.20224810 – reference: WangSZhaoTTTianYYanLKSuZMNew J. Chem.20214526114741:CAS:528:DC%2BB3MXhtFKrtL%2FP10.1039/D0NJ05681B – reference: ChenDYangLLiJWuQChemistrySelect20194510.1002/slct.201803805 – reference: WuSXiongJSunJHoodZDZengWYangZGuLZhangXYangS-ZApplACSMater. Interfaces2017919 – reference: ChenHFanYFanZXuHCuiDXueCZhangWCeram. Int.20214724 – reference: ZhengTHeJZhaoYXiaWHeJJ. Rare Earths2014322 – reference: YuHCaoCWangXYuJJ. Phys. Chem. C201712124 – reference: PalanivelBShkirMAlshahraniTManiADiamond Relat. Mater.20211121081481:CAS:528:DC%2BB3cXit12ns7rM10.1016/j.diamond.2020.108148 – reference: YangJGaoGZhuZYu ResXChem. Intermed.20224861:CAS:528:DC%2BB38XjtFKhtrrM – reference: D. Huppmann, J. Browell, B. Nastasi, Z. Vale and D, Susser. F1000Res. 11 (2022) – reference: BaiJHanQChengZQuLChem. Asian J.20181321 – reference: LiuWXuRWangYHuangNShimadaTYeLInt. J. Hydrogen Energy20224736160051:CAS:528:DC%2BB38XovFSjs7c%3D10.1016/j.ijhydene.2022.03.106 – reference: WangHLiXZhaoXLiCSongXZhangPHuoPLiXChin. J. Catal.202243210.1016/S1872-2067(21)63890-1 – reference: KuilaSKKumbhakarPTiwaryCSKunduTKJ. Mater. Sci.20225719 – reference: LiangCNiuCGGuoHHuangDWWenXJYangSFZengGMCatal Sci. Technol.201884 – reference: YanYTangXMaCHuangHYuKLiuYLuZLiCZhuZHuoPNew J. Chem.202044110.1039/D0NJ90001J – reference: LiHJYaoYTYangXYZhouXSLeiRHeSFEnviron Sci Pollut. Res.20222945 – reference: MaHLiuJZuoSYuYLiuWWangYLiBChemistrySelect2021637 – reference: B. Palanivel, M.S. Hossain, I.N. Reddy, E.M. Abhinav, A.M. Al-Enizi, M. Ubaidullah, R.R. Macadangdang and J. Shim. Diamond Relat. Mater. 130, (2022) – reference: JiangJZhangLLiHHeWYinJJNanoscale201352110.1039/C2NR90102A – reference: WangSAnWLuJLiuLHuJLiangYCuiWChem. Eng. J.20224411359441:CAS:528:DC%2BB38XotlGiu7c%3D10.1016/j.cej.2022.135944 – reference: PalanivelBJayaramanVAyyappanCAlagiriMJ. Water Process. Eng.20193210096810.1016/j.jwpe.2019.100968 – reference: FanSTangXZhangDHuXLiuJYangLSuJNanoscale20191132 – reference: B. Palanivel, C.C. Hu, M. Shkir, S. AlFaify, F.A. Ibrahim, M.S. Hamdy and A. Mani. Colloid Interface Sci. Commun. 42, (2021) – volume: 20 start-page: 10 year: 2020 ident: 4979_CR30 publication-title: J. Nanosci. Nanotechnol. – volume: 8 start-page: 4 year: 2018 ident: 4979_CR42 publication-title: Catal Sci. Technol. – volume: 49 start-page: 103121 year: 2022 ident: 4979_CR48 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2022.103121 – volume: 48 start-page: 6 year: 2022 ident: 4979_CR28 publication-title: Chem. Intermed. – volume: 9 start-page: 1 year: 2021 ident: 4979_CR12 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104698 – volume: 32 start-page: 3 year: 2016 ident: 4979_CR20 publication-title: Chem. Res. Chin. Univ. – volume: 57 start-page: 19 year: 2022 ident: 4979_CR11 publication-title: J. Mater. Sci. – volume: 47 start-page: 16005 issue: 36 year: 2022 ident: 4979_CR9 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.106 – ident: 4979_CR1 doi: 10.12688/f1000research.124267.1 – volume: 294 start-page: 121858 year: 2021 ident: 4979_CR49 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121858 – volume: 47 start-page: 24 year: 2021 ident: 4979_CR26 publication-title: Ceram. Int. – volume: 55 start-page: 43 year: 2022 ident: 4979_CR8 publication-title: J. Phys. D: Appl. Phys. – volume: 13 start-page: 21 year: 2018 ident: 4979_CR4 publication-title: Chem. Asian J. – volume: 10 start-page: 47 year: 2020 ident: 4979_CR36 publication-title: RSC Adv. doi: 10.1039/D0RA04642F – volume: 5 start-page: 21 year: 2013 ident: 4979_CR16 publication-title: Nanoscale doi: 