Dynamic of Organic Matter, Nutrient Cycling, and PH in Soil Aggregate Particle Sizes Under Long-Term Cultivation of Camellia Oleifera

Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of Camellia oleifera on soil properties remains unclear and needs to be elucidated to improve soil and Camelia oleifera sustainable management. T...

Full description

Saved in:
Bibliographic Details
Published inJournal of soil science and plant nutrition Vol. 24; no. 2; pp. 2599 - 2606
Main Authors Zipei, Luo, Qi, Sun, Ndzana, Georges Martial, Lijun, Chen, Yuqi, Chen, sheng, Lu, Lichao, Wu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of Camellia oleifera on soil properties remains unclear and needs to be elucidated to improve soil and Camelia oleifera sustainable management. This study collected soil samples from different Camellia oleifera planting ages (2, 10, and 40 years) and performed aggregate fractionation and various analyses including physico-chemical, soil organic matter chemical composition analyses and a semi-quantitative analysis of organic carbon functional groups to investigate the effect of long-term cultivation of Camellia oleifera on soil macroaggregates (< 2 mm), mesoaggregates (2-0.25 mm) and microaggregates (< 0.25 mm) formation, soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The aggregate particles increased with increasing Camellia oleifera planting ages. Camellia oleifera long-term cultivation did not affected the soil pH in the aggregates, but significantly ( P  < 0.05) increased SOM concentration with the decrease in soil aggregate size. Similarly, Phenolics-C, ketones-C, lignins-C, and alkenes-C increased in soil aggregates with increasing cultivation time and are mainly distributed in < 0.25 mm fraction. The aromatics-C, carboxylic-C, aliphatic-C, and polysaccharides-C declined with increasing cultivation time and were mainly distributed in 2-0.25 mm and < 2 mm fraction. AN is abundantly distributed in 2-0.25 mm and its abundance increases with Camellia oleifera long-term cultivation. All soils were poor in AP and AK. Our study indicated that long-term cultivation of Camellia oleifera promoted soil aggregate formation, increased available nitrogen (AN), soil organic matter (SOM) and controlled the change of SOM chemical composition. However, our study recommended providing available phosphorus (AP) and available potassium (AK) in soil with Camellia oleifera cultivation for sustainable management.
AbstractList Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of Camellia oleifera on soil properties remains unclear and needs to be elucidated to improve soil and Camelia oleifera sustainable management. This study collected soil samples from different Camellia oleifera planting ages (2, 10, and 40 years) and performed aggregate fractionation and various analyses including physico-chemical, soil organic matter chemical composition analyses and a semi-quantitative analysis of organic carbon functional groups to investigate the effect of long-term cultivation of Camellia oleifera on soil macroaggregates (< 2 mm), mesoaggregates (2-0.25 mm) and microaggregates (< 0.25 mm) formation, soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The aggregate particles increased with increasing Camellia oleifera planting ages. Camellia oleifera long-term cultivation did not affected the soil pH in the aggregates, but significantly (P < 0.05) increased SOM concentration with the decrease in soil aggregate size. Similarly, Phenolics-C, ketones-C, lignins-C, and alkenes-C increased in soil aggregates with increasing cultivation time and are mainly distributed in < 0.25 mm fraction. The aromatics-C, carboxylic-C, aliphatic-C, and polysaccharides-C declined with increasing cultivation time and were mainly distributed in 2-0.25 mm and < 2 mm fraction. AN is abundantly distributed in 2-0.25 mm and its abundance increases with Camellia oleifera long-term cultivation. All soils were poor in AP and AK. Our study indicated that long-term cultivation of Camellia oleifera promoted soil aggregate formation, increased available nitrogen (AN), soil organic matter (SOM) and controlled the change of SOM chemical composition. However, our study recommended providing available phosphorus (AP) and available potassium (AK) in soil with Camellia oleifera cultivation for sustainable management.
Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of Camellia oleifera on soil properties remains unclear and needs to be elucidated to improve soil and Camelia oleifera sustainable management. This study collected soil samples from different Camellia oleifera planting ages (2, 10, and 40 years) and performed aggregate fractionation and various analyses including physico-chemical, soil organic matter chemical composition analyses and a semi-quantitative analysis of organic carbon functional groups to investigate the effect of long-term cultivation of Camellia oleifera on soil macroaggregates (< 2 mm), mesoaggregates (2-0.25 mm) and microaggregates (< 0.25 mm) formation, soil organic matter (SOM), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The aggregate particles increased with increasing Camellia oleifera planting ages. Camellia oleifera long-term cultivation did not affected the soil pH in the aggregates, but significantly ( P  < 0.05) increased SOM concentration with the decrease in soil aggregate size. Similarly, Phenolics-C, ketones-C, lignins-C, and alkenes-C increased in soil aggregates with increasing cultivation time and are mainly distributed in < 0.25 mm fraction. The aromatics-C, carboxylic-C, aliphatic-C, and polysaccharides-C declined with increasing cultivation time and were mainly distributed in 2-0.25 mm and < 2 mm fraction. AN is abundantly distributed in 2-0.25 mm and its abundance increases with Camellia oleifera long-term cultivation. All soils were poor in AP and AK. Our study indicated that long-term cultivation of Camellia oleifera promoted soil aggregate formation, increased available nitrogen (AN), soil organic matter (SOM) and controlled the change of SOM chemical composition. However, our study recommended providing available phosphorus (AP) and available potassium (AK) in soil with Camellia oleifera cultivation for sustainable management.
