Research on detection and location of weak edge signals

In order to be able to control the growth rate of industrial polycrystalline silicon rods well and reduce energy consumption, it is necessary to accurately locate the boundaries of the silicon rods and measure the diameter of the silicon rod during growth. In this paper, a weak edge signal detection...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 14; no. 7; pp. 1355 - 1360
Main Authors Xiuyun, Zhou, Xiaohan, Cao, Ting, Zhou, Zhen, Liu
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to be able to control the growth rate of industrial polycrystalline silicon rods well and reduce energy consumption, it is necessary to accurately locate the boundaries of the silicon rods and measure the diameter of the silicon rod during growth. In this paper, a weak edge signal detection method based on small area is proposed for the problem of weak boundary signal in the late growth stage of polycrystalline silicon rods. The method increases the gradient of the edge by projecting the boundary signal in the column direction. In addition, the method further enhances the gradient information of the weak boundary signal by improving the classical difference operator. In the experimental part, the improved difference operator increases the weak difference signal value from 304 to 686. Finally, the effectiveness of the algorithm is proved by two groups of experimental results.
AbstractList In order to be able to control the growth rate of industrial polycrystalline silicon rods well and reduce energy consumption, it is necessary to accurately locate the boundaries of the silicon rods and measure the diameter of the silicon rod during growth. In this paper, a weak edge signal detection method based on small area is proposed for the problem of weak boundary signal in the late growth stage of polycrystalline silicon rods. The method increases the gradient of the edge by projecting the boundary signal in the column direction. In addition, the method further enhances the gradient information of the weak boundary signal by improving the classical difference operator. In the experimental part, the improved difference operator increases the weak difference signal value from 304 to 686. Finally, the effectiveness of the algorithm is proved by two groups of experimental results.
Author Xiaohan, Cao
Zhen, Liu
Xiuyun, Zhou
Ting, Zhou
Author_xml – sequence: 1
  givenname: Zhou
  surname: Xiuyun
  fullname: Xiuyun, Zhou
  organization: School of Automation Engineering, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Cao
  surname: Xiaohan
  fullname: Xiaohan, Cao
  email: 461589716@qq.com
  organization: School of Automation Engineering, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Zhou
  surname: Ting
  fullname: Ting, Zhou
  organization: School of Automation Engineering, University of Electronic Science and Technology of China
– sequence: 4
  givenname: Liu
  surname: Zhen
  fullname: Zhen, Liu
  organization: School of Automation Engineering, University of Electronic Science and Technology of China
BookMark eNp9kN9LwzAQx4NMcM79Az4VfK7mkjRpH2X4CwaC6HNIk8vsnO1MOsT_3qwVBR925Lg7uM_l7ntKJm3XIiHnQC-BUnUVAZSkOWXJQaoq50dkCqXkOSiAyW9O-QmZx7imyThTpSynRD1hRBPsa9a1mcMebd-kzLQu23TWDEXns080bxm6FWaxWbVmE8_IsU8B5z9xRl5ub54X9_ny8e5hcb3MLYeqz0uv0lN17WVRVd4rKxCAIi8oCsdrpYx0jtWUe-lqVha-EMobVVUOhfGKz8jFOHcbuo8dxl6vu13Yb6CZEEwCCC5TFxu7bOhiDOj1NjTvJnxpoHqvkR410kkjPWikeYLKf5Bt-uHiPphmcxjlIxrTP-0Kw99WB6hvlN58HQ
CitedBy_id crossref_primary_10_3390_s23083891
Cites_doi 10.1109/CVPR.2008.4587643
10.1109/CVPR.2000.855874
10.1007/978-3-030-01231-1_35
10.1142/S0217984918500513
10.1109/TPAMI.2010.168
10.1049/el.2010.3294
10.1145/1399504.1360671
10.1007/s11263-017-1004-z
10.1023/A:1016328200723