10.1039/C2NR90102A – volume: 6 start-page: 37 year: 2021 ident: 4979_CR40 publication-title: ChemistrySelect – volume: 11 start-page: 32 year: 2019 ident: 4979_CR41 publication-title: Nanoscale – ident: 4979_CR34 doi: 10.1016/j.jcis.2019.09.105 – ident: 4979_CR7 doi: 10.1016/j.colcom.2021.100410 – volume: 441 start-page: 135944 year: 2022 ident: 4979_CR47 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135944 – volume: 44 start-page: 1 year: 2020 ident: 4979_CR39 publication-title: New J. Chem. doi: 10.1039/D0NJ90001J – volume: 10 start-page: 28 year: 2022 ident: 4979_CR37 publication-title: J. Mater. Chem. A – volume: 7 start-page: 17 year: 2017 ident: 4979_CR22 publication-title: Catal. Sci. Technol. – volume: 21 start-page: 9 year: 2005 ident: 4979_CR45 publication-title: Acta Phys. -Chim. Sin. – volume: 9 start-page: 11 year: 2016 ident: 4979_CR31 publication-title: Chemsuschem doi: 10.1002/cssc.201600279 – ident: 4979_CR5 doi: 10.1016/j.diamond.2022.109413 – volume: 112 start-page: 108148 year: 2021 ident: 4979_CR10 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2020.108148 – volume: 45 start-page: 11474 issue: 26 year: 2021 ident: 4979_CR51 publication-title: New J. Chem. doi: 10.1039/D0NJ05681B – volume: 32 start-page: 100968 year: 2019 ident: 4979_CR6 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2019.100968 – volume: 29 start-page: 45 year: 2022 ident: 4979_CR38 publication-title: Environ Sci Pollut. Res. – volume: 44 start-page: 5 year: 2020 ident: 4979_CR44 publication-title: New J. Chem. – volume: 133 start-page: 105970 year: 2021 ident: 4979_CR3 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.105970 – volume: 40 start-page: 9 year: 2019 ident: 4979_CR21 publication-title: J. Comput. Chem. doi: 10.1002/jcc.25540 – ident: 4979_CR23 doi: 10.1016/j.apsusc.2019.143807 – volume: 5 start-page: 31 year: 2020 ident: 4979_CR13 publication-title: ACS Omega doi: 10.1021/acsomega.0c02477 – volume: 5 start-page: 34 year: 2020 ident: 4979_CR24 publication-title: ChemistrySelect doi: 10.1002/slct.202002543 – volume: 32 start-page: 2 year: 2014 ident: 4979_CR25 publication-title: J. Rare Earths – volume: 4 start-page: 11 year: 2021 ident: 4979_CR32 publication-title: Energy Mater. – volume: 4 start-page: 5 year: 2019 ident: 4979_CR27 publication-title: ChemistrySelect doi: 10.1002/slct.201803805 – volume: 8 start-page: 3 year: 2015 ident: 4979_CR19 publication-title: Nano Res. – volume: 9 start-page: 19 year: 2017 ident: 4979_CR33 publication-title: Mater. Interfaces – volume: 43 start-page: 2 year: 2022 ident: 4979_CR2 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63890-1 – volume: 54 start-page: 13 year: 2019 ident: 4979_CR29 publication-title: J. Mater. Sci. – volume: 3 start-page: 48 year: 2015 ident: 4979_CR14 publication-title: J. Mater. Chem. A – volume: 29 start-page: 42 year: 2022 ident: 4979_CR46 publication-title: Environ. Sci. Pollut. Res. – volume: 24 start-page: 56 year: 2018 ident: 4979_CR43 publication-title: Chem. Eur. J. doi: 10.1002/chem.201704693 – volume: 41 start-page: 1 year: 2020 ident: 4979_CR15 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63521-7 – volume: 121 start-page: 24 year: 2017 ident: 4979_CR17 publication-title: J. Phys. Chem. C – volume: 48 start-page: 10 year: 2022 ident: 4979_CR50 publication-title: Res. Chem. Intermed. – volume: 25 start-page: 12 year: 2018 ident: 4979_CR35 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7724-8 – volume: 60 start-page: 22 year: 2021 ident: 4979_CR18 publication-title: Inorg. Chem. |
SSID | ssj0015880 |