Author Lichao, Wu
Qi, Sun
Lijun, Chen
sheng, Lu
Zipei, Luo
Ndzana, Georges Martial
Yuqi, Chen
Author_xml – sequence: 1
  givenname: Luo
  surname: Zipei
  fullname: Zipei, Luo
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Central South University of Forestry and Technology
– sequence: 2
  givenname: Sun
  surname: Qi
  fullname: Qi, Sun
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology
– sequence: 3
  givenname: Georges Martial
  surname: Ndzana
  fullname: Ndzana, Georges Martial
  organization: Faculty of Agronomy and Agricultural Science, University of Dschang
– sequence: 4
  givenname: Chen
  surname: Lijun
  fullname: Lijun, Chen
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology
– sequence: 5
  givenname: Chen
  surname: Yuqi
  fullname: Yuqi, Chen
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology
– sequence: 6
  givenname: Lu
  surname: sheng
  fullname: sheng, Lu
  email: lusheng@csuft.edu.cn
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology
– sequence: 7
  givenname: Wu
  surname: Lichao
  fullname: Lichao, Wu
  email: wulichao@sina.com
  organization: Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of National Ministry of Education, College of Forestry, Central South University of Forestry and Technology
BookMark eNp9kE1LXTEQhkOxUGv9A64C3XraSXK-spTTD4Vbr6Cuw5gz5xDJzbFJbuF23_9t9JYWXDibDOF9ZobnPTsISyDGTgR8EgDd51TLTuoKZF2BaHtZ1W_YIXSir3Qj2oN_PfTv2HFK91CqB2igO2R_vuwCbpzly8TXccZQ2h-YM8VTfrnN0VHIfNhZ78J8yjGM_Oqcu8CvF-f52TxHmjETv8KYnfXEr91vSvw2jBT5aglzdUNxw4etz-4XZreEp0UDbsh7h3ztyU0U8QN7O6FPdPz3PWK3377eDOfVav39YjhbVVYJnaueNCKpVrd6mvquraW0I6jxDsYJQSolJ1v-O8AGtFC206BhpEaLRhdKqiP2cT_3IS4_t5SyuV-2MZSVRhUlve4UqJLq9ykbl5QiTca6_Hx8jui8EWCevJu9d1O8m2fvpi6ofIE-RLfBuHsdUnsolXCYKf6_6hXqEWXfllo
CitedBy_id crossref_primary_10_3390_agriculture15010014
crossref_primary_10_1016_j_apsoil_2024_105840
Cites_doi 10.1016/j.soilbio.2013.06.014
10.1016/S0038-0717(00)00179-6
10.1002/ldr.2261
10.1016/j.apsoil.2021.104336
10.1016/j.still.2018.01.008
10.1016/j.soilbio.2016.03.013
10.1016/j.geoderma.2021.115450
10.1021/ac60038a038
10.1007/s00374-012-0754-6
10.1016/j.agee.2016.05.003
10.1016/j.still.2004.03.008
10.1007/BF00546247
10.1016/j.foodchem.2005.12.039
10.1016/j.catena.2023.107512
10.1016/j.still.2017.09.013
10.1016/j.geoderma.2021.115547
10.1016/j.apsoil.2017.01.010
10.1016/j.geoderma.2020.114548
10.1007/s00374-010-0462-z
10.1016/j.catena.2019.01.035
10.1016/j.catena.2019.02.002
10.1016/j.still.2016.11.007
10.3390/su13179769
10.2136/sssaj2010.0425
10.2134/agronmonogr9.2.c39
10.21203/rs.3.rs-849971/v1
10.1007/s11104-015-2415-7
10.1016/j.catena.2021.105405
10.1007/978-3-030-61010-4_7
10.1109/EUMA.2001.338994
10.1016/j.scitotenv.2019.136150
10.1007/978-90-481-3585-1_142
10.1016/j.foreco.2021.119884
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOI 10.1007/s42729-024-01682-4
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
EISSN 0718-9516
EndPage 2606
ExternalDocumentID 10_1007_s42729_024_01682_4
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ5973
– fundername: Science and Technology Program of Hunan Province
  grantid: 20A514
  funderid: http://dx.doi.org/10.13039/501100019081
GroupedDBID -EM
0R~
406
88I
AACDK
AAHBH
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ABXHO
ABXPI
ACAOD
ACGFO
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AENEX
AESKC
AEUYN
AFBBN
AFKRA
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
APOWU
ATCPS
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGNMA
BHPHI
CCPQU
CSCUP
DPUIP
DWQXO
DYU
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNUQQ
GX1
HCIFZ
IKXTQ
IWAJR
JZLTJ
KOV
KQ8
LLZTM
M2P
M4Y
M7P
M~E
NPVJJ
NQJWS
NU0
OK1
OZF
PATMY
PT4
PYCSY
RNS
ROL
RSD
RSV
SCD
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FH
8FK
ABRTQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-8e9aae36969ff876422cd03db0dfa02332fcf8770a50913c79090de5915936923
IEDL.DBID BENPR
ISSN 0718-9508
IngestDate Fri Jul 25 09:37:01 EDT 2025
Tue Jul 01 02:37:51 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Fri Feb 21 02:39:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Soil organic matter
Aggregates
Available nutrients
Long-term cultivation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8e9aae36969ff876422cd03db0dfa02332fcf8770a50913c79090de5915936923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3080897303
PQPubID 6623263
PageCount 8
ParticipantIDs proquest_journals_3080897303
crossref_citationtrail_10_1007_s42729_024_01682_4
crossref_primary_10_1007_s42729_024_01682_4
springer_journals_10_1007_s42729_024_01682_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Temuco
PublicationTitle Journal of soil science and plant nutrition
PublicationTitleAbbrev J Soil Sci Plant Nutr
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6
Bashir O, Ali T, Baba ZA, Rather G, Bangroo S, Mukhtar SD, Naik N, Mohiuddin R, Bharati V, Bhat RA (2021) Soil organic matter and its impact on soil properties and nutrient status. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs 129–159
ZhangYGeNLiaoXWangZWeiXJiaXLong-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregatesCATENA20212041054051:CAS:528:DC%2BB3MXhtVKmtbnP10.1016/j.catena.2021.105405
Jackson ML (1973) Soil chemical analysis-advanced course: A manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis
GelawAMSinghBRLalROrganic Carbon and Nitrogen Associated with Soil aggregates and particle sizes under different land uses in Tigray, Northern EthiopiaLand Degrad Develop20152669070010.1002/ldr.2261
Van GaansPVriendSBleyerveldSSchrageGVosAAssessing environmental soil quality in rural areas: a base line study in the province of Zeeland, the Netherlands and reflections on soil monitoring network designsEnviron Monit Assess1995347310210.1007/BF0054624724201909
Allison LE (1965) Organic Carbon, In C.A. Black (Ed). 1965. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, No 9 Agronomy. In: Organic Carbon. American Society of Agronomy, Inc., Madison, Wisconsin, USA, pp 1372–1378
Nadal-RomeroECammeraatEPérez-CardielELasantaTEffects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areasAgric Ecosyst Environ20162289110010.1016/j.agee.2016.05.003
LiuJWuLChenDLiMWeiCSoil quality assessment of different Camellia oleifera stands in mid-subtropical ChinaAppl Soil Ecol2017113293510.1016/j.apsoil.2017.01.010
BaiYZhouYHeHEffects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical ChinaGeoderma20203761145481:CAS:528:DC%2BB3cXhsVGmtLfJ10.1016/j.geoderma.2020.114548
Csitári G, Tóth Z, Kökény M (2021) Effects of Organic amendments on Soil Aggregate Stability and Microbial Biomass in a long-term fertilization experiment (IOSDV). https://doi.org/10.3390/su13179769. Sustainability 13
JiangRGuninaAQuDKuzyakovYYuYHatanoRFrimpongKALiMAfforestation of loess soils: Old and new organic carbon in aggregates and density fractionsCATENA201917749561:CAS:528:DC%2BC1MXjsVGjurk%3D10.1016/j.catena.2019.02.002
ShamrikovaEKondratenokBTumanovaEVanchikovaELaptevaEZonovaTLu-Lyan-MinEDavydovaALibohovaZSuvannangNTransferability between soil organic matter measurement methods for database harmonizationGeoderma20224121155471:CAS:528:DC%2BB38XhtFyktbbN10.1016/j.geoderma.2021.115547
TianJPauschJYuGBlagodatskayaEKuzyakovYAggregate size and glucose level affect priming sources: a three-source-partitioning studySoil Biol Biochem2016971992101:CAS:528:DC%2BC28XlsValtLo%3D10.1016/j.soilbio.2016.03.013
ZhengHWangXWuJLiWTanCChenYZhangFDuanJLiZLiuYLong-term impacts of extensive terracing on soil aggregates and associated C–N–P in the Camellia oleifera orchard of southern ChinaCATENA20232331075121:CAS:528:DC%2BB3sXhvV2iu77J10.1016/j.catena.2023.107512
LuSHeYChenYChenLWangZYuanJWuLCo-analysis of rhizosphere metabolomics and bacterial community structures to unfold soil ecosystem health in Camellia Oleifera land under long-term cultivationAppl Soil Ecol202217110433610.1016/j.apsoil.2021.104336
ParsapourMKKoochYHosseiniSMAlaviSJLitter and topsoil in Alnus Subcordata plantation on former degraded natural forest land: a synthesis of age-sequenceSoil till Res201817911010.1016/j.still.2018.01.008
LanJLongQHuangMJiangYHuNAfforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst areaEcol Manag202250511988410.1016/j.foreco.2021.119884
LiuJDevelopment of a soil quality index for Camellia Oleifera forestland yield under three different parent materials in Southern ChinaSoil till Res20181762018455010.1016/j.still.2017.09.013
KirkPLKjeldahl method for total nitrogenAnal Chem1950223543581:CAS:528:DyaG3cXisVGnsQ%3D%3D10.1021/ac60038a038
Chen Y-C, Tzuang C-KC (2001) Fields and Waves in Microstrip on Uniplanar Compact Photonic-Bandgap (UC-PBG) Ground Plane. In: 31st European Microwave Conference, 2001. IEEE, London, England, pp 1–4
QiuLWeiXGaoJZhangXDynamics of soil aggregate-associated organic carbon along an afforestation chronosequencePlant Soil20153912372511:CAS:528:DC%2BC2MXjs1Kmurc%3D10.1007/s11104-015-2415-7
Soil Survey Staff (2014) Keys to Soil Taxonomy. Soil Survey Staff. Twelfth Edition
XueBHuangLHuangYYinZLiXLuJEffects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping systemCATENA20191771121:CAS:528:DC%2BC1MXjtVSmsrg%3D10.1016/j.catena.2019.01.035
OrtizCFernández-AlonsoMJKitzlerBDiaz-PinesESaizGRubioABenitoMVariations in soil aggregation, microbial community structure and soil organic matter cycling associated to long-term afforestation and woody encroachment in a Mediterranean alpine ecotoneGeoderma20224051154501:CAS:528:DC%2BB38Xjtlartr8%3D10.1016/j.geoderma.2021.115450
SixJBossuytHDegryzeSDenefKA history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamicsSoil till Res20047973110.1016/j.still.2004.03.008
SixJPaustianKAggregate-associated soil organic matter as an ecosystem property and a measurement toolSoil Biol Biochem201468A4A91:CAS:528:DC%2BC3sXhtFCisrzM10.1016/j.soilbio.2013.06.014
Wang Y, Xie P, She J, Deng A, Fan S (2021) Plant–soil feedback in Camellia Oleifera and mixed Gardenia Jasminoides Ellis–Camellia Oleifera stands determined by soil Bacterial Community Analysis. In Review
HaiyanZBedgoodDRBishopAGPrenzlerPDRobardsKEndogenous biophenol, fatty acid and volatile profiles of selected oilsFood Chem2007100154415511:CAS:528:DC%2BD28XotVeitbY%3D10.1016/j.foodchem.2005.12.039
ZhaoJChenSHuRLiYAggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxidesSoil till Res2017167737910.1016/j.still.2016.11.007
Papadopoulos A (2011) Soil aggregates, structure, and stability. Encyclopedia of Agrophysics, edited by: Glinski, J, Horabik, J, and Lipiec, J, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, https://doi org/101007/978-90-481-3585-1_142
WeiXLiXJiaXShaoMAccumulation of soil organic carbon in aggregates after afforestation on abandoned farmlandBiol Fert Soils2013496376461:CAS:528:DC%2BC3sXhtFGrsL3E10.1007/s00374-012-0754-6
ChodakMNiklińskaMThe effect of different tree species on the chemical and microbial properties of reclaimed mine soilsBiol Fertil Soils2010465555661:CAS:528:DC%2BC3cXoslyktr8%3D10.1007/s00374-010-0462-z
YaoYLiuJWangZWeiXZhuHFuWShaoMResponses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfallSci Total Environ20207091361501:CAS:528:DC%2BB3cXivFSqtg%3D%3D10.1016/j.scitotenv.2019.13615031905550
ClarkJPlanteAJohnsonASoil organic matter quality in chronosequences of secondary northern hardwood forests in Western New EnglandSoil Sci Soc Am J2012766846931:CAS:528:DC%2BC38XktFOht7w%3D10.2136/sssaj2010.0425
J Six (1682_CR25) 2014; 68
J Six (1682_CR23) 2004; 79
Y Bai (1682_CR2) 2020; 376
X Wei (1682_CR30) 2013; 49
1682_CR10
E Nadal-Romero (1682_CR17) 2016; 228
J Liu (1682_CR14) 2018; 176
1682_CR19
Y Yao (1682_CR32) 2020; 709
AM Gelaw (1682_CR8) 2015; 26
R Jiang (1682_CR11) 2019; 177
B Xue (1682_CR31) 2019; 177
J Liu (1682_CR15) 2017; 113
H Zheng (1682_CR35) 2023; 233
J Six (1682_CR24) 2000; 32
MK Parsapour (1682_CR20) 2018; 179
1682_CR3
1682_CR4
1682_CR1
J Tian (1682_CR27) 2016; 97
L Qiu (1682_CR21) 2015; 391
Y Zhang (1682_CR33) 2021; 204
J Zhao (1682_CR34) 2017; 167
P Van Gaans (1682_CR28) 1995; 34
1682_CR7
PL Kirk (1682_CR12) 1950; 22
1682_CR26
C Ortiz (1682_CR18) 2022; 405
M Chodak (1682_CR5) 2010; 46
Z Haiyan (1682_CR9) 2007; 100
1682_CR29
S Lu (1682_CR16) 2022; 171
E Shamrikova (1682_CR22) 2022; 412
J Clark (1682_CR6) 2012; 76
J Lan (1682_CR13) 2022; 505
References_xml – reference: Jackson ML (1973) Soil chemical analysis-advanced course: A manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis
– reference: ZhangYGeNLiaoXWangZWeiXJiaXLong-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregatesCATENA20212041054051:CAS:528:DC%2BB3MXhtVKmtbnP10.1016/j.catena.2021.105405
– reference: Soil Survey Staff (2014) Keys to Soil Taxonomy. Soil Survey Staff. Twelfth Edition
– reference: KirkPLKjeldahl method for total nitrogenAnal Chem1950223543581:CAS:528:DyaG3cXisVGnsQ%3D%3D10.1021/ac60038a038
– reference: ClarkJPlanteAJohnsonASoil organic matter quality in chronosequences of secondary northern hardwood forests in Western New EnglandSoil Sci Soc Am J2012766846931:CAS:528:DC%2BC38XktFOht7w%3D10.2136/sssaj2010.0425
– reference: SixJPaustianKAggregate-associated soil organic matter as an ecosystem property and a measurement toolSoil Biol Biochem201468A4A91:CAS:528:DC%2BC3sXhtFCisrzM10.1016/j.soilbio.2013.06.014
– reference: LanJLongQHuangMJiangYHuNAfforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst areaEcol Manag202250511988410.1016/j.foreco.2021.119884
– reference: QiuLWeiXGaoJZhangXDynamics of soil aggregate-associated organic carbon along an afforestation chronosequencePlant Soil20153912372511:CAS:528:DC%2BC2MXjs1Kmurc%3D10.1007/s11104-015-2415-7
– reference: Allison LE (1965) Organic Carbon, In C.A. Black (Ed). 1965. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, No 9 Agronomy. In: Organic Carbon. American Society of Agronomy, Inc., Madison, Wisconsin, USA, pp 1372–1378
– reference: BaiYZhouYHeHEffects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical ChinaGeoderma20203761145481:CAS:528:DC%2BB3cXhsVGmtLfJ10.1016/j.geoderma.2020.114548
– reference: Papadopoulos A (2011) Soil aggregates, structure, and stability. Encyclopedia of Agrophysics, edited by: Glinski, J, Horabik, J, and Lipiec, J, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, https://doi org/101007/978-90-481-3585-1_142
– reference: SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6
– reference: LuSHeYChenYChenLWangZYuanJWuLCo-analysis of rhizosphere metabolomics and bacterial community structures to unfold soil ecosystem health in Camellia Oleifera land under long-term cultivationAppl Soil Ecol202217110433610.1016/j.apsoil.2021.104336
– reference: ShamrikovaEKondratenokBTumanovaEVanchikovaELaptevaEZonovaTLu-Lyan-MinEDavydovaALibohovaZSuvannangNTransferability between soil organic matter measurement methods for database harmonizationGeoderma20224121155471:CAS:528:DC%2BB38XhtFyktbbN10.1016/j.geoderma.2021.115547
– reference: XueBHuangLHuangYYinZLiXLuJEffects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping systemCATENA20191771121:CAS:528:DC%2BC1MXjtVSmsrg%3D10.1016/j.catena.2019.01.035
– reference: LiuJDevelopment of a soil quality index for Camellia Oleifera forestland yield under three different parent materials in Southern ChinaSoil till Res20181762018455010.1016/j.still.2017.09.013
– reference: JiangRGuninaAQuDKuzyakovYYuYHatanoRFrimpongKALiMAfforestation of loess soils: Old and new organic carbon in aggregates and density fractionsCATENA201917749561:CAS:528:DC%2BC1MXjsVGjurk%3D10.1016/j.catena.2019.02.002
– reference: TianJPauschJYuGBlagodatskayaEKuzyakovYAggregate size and glucose level affect priming sources: a three-source-partitioning studySoil Biol Biochem2016971992101:CAS:528:DC%2BC28XlsValtLo%3D10.1016/j.soilbio.2016.03.013
– reference: ParsapourMKKoochYHosseiniSMAlaviSJLitter and topsoil in Alnus Subcordata plantation on former degraded natural forest land: a synthesis of age-sequenceSoil till Res201817911010.1016/j.still.2018.01.008
– reference: Wang Y, Xie P, She J, Deng A, Fan S (2021) Plant–soil feedback in Camellia Oleifera and mixed Gardenia Jasminoides Ellis–Camellia Oleifera stands determined by soil Bacterial Community Analysis. In Review
– reference: OrtizCFernández-AlonsoMJKitzlerBDiaz-PinesESaizGRubioABenitoMVariations in soil aggregation, microbial community structure and soil organic matter cycling associated to long-term afforestation and woody encroachment in a Mediterranean alpine ecotoneGeoderma20224051154501:CAS:528:DC%2BB38Xjtlartr8%3D10.1016/j.geoderma.2021.115450
– reference: ChodakMNiklińskaMThe effect of different tree species on the chemical and microbial properties of reclaimed mine soilsBiol Fertil Soils2010465555661:CAS:528:DC%2BC3cXoslyktr8%3D10.1007/s00374-010-0462-z
– reference: Bashir O, Ali T, Baba ZA, Rather G, Bangroo S, Mukhtar SD, Naik N, Mohiuddin R, Bharati V, Bhat RA (2021) Soil organic matter and its impact on soil properties and nutrient status. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs 129–159
– reference: LiuJWuLChenDLiMWeiCSoil quality assessment of different Camellia oleifera stands in mid-subtropical ChinaAppl Soil Ecol2017113293510.1016/j.apsoil.2017.01.010
– reference: Nadal-RomeroECammeraatEPérez-CardielELasantaTEffects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areasAgric Ecosyst Environ20162289110010.1016/j.agee.2016.05.003
– reference: ZhengHWangXWuJLiWTanCChenYZhangFDuanJLiZLiuYLong-term impacts of extensive terracing on soil aggregates and associated C–N–P in the Camellia oleifera orchard of southern ChinaCATENA20232331075121:CAS:528:DC%2BB3sXhvV2iu77J10.1016/j.catena.2023.107512
– reference: WeiXLiXJiaXShaoMAccumulation of soil organic carbon in aggregates after afforestation on abandoned farmlandBiol Fert Soils2013496376461:CAS:528:DC%2BC3sXhtFGrsL3E10.1007/s00374-012-0754-6
– reference: HaiyanZBedgoodDRBishopAGPrenzlerPDRobardsKEndogenous biophenol, fatty acid and volatile profiles of selected oilsFood Chem2007100154415511:CAS:528:DC%2BD28XotVeitbY%3D10.1016/j.foodchem.2005.12.039
– reference: SixJBossuytHDegryzeSDenefKA history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamicsSoil till Res20047973110.1016/j.still.2004.03.008
– reference: Van GaansPVriendSBleyerveldSSchrageGVosAAssessing environmental soil quality in rural areas: a base line study in the province of Zeeland, the Netherlands and reflections on soil monitoring network designsEnviron Monit Assess1995347310210.1007/BF0054624724201909
– reference: Csitári G, Tóth Z, Kökény M (2021) Effects of Organic amendments on Soil Aggregate Stability and Microbial Biomass in a long-term fertilization experiment (IOSDV). https://doi.org/10.3390/su13179769. Sustainability 13:
– reference: Chen Y-C, Tzuang C-KC (2001) Fields and Waves in Microstrip on Uniplanar Compact Photonic-Bandgap (UC-PBG) Ground Plane. In: 31st European Microwave Conference, 2001. IEEE, London, England, pp 1–4
– reference: GelawAMSinghBRLalROrganic Carbon and Nitrogen Associated with Soil aggregates and particle sizes under different land uses in Tigray, Northern EthiopiaLand Degrad Develop20152669070010.1002/ldr.2261
– reference: ZhaoJChenSHuRLiYAggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxidesSoil till Res2017167737910.1016/j.still.2016.11.007
– reference: YaoYLiuJWangZWeiXZhuHFuWShaoMResponses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfallSci Total Environ20207091361501:CAS:528:DC%2BB3cXivFSqtg%3D%3D10.1016/j.scitotenv.2019.13615031905550