10.1016/j.protcy.2012.05.033
10.1109/TPAMI.2018.2878849
10.1109/ISCAS.2012.6271886
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11760-020-01679-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 1360
ExternalDocumentID 10_1007_s11760_020_01679_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. U1830133
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-8f78f77bbf6599ff7c4e110e350e4d3b77a6dd2b03f6db285f547fa799de4af73
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Fri Jul 25 09:28:34 EDT 2025
Tue Jul 01 03:24:16 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Fri Feb 21 02:27:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Data processing
Weak signal
Edge signal processing
Difference operator
Edge detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8f78f77bbf6599ff7c4e110e350e4d3b77a6dd2b03f6db285f547fa799de4af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2442611436
PQPubID 2044169
PageCount 6
ParticipantIDs proquest_journals_2442611436
crossref_primary_10_1007_s11760_020_01679_3
crossref_citationtrail_10_1007_s11760_020_01679_3
springer_journals_10_1007_s11760_020_01679_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References LiuXResearch on on-line monitoring system of silicon rod diameter in polycrystalline silicon reduction furnace2014HefeiAnhui University
XieSTuZHolistically-nested edge detectionInt. J. Comput. Vis.20171251–3318371783310.1007/s11263-017-1004-z
Deng R, Shen C, Liu S, et al. Learning to predict crisp boundaries. (2018). https://doi.org/10.1007/978-3-030-01231-1_35
Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR2000), (2000). https://doi.org/10.1109/CVPR.2000.855874
Tan, RT.: Visibility in bad weather from a single image. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008). 2347–2354 (2008)
SinghDKumarVSingle image haze removal using integrated dark and bright channel priorMod. Phys. Lett. B2018376153510.1142/S0217984918500513
JiangHCaoZLiuSDiameter detection and deposition process of CVD polysilicon reactorMod. Chem. Ind.2015353169172
WuHLiuXChenXPangJLiZXiongDSilicon rod diameter measurement method based on binocular vision techniqueJ. Atmosp. Environ. Opt.201495401408
YangXLvYResearch and implementation of grayscale image threshold segmentation based on difference operators combined with improved otsu algorithmInstrum. Tech. Sens.20153104106
Pei S., Lee, T.: Effective image haze removal using dark channel prior and post-processing. In: 2012 IEEE International Symposium on Circuits and Systems. 2777–2780 (2012)
HeKSunJTangXSingle image haze removal using dark channel priorIEEE Trans. Pattern Anal. Mach. Intell.201133122341235310.1109/TPAMI.2010.168
FattalRSingle image dehazingACM Trans. Gr.200810.1145/1399504.1360671
BhardwajSMittalAA survey on various edge detector techniquesProc. Technol.2012422022610.1016/j.protcy.2012.05.033
NarasimhanSNayarKVision and the AtmosphereInt. J. Comput. Vis.200248323325410.1023/A:1016328200723
YoungNEvansANMedian centred difference gradient operator and its application in watershed segmentationElectron. Lett.201147317818010.1049/el.2010.3294
LiuYChengMMHuXRicher convolutional features for edge detectionIEEE Trans. Pattern Anal. Mach. Intell.20194181939194610.1109/TPAMI.2018.2878849
SunXSunJZhaoLCaoYImproved algorithm for single image haze removing using dark channel priorJ. Image Gr.20143381385
X Liu (1679_CR1) 2014
N Young (1679_CR17) 2011; 47
1679_CR7
1679_CR15
1679_CR12
1679_CR10
S Narasimhan (1679_CR13) 2002; 48
S Bhardwaj (1679_CR4) 2012; 4
S Xie (1679_CR5) 2017; 125
D Singh (1679_CR11) 2018
Y Liu (1679_CR6) 2019; 41
R Fattal (1679_CR14) 2008
X Yang (1679_CR16) 2015; 3
K He (1679_CR8) 2011; 33
X Sun (1679_CR9) 2014; 3
H Jiang (1679_CR2) 2015; 35
H Wu (1679_CR3) 2014; 9