Score | 2.3483891 |
Snippet | Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C
3
N
4
photocatalyst was... Designing photocatalysts to remove organic pollutants are of great significance in the environmental field. Herein, BiOCl/C/g-C3N4 photocatalyst was... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1665 |
SubjectTerms | Carbon nitride Catalysis Chemistry Chemistry and Materials Science Current carriers Electric fields Heterojunctions Inorganic Chemistry Mercury lamps Photocatalysis Photocatalysts Photodegradation Physical Chemistry Reaction mechanisms |
Title | Synthesis of BiOCl/C/g-C3N4 Z-scheme heterojunction: mercury lamp-driven heterojunction for efficient degradation of phenol |
URI | https://link.springer.com/article/10.1007/s11164-023-04979-8 https://www.proquest.com/docview/2788870700 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DLAgnqI8Kg9sYDWJHcdma6MWBFIZoFJhiRxjQ1FpUFMGxJ_nnCZEIEBiyhDHse6zfd_pXggdiZTD-mxKtAIThXlUEWWkJr4FupAKEwRpEW3R5-cDdjEMh2VSWF5Fu1cuyeKmrpPdfKD2BHQMAVYbSSIW0XIItrsL5BoE7U_fQSiKfmmeBDOL-1yUqTI_z_FVHdUc85tbtNA2vXW0VtJE3J7juoEWzGQTrcRVd7Yt9H79NgHulo9ynFncGV3F41bceiAx7TN8R8BmNc8GP7pgl-wJdJeT_yl-NlMNQsSwDV7I_dTddN_GYCCx2BR1JUAd4XtXS2Ledsn9xwWEZeNtNOh1b-JzUjZSIBpO2MyFYBjJA-lq2YFYmAmVK9rCleU20JRGVGquIufZYlFKuXRWFA8l9axinrB0By1NsonZRZhRaqiCe4JpjympUyUATWqBVirfCtNAfiXPRJdVxl2zi3FS10d2GCSAQVJgkIgGOv785mVeY-PP0QcVTEl53vIkcJZ8BMvyGuikgq5-_ftse_8bvo9Wg_nuIZ5_gJZm01dzCKxkljbRcrvX6fTd8-z2stssNuUHjRDZ5Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHOCCWEWhgA9wAovETh0HiQMEUNnKASohLsExNotKW7VFCPE7fCjjNKECARIHznEcy2_seZPZAFZlKnB9NqVaoYkSeFxRZSJNfYt0IZWGsTSLtqiJaj04uqxcDsFbkQuTRbsXLsnsph4ku_lI7SnqGIqsNoyozEMpj83LMxpq3e3DPUR1jbGD_Yu4SvNeAlSjkPVcFIKJBItcOTcPbQ5TUa5uiVBWWKY5D3mkhQqdcycIUy4iZ0iISsQ9qwJPWo7zDsMokg_pzk6d7Xz4Kioy68-GszI0xITMU3O-X_Nn9TfgtF_csJl2O5iEiZyWkp2-HE3BkGlOw1hcdIObgdfzlyZyxe59l7Qs2b0_ixub8eYtjXktIFcUbWTzaMidC65pPaCudHhvkUfT0QgaQbFr05uOu1m_jCFImonJ6lig-iM3rnZFv82T-44LQGs1ZqH-L5s9ByPNVtPMAwk4N1zhvRRoL1CRTpVE6eEWaazyrTQl8Iv9THRe1dw112gkg3rMDoMEMUgyDBJZgvWPd9r9mh6_ji4XMCX5-e4mzP05CHFZXgk2CugGj3-ebeFvw1dgrHpxepKcHNaOF2Gc9SWJen4ZRnqdJ7OEjKiXLmcCSeD6v0_AO201D8E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BlQqXqqUgArT4AKfWyq7teL2VekgXIl4KlUokxGXxOjYPhU2UpKqi_qn-xI73QVTUIvXAeb1ey9_Y883OC2BXZRLX5zJqNJooIuCaahsbGjqkC5myjGVFtEVXHvbE8UXrYgF-1bkwRbR77ZIscxp8laZ82hz1XXOe-BYizaeobygy3CimqgqrPLGzH2i0TT4f7SPCe4x1Ds6TQ1r1FaAGBW7qIxJsLFnsS7sFaH_YlvY1TKR20jHDecRjI3XkHT0iyriMvVEhWzEPnBaBchznXYQXwmcf4wnqsfaD36Klil5tOCtDo0yqKk3n72v-UxXO-e0jl2yh6Tqv4VVFUUm7lKk3sGDzVVhO6s5wb-Hnt1mOvHFyOyFDR77cniWDZtK8pgnvCnJJ0V6295bc-ECb4R3qTY_9J3JvxwYBJCiCI9of-1v20RiCBJrYoqYFQkH6vo5F2fLJf8cHow0Ha9B7ls1eh6V8mNsNIIJzyzXeUcIEQscm0woliTuktDp0yjYgrPczNVWFc99oY5DOazN7DFLEIC0wSFUDPjy8Myrrezw5eruGKa3O-iRl_i9ChMsKGvCxhm7--N-zbf7f8B14-XW_k54edU-2YIWVgkSDcBuWpuPv9h2So2n2vpBHAlfPfQB-A7g5E_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+BiOCl%2FC%2Fg-C3N4+Z-scheme+heterojunction%3A+mercury+lamp-driven+heterojunction+for+efficient+degradation+of+phenol&rft.jtitle=Research+on+chemical+intermediates&rft.au=Song%2C+Kai&rft.au=Chen%2C+Wan-ping&rft.au=Wang%2C+Run-quan&rft.au=Zhang%2C+Yue-rong&rft.date=2023-04-01&rft.pub=Springer+Netherlands&rft.issn=0922-6168&rft.eissn=1568-5675&rft.volume=49&rft.issue=4&rft.spage=1665&rft.epage=1681&rft_id=info:doi/10.1007%2Fs11164-023-04979-8&rft.externalDocID=10_1007_s11164_023_04979_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0922-6168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0922-6168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0922-6168&client=summon |