– volume: 68
  start-page: A4
  year: 2014
  ident: 1682_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.06.014
– volume: 32
  start-page: 2099
  year: 2000
  ident: 1682_CR24
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 26
  start-page: 690
  year: 2015
  ident: 1682_CR8
  publication-title: Land Degrad Develop
  doi: 10.1002/ldr.2261
– volume: 171
  start-page: 104336
  year: 2022
  ident: 1682_CR16
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2021.104336
– ident: 1682_CR26
– volume: 179
  start-page: 1
  year: 2018
  ident: 1682_CR20
  publication-title: Soil till Res
  doi: 10.1016/j.still.2018.01.008
– volume: 97
  start-page: 199
  year: 2016
  ident: 1682_CR27
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.03.013
– volume: 405
  start-page: 115450
  year: 2022
  ident: 1682_CR18
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115450
– volume: 22
  start-page: 354
  year: 1950
  ident: 1682_CR12
  publication-title: Anal Chem
  doi: 10.1021/ac60038a038
– volume: 49
  start-page: 637
  year: 2013
  ident: 1682_CR30
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-012-0754-6
– volume: 228
  start-page: 91
  year: 2016
  ident: 1682_CR17
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.05.003
– volume: 79
  start-page: 7
  year: 2004
  ident: 1682_CR23
  publication-title: Soil till Res
  doi: 10.1016/j.still.2004.03.008
– volume: 34
  start-page: 73
  year: 1995
  ident: 1682_CR28
  publication-title: Environ Monit Assess
  doi: 10.1007/BF00546247
– volume: 100
  start-page: 1544
  year: 2007
  ident: 1682_CR9
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2005.12.039
– volume: 233
  start-page: 107512
  year: 2023
  ident: 1682_CR35
  publication-title: CATENA
  doi: 10.1016/j.catena.2023.107512
– volume: 176
  start-page: 45
  issue: 2018
  year: 2018
  ident: 1682_CR14
  publication-title: Soil till Res
  doi: 10.1016/j.still.2017.09.013
– volume: 412
  start-page: 115547
  year: 2022
  ident: 1682_CR22
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115547
– volume: 113
  start-page: 29
  year: 2017
  ident: 1682_CR15
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.01.010
– volume: 376
  start-page: 114548
  year: 2020
  ident: 1682_CR2
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114548
– volume: 46
  start-page: 555
  year: 2010
  ident: 1682_CR5
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-010-0462-z
– volume: 177
  start-page: 1
  year: 2019
  ident: 1682_CR31
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.01.035
– volume: 177
  start-page: 49
  year: 2019
  ident: 1682_CR11
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.02.002
– volume: 167
  start-page: 73
  year: 2017
  ident: 1682_CR34
  publication-title: Soil till Res
  doi: 10.1016/j.still.2016.11.007
– ident: 1682_CR7
  doi: 10.3390/su13179769
– volume: 76
  start-page: 684
  year: 2012
  ident: 1682_CR6
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2010.0425
– ident: 1682_CR1
  doi: 10.2134/agronmonogr9.2.c39
– ident: 1682_CR29
  doi: 10.21203/rs.3.rs-849971/v1
– volume: 391
  start-page: 237
  year: 2015
  ident: 1682_CR21
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2415-7
– volume: 204
  start-page: 105405
  year: 2021
  ident: 1682_CR33
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105405
– ident: 1682_CR3
  doi: 10.1007/978-3-030-61010-4_7
– ident: 1682_CR4
  doi: 10.1109/EUMA.2001.338994
– volume: 709
  start-page: 136150
  year: 2020
  ident: 1682_CR32
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.136150
– ident: 1682_CR10
– ident: 1682_CR19
  doi: 10.1007/978-90-481-3585-1_142
– volume: 505
  start-page: 119884
  year: 2022
  ident: 1682_CR13
  publication-title: Ecol Manag
  doi: 10.1016/j.foreco.2021.119884
SSID ssj0000800507
Score 2.2720563
Snippet Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of...
Camellia oleifera is intensively cultivated in subtropical areas of China, exposing soils to various threats. However, the effect of long-term cultivation of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2599
SubjectTerms Aggregates
Agriculture
Alkenes
Aromatic compounds
Biomedical and Life Sciences
Camellia oleifera
Carbon
Chemical composition
Composition effects
Crop diseases
Cultivation
Ecology
Environment
Fractionation
Functional groups
Ketones
Life Sciences
Nitrogen
Nutrient cycles
Nutrients
Organic carbon
Organic matter
Organic phosphorus
Original Paper
Phenols
Phosphorus
Plant Sciences
Planting
Polysaccharides
Potassium
Saccharides
Soil aggregates
Soil analysis
Soil chemistry
Soil fertility
Soil improvement
Soil investigations
Soil organic matter
Soil pH
Soil properties
Soil Science & Conservation
Sustainability management
Trees
Variance analysis
Title Dynamic of Organic Matter, Nutrient Cycling, and PH in Soil Aggregate Particle Sizes Under Long-Term Cultivation of Camellia Oleifera
URI https://link.springer.com/article/10.1007/s42729-024-01682-4
https://www.proquest.com/docview/3080897303
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgLDAgPkX50g1s1CJNnCaZEBRQhaBUQCWYIsexq0qQAC0D7Pxv7hy3FUiwJrEj5c53L2ffe4wdeCrKtJQaV1oz50J4hmdxbBDIhYn0NTWD0I7udbfV6YvLh_DBFdxG7ljlJCbaQJ2XimrkRwFCmzhBfwyOX145qUbR7qqT0JhnCxiC47jGFk7Pu73baZWF8FBY9UxjEOYkeeo6Z2z_nPARW3JMU_hH3UKoKX5mpxnk_LVLapPPxQpbdqgRTiozr7I5XayxpZPBm2PO0Ovs66zSlofSQNVgqeDakmc2oEuU-5hdoP1BnZCDBsgih14HhgXclUOceIC_3VRQg55zJbgbfuoRWFkkuCqLAb_HGA7EwOn00OhFbflMhJ4Sbp40nZGRG6x_cX7f7nCnscAVLr4xj3WCliJRv8QYjIzC91XuBXnm5UZiPg98o_B65ElCFoGKEi_xch0mTSsF6AebrFaUhd5i0NQGMbBWnq9DoUyU4WgRtCKZCRHGrbjOmpNvmypHQE46GE_plDrZ2iNFe6TWHqmos8PpmJeKfuPfp3cnJkvdUhylM8eps8bEjLPbf8-2_f9sO2zRt55DFZldVhu_ves9BCjjbN954T5C9Mf-N7bw4HI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4oJaHCLRlD3AiK5z1OrYPCJW0VUqTENFU6s2s17tRpGK3TRBq7_wdfiMz63UikOitVz_W1s7szLeP-T6AN4GOc6OUwZHWLbiUgeV5klgEclGqhKFiENrRHY17gzP5-Tw634DfTS0MHatsYqIL1EWlaY38fYjQJknRH8OPl1ecVKNod7WR0Kjd4sTc_MQp2-LD8QHa960QR4fT_oB7VQGu0d2WPDEp_hvJ2KXWYiyQQugiCIs8KKzCDBYKq_F6HCjKpaGO0yANChOlXSd-R0QHGPI3ZdgLRAs2Px2OJ19XqzqEv6K6RhuDPieJVV-p4-r1pEAsyzEt4gy-h9BW_p0N1xD3n11Zl-yOtuCxR6lsv3arbdgw5RN4tD-79kwd5in8Oqi17FllWV3QqdnIkXV22Jgo_jGbsf4NVV7OOkyVBZsM2Lxkp9UcG57hNJ8W8NjEuy47nd-aBXMyTGxYlTM-xZzBiPHT66_Rh_rqOxGIKvblwtCZHPUMzu6l959Dq6xK8wJY11jE3EYHwkRS2zjHt9EqscqljJJe0oZu07eZ9oTnpLtxka2omp09MrRH5uyRyTa8W71zWdN93Pn0TmOyzA_9RbZ21DZ0GjOub_-_tZd3t_YaHgymo2E2PB6fvIKHwnkRrQbtQGt5_cPsIjha5nveIxl8u-9B8AfUPBq9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+of+Organic+Matter%2C+Nutrient+Cycling%2C+and+PH+in+Soil+Aggregate+Particle+Sizes+Under+Long-Term+Cultivation+of+Camellia+Oleifera&rft.jtitle=Journal+of+soil+science+and+plant+nutrition&rft.au=Zipei%2C+Luo&rft.au=Qi%2C+Sun&rft.au=Ndzana%2C+Georges+Martial&rft.au=Lijun%2C+Chen&rft.date=2024-06-01&rft.issn=0718-9508&rft.eissn=0718-9516&rft.volume=24&rft.issue=2&rft.spage=2599&rft.epage=2606&rft_id=info:doi/10.1007%2Fs42729-024-01682-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42729_024_01682_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0718-9508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0718-9508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0718-9508&client=summon