References_xml – reference: WuHLiuXChenXPangJLiZXiongDSilicon rod diameter measurement method based on binocular vision techniqueJ. Atmosp. Environ. Opt.201495401408
– reference: JiangHCaoZLiuSDiameter detection and deposition process of CVD polysilicon reactorMod. Chem. Ind.2015353169172
– reference: Deng R, Shen C, Liu S, et al. Learning to predict crisp boundaries. (2018). https://doi.org/10.1007/978-3-030-01231-1_35
– reference: LiuXResearch on on-line monitoring system of silicon rod diameter in polycrystalline silicon reduction furnace2014HefeiAnhui University
– reference: Pei S., Lee, T.: Effective image haze removal using dark channel prior and post-processing. In: 2012 IEEE International Symposium on Circuits and Systems. 2777–2780 (2012)
– reference: Tan, RT.: Visibility in bad weather from a single image. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008). 2347–2354 (2008)
– reference: YoungNEvansANMedian centred difference gradient operator and its application in watershed segmentationElectron. Lett.201147317818010.1049/el.2010.3294
– reference: XieSTuZHolistically-nested edge detectionInt. J. Comput. Vis.20171251–3318371783310.1007/s11263-017-1004-z
– reference: YangXLvYResearch and implementation of grayscale image threshold segmentation based on difference operators combined with improved otsu algorithmInstrum. Tech. Sens.20153104106
– reference: LiuYChengMMHuXRicher convolutional features for edge detectionIEEE Trans. Pattern Anal. Mach. Intell.20194181939194610.1109/TPAMI.2018.2878849
– reference: SinghDKumarVSingle image haze removal using integrated dark and bright channel priorMod. Phys. Lett. B2018376153510.1142/S0217984918500513
– reference: Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR2000), (2000). https://doi.org/10.1109/CVPR.2000.855874
– reference: SunXSunJZhaoLCaoYImproved algorithm for single image haze removing using dark channel priorJ. Image Gr.20143381385
– reference: NarasimhanSNayarKVision and the AtmosphereInt. J. Comput. Vis.200248323325410.1023/A:1016328200723
– reference: HeKSunJTangXSingle image haze removal using dark channel priorIEEE Trans. Pattern Anal. Mach. Intell.201133122341235310.1109/TPAMI.2010.168
– reference: BhardwajSMittalAA survey on various edge detector techniquesProc. Technol.2012422022610.1016/j.protcy.2012.05.033
– reference: FattalRSingle image dehazingACM Trans. Gr.200810.1145/1399504.1360671
– ident: 1679_CR15
  doi: 10.1109/CVPR.2008.4587643
– ident: 1679_CR12
  doi: 10.1109/CVPR.2000.855874
– ident: 1679_CR7
  doi: 10.1007/978-3-030-01231-1_35
– year: 2018
  ident: 1679_CR11
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984918500513
– volume: 33
  start-page: 2341
  issue: 12
  year: 2011
  ident: 1679_CR8
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.168
– volume: 3
  start-page: 104
  year: 2015
  ident: 1679_CR16
  publication-title: Instrum. Tech. Sens.
– volume: 47
  start-page: 178
  issue: 3
  year: 2011
  ident: 1679_CR17
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.3294
– volume: 35
  start-page: 169
  issue: 3
  year: 2015
  ident: 1679_CR2
  publication-title: Mod. Chem. Ind.
– volume: 9
  start-page: 401
  issue: 5
  year: 2014
  ident: 1679_CR3
  publication-title: J. Atmosp. Environ. Opt.
– year: 2008
  ident: 1679_CR14
  publication-title: ACM Trans. Gr.
  doi: 10.1145/1399504.1360671
– volume: 3
  start-page: 381
  year: 2014
  ident: 1679_CR9
  publication-title: J. Image Gr.
– volume: 125
  start-page: 3
  issue: 1–3
  year: 2017
  ident: 1679_CR5
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1004-z
– volume: 48
  start-page: 233
  issue: 3
  year: 2002
  ident: 1679_CR13
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1016328200723
– volume: 4
  start-page: 220
  year: 2012
  ident: 1679_CR4
  publication-title: Proc. Technol.
  doi: 10.1016/j.protcy.2012.05.033
– volume: 41
  start-page: 1939
  issue: 8
  year: 2019
  ident: 1679_CR6
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2878849
– ident: 1679_CR10
  doi: 10.1109/ISCAS.2012.6271886
– volume-title: Research on on-line monitoring system of silicon rod diameter in polycrystalline silicon reduction furnace
  year: 2014
  ident: 1679_CR1
SSID ssj0000327868
Score 2.1759818
Snippet In order to be able to control the growth rate of industrial polycrystalline silicon rods well and reduce energy consumption, it is necessary to accurately...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1355
SubjectTerms Algorithms
Computer Imaging
Computer Science
Diameters
Energy consumption
Finite differences
Image Processing and Computer Vision
Multimedia Information Systems
Operators (mathematics)
Original Paper
Pattern Recognition and Graphics
Polycrystals
Polysilicon
Rods
Signal detection
Signal,Image and Speech Processing
Silicon
Stability
Vision
Title Research on detection and location of weak edge signals
URI https://link.springer.com/article/10.1007/s11760-020-01679-3
https://www.proquest.com/docview/2442611436
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG1hKYzsXjy2iVCA6UalMkRPbCyhFNIi_j50mDSBAQooURX4M98jd2d_dAZzHIkgVM5oqHWrqTICliumAcjcgUUiZlZy-n0aTGb-di3mVFLas0e71lWT5p26S3QYYBdSHOx46LynbhLbwsbuT4lk4XJ-sBCzEeJUDF0e-_mbAqmyZn7f5apEaN_PbzWhpcMZ7sFN5imS4Yu0-bJi8A7t1FwZSKWUHtj-VFDwArKF0ZJETbYoSaZUTlWvizVb5sbDk3agn4o_SiAdwOBE8hNn4-uFqQqvmCDRzWlPQ2KJ7ME1t5ChqLWbcOFNumAgM1yxFVJHWYRow61tGxcIKjlahlNpwZZEdQStf5OYYCEMtIhxoZJnlhrk10nIlbJYxriWqLgxqAiVZVTncN7B4Tpqax56oiSNqUhI1YV24WK95WdXN-HN2r6Z7UunQMnGOhwvvnD8XdeGy5kUz_PtuJ_-bfgpboReHEqHXg1bx-mbOnKdRpH1oD8ej0dS_bx7vrvuloH0AuI_KCg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSylsR3HY4VABdpOrdTNcmJ7AaWIBvH3sd2kAQRISFkiP4bvzr6z_d0dwGXKokwRo7HSscbOBFisiI4wdQ2CMyHyIOnROBlM6cOMzaqgsEXNdq-fJMNO3QS79XgSYX_c8dR5gck6bDhnIPVErmncX92sRCTm6TIGLk18_s2IVNEyP0_z1SI1bua3l9FgcO72YKfyFFF_Kdp9WDNFG3brKgyoWpRt2P6UUvAAeE2lQ_MCaVMGplWBVKGRN1vhZ27Ru1FPyF-lIU_gcCp4CNO728nNAFfFEXDuVk2JU8vdx7PMJg5Ra3lOjTPlhrDIUE0yzlWidZxFxPqSUSmzjHKruBDaUGU5OYJWMS_MMSDCNUt4T3OSW2qIGyMsVczmOaFacNWBXg2QzKvM4b6AxbNsch57UKUDVQZQJenA1WrMyzJvxp-9uzXuslpDC-kcD3e8c_5c0oHrWhZN8--znfyv-wVsDiajoRzejx9PYSv2qhHYel1ola9v5sx5HWV2HpTsA7qAye0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqI8vTABlaT2I6TsQKq8qoYqNTNcmJ7AaUVBPH3sZ2kLQiQkLJEfkj57pw723ffAZwlLMgk0QpLFSlsTYDBkqgAU9uQcpamuZf0wzAejOjtmI0Xsvh9tHtzJVnlNDiWpqLsTpXpzhPfQh4H2G19XBh9iskyrNjfcej0ehT1ZqcsAYl4UuXDJbHj4gxInTnz8zRfrdPc5fx2S-qNT38LNmqvEfUqMW_Dki7asNlUZED1Am3D-gK94A7wJqwOTQqkdOmjrgokC4WcCfMvE4M-tHxG7lgNuWAOq467MOpfP10OcF0oAef2k0ucGG4fnmUmtugaw3OqrVnXhAWaKpJxLmOloiwgxpWPSphhlBvJ01RpKg0ne9AqJoXeB0S4YjEPFSe5oZrYMamhkpk8J1SlXHYgbAASec0i7opZvIg5_7EDVVhQhQdVkA6cz8ZMKw6NP3sfNbiLej29CeuE2K2e9e3iDlw0spg3_z7bwf-6n8Lq41Vf3N8M7w5hLXKa4QP3jqBVvr7rY-uAlNmJ17FPyvTOKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+detection+and+location+of+weak+edge+signals&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Xiuyun%2C+Zhou&rft.au=Xiaohan%2C+Cao&rft.au=Ting%2C+Zhou&rft.au=Zhen%2C+Liu&rft.date=2020-10-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=7&rft.spage=1355&rft.epage=1360&rft_id=info:doi/10.1007%2Fs11760-020-01679-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_020_01679_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon