Triplet-Based Deep Hashing Network for Cross-Modal Retrieval

Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 8; pp. 3893 - 3903
Main Authors Deng, Cheng, Chen, Zhaojia, Liu, Xianglong, Gao, Xinbo, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a triplet-based deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describe the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal data sets.
AbstractList Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a triplet-based deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describe the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal data sets.
Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a tripletbased deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describes the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal datasets.Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a tripletbased deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describes the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal datasets.
Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a tripletbased deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describes the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal datasets.
Author Zhaojia Chen
Cheng Deng
Xinbo Gao
Dacheng Tao
Xianglong Liu
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0003-2620-3247
  surname: Deng
  fullname: Deng, Cheng
– sequence: 2
  givenname: Zhaojia
  surname: Chen
  fullname: Chen, Zhaojia
– sequence: 3
  givenname: Xianglong
  orcidid: 0000-0001-8425-4195
  surname: Liu
  fullname: Liu, Xianglong
– sequence: 4
  givenname: Xinbo
  orcidid: 0000-0003-1443-0776
  surname: Gao
  fullname: Gao, Xinbo
– sequence: 5
  givenname: Dacheng
  orcidid: 0000-0001-7225-5449
  surname: Tao
  fullname: Tao, Dacheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993656$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAUhS1URB-wIyGhjCwpvnbi2BILlEeRykOozJbj3oAhTYqdgvj3pGrLwMB07_B9RzqnTzpVXSEhh0CHAFSdTm8fh4yCHDLJQDHYIT1QCcSUJqzT_jTN4gwS1SX9EN4ohSQFsUe6TCnFRSp65Gzq3aLEJr4wAWfRJeIiGpvw6qqX6B6br9q_R0Xto5GvQ4jv6pkpoydsvMNPU-6T3cKUAQ82d0Cer6-mo3E8ebi5HZ1PYstBNbFEEEiVzFJZcIsyUxwVmEyZxBaZyCVYykRR5LxIuEKO0uaCZcJmDHPDOR-Qk3XuwtcfSwyNnrtgsSxNhfUyaEaF5AkTLG3R4w26zOc40wvv5sZ_623jFhBrwK4aeSy0dY1pXF013rhSA9WraXU7rV5NqzfTtiL9I26z_1GO1opDxF9ccg6QCP4DvVOBzg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_neucom_2019_05_019
crossref_primary_10_1109_TBDATA_2019_2946616
crossref_primary_10_1049_ipr2_12176
crossref_primary_10_1007_s11263_020_01315_0
crossref_primary_10_1186_s13640_021_00577_z
crossref_primary_10_1109_TCSVT_2021_3061265
crossref_primary_10_1016_j_neucom_2020_10_053
crossref_primary_10_1109_TNNLS_2022_3174970
crossref_primary_10_1109_TIP_2019_2913511
crossref_primary_10_1109_TMM_2024_3358995
crossref_primary_10_1109_ACCESS_2019_2903295
crossref_primary_10_1007_s11063_019_10053_5
crossref_primary_10_1109_TCYB_2020_2996684
crossref_primary_10_1109_TIP_2024_3359062
crossref_primary_10_1109_TPAMI_2022_3177356
crossref_primary_10_1007_s11042_021_11420_y
crossref_primary_10_1016_j_knosys_2023_110922
crossref_primary_10_1109_ACCESS_2020_3011102
crossref_primary_10_1109_TPAMI_2021_3123315
crossref_primary_10_1109_TGRS_2019_2913004
crossref_primary_10_1109_TIP_2021_3064265
crossref_primary_10_1016_j_patcog_2020_107370
crossref_primary_10_1007_s12652_020_02177_7
crossref_primary_10_1109_TIP_2020_3020383
crossref_primary_10_1016_j_neucom_2020_10_042
crossref_primary_10_1109_TIP_2020_3036717
crossref_primary_10_1016_j_neucom_2021_08_090
crossref_primary_10_1109_TMM_2019_2892004
crossref_primary_10_1109_TNNLS_2019_2929068
crossref_primary_10_1016_j_jvcir_2019_03_024
crossref_primary_10_1016_j_patcog_2023_109934
crossref_primary_10_1016_j_aej_2020_02_034
crossref_primary_10_1016_j_neucom_2022_04_126
crossref_primary_10_1109_ACCESS_2024_3380019
crossref_primary_10_1145_3559758
crossref_primary_10_1007_s00521_023_09331_0
crossref_primary_10_1016_j_patcog_2023_109483
crossref_primary_10_1109_TMM_2023_3349075
crossref_primary_10_1109_JSTARS_2023_3284426
crossref_primary_10_1186_s13640_024_00639_y
crossref_primary_10_1145_3243316
crossref_primary_10_1109_TIP_2021_3131042
crossref_primary_10_12677_CSA_2021_1110256
crossref_primary_10_1016_j_neucom_2019_07_082
crossref_primary_10_1145_3408317
crossref_primary_10_1109_TCSVT_2020_3017344
crossref_primary_10_1109_TMM_2022_3177901
crossref_primary_10_1145_3624016
crossref_primary_10_1109_TKDE_2024_3401050
crossref_primary_10_1007_s10278_024_01310_8
crossref_primary_10_1109_TIP_2021_3120038
crossref_primary_10_1109_TMM_2022_3141603
crossref_primary_10_1109_TPAMI_2023_3247939
crossref_primary_10_1145_3230709
crossref_primary_10_1016_j_neucom_2019_06_053
crossref_primary_10_1016_j_ins_2022_07_039
crossref_primary_10_1155_2021_9937061
crossref_primary_10_1016_j_cosrev_2020_100336
crossref_primary_10_1016_j_engappai_2022_105090
crossref_primary_10_1016_j_image_2020_116131
crossref_primary_10_1109_TKDE_2022_3153962
crossref_primary_10_1016_j_neucom_2024_128293
crossref_primary_10_1007_s11042_020_09599_7
crossref_primary_10_1109_TIP_2019_2891895
crossref_primary_10_1109_ACCESS_2019_2922738
crossref_primary_10_1109_TMM_2020_2994509
crossref_primary_10_1109_TNNLS_2018_2885854
crossref_primary_10_1109_TIP_2020_3042086
crossref_primary_10_7717_peerj_cs_552
crossref_primary_10_1109_TIP_2023_3240863
crossref_primary_10_1109_TPAMI_2024_3392763
crossref_primary_10_3390_app14010093
crossref_primary_10_1016_j_neucom_2020_04_037
crossref_primary_10_1109_ACCESS_2018_2860785
crossref_primary_10_1007_s13042_024_02477_w
crossref_primary_10_1109_TCSVT_2022_3172716
crossref_primary_10_1109_TNNLS_2021_3135420
crossref_primary_10_1016_j_neucom_2018_05_052
crossref_primary_10_1007_s11042_022_12395_0
crossref_primary_10_1016_j_patcog_2021_108084
crossref_primary_10_1109_TKDE_2020_2995195
crossref_primary_10_1007_s10489_023_05028_y
crossref_primary_10_1109_TMM_2023_3318002
crossref_primary_10_3390_math10030430
crossref_primary_10_1186_s13640_019_0455_2
crossref_primary_10_1109_TCYB_2019_2928180
crossref_primary_10_1007_s11263_020_01363_6
crossref_primary_10_1109_TMM_2020_3002177
crossref_primary_10_1109_TMM_2019_2953375
crossref_primary_10_1016_j_compeleceng_2021_107262
crossref_primary_10_1109_TII_2024_3385102
crossref_primary_10_1007_s11042_024_18275_z
crossref_primary_10_1109_TMM_2024_3521697
crossref_primary_10_1109_TCSVT_2022_3164230
crossref_primary_10_1109_TCSVT_2023_3285266
crossref_primary_10_1109_TMM_2023_3289765
crossref_primary_10_1109_TCYB_2020_3009004
crossref_primary_10_1109_TIP_2021_3083072
crossref_primary_10_1145_3532519
crossref_primary_10_1002_int_22853
crossref_primary_10_1109_TIP_2018_2890144
crossref_primary_10_1007_s10015_023_00867_x
crossref_primary_10_1016_j_jvcir_2023_103807
crossref_primary_10_1109_TNNLS_2020_3018790
crossref_primary_10_1142_S0218194021500297
crossref_primary_10_1016_j_neucom_2021_01_073
crossref_primary_10_1145_3698400
crossref_primary_10_1109_TKDE_2023_3282921
crossref_primary_10_1109_TMI_2020_3046636
crossref_primary_10_3390_app11188769
crossref_primary_10_1016_j_neucom_2020_03_032
crossref_primary_10_1109_TMM_2023_3256092
crossref_primary_10_1016_j_neucom_2018_06_071
crossref_primary_10_1109_TCYB_2020_2985716
crossref_primary_10_1109_TIP_2020_3014727
crossref_primary_10_1145_3412847
crossref_primary_10_1109_LGRS_2021_3131592
crossref_primary_10_1007_s11042_019_7192_5
crossref_primary_10_1109_ACCESS_2023_3245074
crossref_primary_10_1109_TIP_2018_2869691
crossref_primary_10_1109_TIP_2024_3385656
crossref_primary_10_1109_TCSVT_2019_2947450
crossref_primary_10_1016_j_engappai_2019_02_018
crossref_primary_10_1109_ACCESS_2019_2926303
crossref_primary_10_1109_TIP_2020_3038354
crossref_primary_10_1016_j_neunet_2020_01_035
crossref_primary_10_1145_3643639
crossref_primary_10_1007_s11042_019_7343_8
crossref_primary_10_1109_TKDE_2021_3107489
crossref_primary_10_1007_s13042_021_01330_8
crossref_primary_10_1186_s13640_019_0442_7
crossref_primary_10_1109_TIP_2019_2903661
crossref_primary_10_1109_TKDE_2021_3102119
crossref_primary_10_1007_s00530_022_01005_6
crossref_primary_10_1016_j_image_2019_115650
crossref_primary_10_1016_j_jvcir_2021_103256
crossref_primary_10_1109_TBDATA_2019_2954516
crossref_primary_10_1016_j_ins_2021_03_006
crossref_primary_10_1109_TITS_2022_3221787
crossref_primary_10_1109_TIP_2020_2963957
crossref_primary_10_1016_j_knosys_2019_02_004
crossref_primary_10_1016_j_neucom_2019_07_023
crossref_primary_10_1109_TIE_2018_2870413
crossref_primary_10_1007_s11063_019_09987_7
crossref_primary_10_1016_j_neucom_2021_09_053
crossref_primary_10_1016_j_patcog_2020_107409
crossref_primary_10_1109_ACCESS_2018_2883463
crossref_primary_10_1109_TIP_2024_3485498
crossref_primary_10_3390_app112210803
crossref_primary_10_1109_TIP_2022_3195059
crossref_primary_10_1007_s00521_021_06696_y
crossref_primary_10_1016_j_knosys_2021_107252
crossref_primary_10_1016_j_patcog_2022_109276
crossref_primary_10_1016_j_neucom_2020_03_019
crossref_primary_10_1109_TCYB_2021_3087632
crossref_primary_10_1109_TCYB_2021_3093626
crossref_primary_10_1109_JSTARS_2022_3191692
crossref_primary_10_1007_s00521_022_07962_3
crossref_primary_10_3390_app13031487
crossref_primary_10_1016_j_patcog_2023_110079
crossref_primary_10_1016_j_neucom_2019_08_050
crossref_primary_10_1007_s11227_022_04847_z
crossref_primary_10_1007_s11042_024_19581_2
crossref_primary_10_1109_TMM_2020_3004962
crossref_primary_10_1016_j_neucom_2018_10_027
crossref_primary_10_1109_TIP_2022_3171081
crossref_primary_10_3233_IDA_226687
crossref_primary_10_1109_JIOT_2022_3162326
crossref_primary_10_1109_ACCESS_2025_3549781
crossref_primary_10_1109_ACCESS_2022_3204305
crossref_primary_10_1109_ACCESS_2023_3308931
crossref_primary_10_1145_3524021
crossref_primary_10_1016_j_patcog_2019_107033
crossref_primary_10_1016_j_image_2021_116146
crossref_primary_10_1109_TBIOM_2020_2983467
crossref_primary_10_1109_TCSVT_2020_3027001
crossref_primary_10_1016_j_ipm_2022_102919
crossref_primary_10_1109_TNNLS_2019_2935118
crossref_primary_10_1109_TMM_2020_2991513
crossref_primary_10_1016_j_knosys_2021_106857
crossref_primary_10_3390_app131810524
crossref_primary_10_1049_iet_cvi_2018_5162
crossref_primary_10_1016_j_neucom_2019_07_011
crossref_primary_10_1016_j_neucom_2021_03_090
crossref_primary_10_1016_j_neucom_2018_10_082
crossref_primary_10_1016_j_neucom_2020_06_036
crossref_primary_10_32604_csse_2021_014563
crossref_primary_10_1109_TNNLS_2018_2844464
crossref_primary_10_1109_ACCESS_2020_3006585
crossref_primary_10_1109_TCSVT_2022_3186714
crossref_primary_10_1007_s10489_020_01797_y
crossref_primary_10_1109_JPROC_2024_3525147
crossref_primary_10_1109_TCYB_2020_3027614
crossref_primary_10_1109_TMM_2021_3097506
crossref_primary_10_1109_ACCESS_2020_3023592
crossref_primary_10_1145_3356338
crossref_primary_10_1109_ACCESS_2019_2920712
crossref_primary_10_1007_s11042_023_15535_2
crossref_primary_10_1016_j_ipm_2021_102648
crossref_primary_10_1109_TNNLS_2020_2967597
crossref_primary_10_1016_j_knosys_2024_111837
crossref_primary_10_1109_ACCESS_2024_3444817
crossref_primary_10_1109_TMM_2019_2922128
crossref_primary_10_1109_TIP_2022_3204213
crossref_primary_10_1109_TMM_2022_3152086
crossref_primary_10_1109_TPAMI_2023_3291237
crossref_primary_10_1155_2021_5107034
crossref_primary_10_1016_j_patcog_2019_01_010
crossref_primary_10_1016_j_patcog_2020_107331
crossref_primary_10_1109_TIP_2018_2866688
crossref_primary_10_1109_TMM_2022_3140656
crossref_primary_10_1142_S021800142150018X
crossref_primary_10_1016_j_knosys_2020_106188
crossref_primary_10_1016_j_inffus_2023_101968
crossref_primary_10_1016_j_dss_2022_113863
crossref_primary_10_1109_TCSVT_2023_3281868
crossref_primary_10_1007_s11263_024_02064_0
crossref_primary_10_1109_TCYB_2018_2882908
crossref_primary_10_1016_j_patcog_2020_107335
crossref_primary_10_1016_j_patrec_2018_06_024
crossref_primary_10_1109_TIP_2018_2848470
crossref_primary_10_1007_s13735_025_00353_z
crossref_primary_10_1109_TMM_2019_2922130
crossref_primary_10_1016_j_patrec_2019_04_017
crossref_primary_10_1109_TDSC_2021_3050435
crossref_primary_10_3390_sym12050689
crossref_primary_10_1145_3631356
crossref_primary_10_1016_j_neucom_2019_12_078
crossref_primary_10_1007_s11042_020_09983_3
crossref_primary_10_3390_s22082921
crossref_primary_10_1109_ACCESS_2021_3052605
crossref_primary_10_1109_TIP_2020_3048680
crossref_primary_10_3390_app15063068
crossref_primary_10_3934_math_2021277
crossref_primary_10_1109_ACCESS_2019_2908043
crossref_primary_10_1109_TNNLS_2020_2965992
crossref_primary_10_1109_TCYB_2019_2955130
crossref_primary_10_1109_TNNLS_2019_2910146
crossref_primary_10_1016_j_neucom_2021_01_107
crossref_primary_10_1109_TKDE_2022_3218656
crossref_primary_10_1145_3355394
crossref_primary_10_1109_ACCESS_2023_3310819
crossref_primary_10_1109_TIP_2020_2967584
crossref_primary_10_1016_j_neucom_2019_12_086
crossref_primary_10_1109_TPAMI_2018_2861000
crossref_primary_10_1016_j_asoc_2022_109935
crossref_primary_10_1109_TNNLS_2024_3381347
crossref_primary_10_1109_TMM_2023_3254199
crossref_primary_10_1109_TCYB_2020_2964993
crossref_primary_10_1016_j_patcog_2021_108264
crossref_primary_10_1016_j_patcog_2018_05_023
crossref_primary_10_1007_s10489_024_06060_2
crossref_primary_10_1016_j_knosys_2021_106818
crossref_primary_10_1142_S0218001424510170
crossref_primary_10_1007_s11227_022_04784_x
crossref_primary_10_1109_TMM_2024_3369904
crossref_primary_10_2478_aut_2020_0063
crossref_primary_10_1016_j_neucom_2018_07_031
crossref_primary_10_1016_j_neucom_2019_01_083
crossref_primary_10_1145_3649447
Cites_doi 10.1109/CVPR.2015.7298947
10.1145/1873951.1873987
10.1145/2600428.2609610
10.1109/TIP.2016.2553446
10.1109/TIP.2016.2564638
10.1109/TIP.2016.2627801
10.1109/CVPR.2015.7298594
10.1109/CVPR.2012.6247923
10.1109/TIP.2016.2607421
10.1145/1646396.1646452
10.1016/j.patcog.2013.08.022
10.1145/2939672.2939812
10.1109/TIP.2016.2593344
10.1109/CVPR.2015.7299011
10.1145/2339530.2339678
10.1109/TIP.2015.2467315
10.1109/TNNLS.2014.2357794
10.1109/TCSVT.2017.2705068
10.1109/TPAMI.2015.2505311
10.1631/FITEE.1601787
10.1109/TNNLS.2015.2461554
10.1109/CVPR.2010.5539928
10.1109/CVPR.2014.275
10.1145/2463676.2465274
10.1109/TIP.2017.2676345
10.1109/CVPR.2016.641
10.1109/TMM.2015.2508146
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2018.2821921
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3903
ExternalDocumentID 29993656
10_1109_TIP_2018_2821921
8331146
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572388; 61703327
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program-The Key Industry Innovation Chain of Shaanxi
  grantid: 2017ZDCXL-GY-05-04-02; 2017ZDCXLGY-05-04-02
– fundername: Australian Research Council Projects
  grantid: FL-170100117; DP-180103424; LP-150100671
  funderid: 10.13039/501100000923
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7X8
ID FETCH-LOGICAL-c319t-8e16e098758f3ce8793e91a79a4cf76b81c026ffb3f439e3e8cb6276c72eba333
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 20:48:36 EDT 2025
Wed Feb 19 02:31:52 EST 2025
Tue Jul 01 02:03:17 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Wed Aug 27 02:49:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8e16e098758f3ce8793e91a79a4cf76b81c026ffb3f439e3e8cb6276c72eba333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8425-4195
0000-0003-2620-3247
0000-0001-7225-5449
0000-0003-1443-0776
PMID 29993656
PQID 2068342625
PQPubID 23479
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIP_2018_2821921
crossref_primary_10_1109_TIP_2018_2821921
ieee_primary_8331146
pubmed_primary_29993656
proquest_miscellaneous_2068342625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Aug.
2018-8-00
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
andrea (ref43) 2015
ref12
ref15
ref14
ref30
russakovsky (ref35) 2015
krizhevsky (ref37) 2012
ref11
ref10
jiang (ref24) 2016
ref2
ref1
ref17
akaho (ref3) 2006
ref38
ref16
ref19
ref18
kumar (ref32) 2011
wei (ref42) 2014
chatfield (ref34) 2014
wang (ref27) 2016
wang (ref39) 2015
ref23
ref26
zhang (ref33) 2014
ref20
ref41
ref22
ref21
yang (ref25) 2017
ref28
krizhevsky (ref36) 2012; 25
ref29
ref8
ref7
ref9
ref4
zhai (ref6) 2013
ref5
zhao (ref31) 2015
huiskes (ref40) 2008
References_xml – start-page: 1360
  year: 2011
  ident: ref32
  article-title: Learning hash functions for cross-view similarity search
  publication-title: Proc Int Joint Conf Artif Intell
– year: 2006
  ident: ref3
  publication-title: A kernel method for canonical correlation analysis
– ident: ref30
  doi: 10.1109/CVPR.2015.7298947
– ident: ref4
  doi: 10.1145/1873951.1873987
– ident: ref21
  doi: 10.1145/2600428.2609610
– start-page: 1618
  year: 2017
  ident: ref25
  article-title: Pairwise relationship guided deep hashing for cross-modal retrieval
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref11
  doi: 10.1109/TIP.2016.2553446
– ident: ref16
  doi: 10.1109/TIP.2016.2564638
– start-page: 3419
  year: 2014
  ident: ref42
  article-title: Discrete graph hashing
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/TIP.2016.2627801
– ident: ref38
  doi: 10.1109/CVPR.2015.7298594
– ident: ref5
  doi: 10.1109/CVPR.2012.6247923
– ident: ref20
  doi: 10.1109/TIP.2016.2607421
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref36
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref41
  doi: 10.1145/1646396.1646452
– ident: ref12
  doi: 10.1016/j.patcog.2013.08.022
– start-page: 689
  year: 2015
  ident: ref43
  article-title: MatConvNet: Convolutional neural networks for MATLAB
  publication-title: Proc 23rd ACM Int Conf Multimedia Inf Retr
– ident: ref26
  doi: 10.1145/2939672.2939812
– ident: ref15
  doi: 10.1109/TIP.2016.2593344
– start-page: 1198
  year: 2013
  ident: ref6
  article-title: Heterogeneous metric learning with joint graph regularization for cross-media retrieval
  publication-title: Proc 27th AAAI Conf Artif Intell
– ident: ref23
  doi: 10.1109/CVPR.2015.7299011
– ident: ref19
  doi: 10.1145/2339530.2339678
– ident: ref29
  doi: 10.1109/TIP.2015.2467315
– ident: ref9
  doi: 10.1109/TNNLS.2014.2357794
– year: 2015
  ident: ref35
  publication-title: Imagenet Large Scale Visual Recognition Challenge
– ident: ref2
  doi: 10.1109/TCSVT.2017.2705068
– ident: ref7
  doi: 10.1109/TPAMI.2015.2505311
– ident: ref1
  doi: 10.1631/FITEE.1601787
– year: 2016
  ident: ref27
  publication-title: Deep supervised hashing with triplet labels
– start-page: 1556
  year: 2015
  ident: ref31
  article-title: Deep semantic ranking based hashing for multi-label image retrieval
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref10
  doi: 10.1109/TNNLS.2015.2461554
– start-page: 3890
  year: 2015
  ident: ref39
  article-title: Semantic topic multimodal hashing for cross-media retrieval
  publication-title: Proc 24th AAAI Conf Artif Intell
– year: 2016
  ident: ref24
  publication-title: Deep cross-modal hashing
– year: 2014
  ident: ref34
  publication-title: Return of the devil in the details Delving deep into convolutional nets
– ident: ref22
  doi: 10.1109/CVPR.2010.5539928
– start-page: 1097
  year: 2012
  ident: ref37
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 39
  year: 2008
  ident: ref40
  article-title: The mir flickr retrieval evaluation
  publication-title: Proc 1st ACM Int Conf Multimedia Inf Retr
– ident: ref14
  doi: 10.1109/CVPR.2014.275
– start-page: 2177
  year: 2014
  ident: ref33
  article-title: Large-scale supervised multimodal hashing with semantic correlation maximization
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref18
  doi: 10.1145/2463676.2465274
– ident: ref17
  doi: 10.1109/TIP.2017.2676345
– ident: ref28
  doi: 10.1109/CVPR.2016.641
– ident: ref8
  doi: 10.1109/TMM.2015.2508146
SSID ssj0014516
Score 2.659179
Snippet Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3893
SubjectTerms Correlation
cross-modal retrieval
Deep neural network
graph regularization
hashing
Indexes
Internet
Multimedia communication
Neural networks
Semantics
Training data
triplet labels
Title Triplet-Based Deep Hashing Network for Cross-Modal Retrieval
URI https://ieeexplore.ieee.org/document/8331146
https://www.ncbi.nlm.nih.gov/pubmed/29993656
https://www.proquest.com/docview/2068342625
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnBgsPEoLxWJCxLZo1mbVOLCaxpIIISGxK1KMvcCWqetu_DrcdKuAgSIWw95NHEsf46dzwAnSgeh5jxgGGrN-oorFnNEZvS4l9rytoFy2RYP0fC5f_cSvtTgrHoLg4gu-Qzb9tPF8seZWdirso7k3D6iXYEVctyKt1pVxMAWnHWRzVAwQbB_GZLsxp3R7aPN4ZJtci8s_dcXE-RqqvwOL52ZGTTgfvmDRXbJa3uR67Z5_8bd-N8VbMB6iTf9i-KAbEINJ01olNjTLzV73oS1T8SELTgfzewFfM4uyciN_WvEqT8syi75D0XiuE9o17-yC2T32ZimeHK1uejgbsHz4GZ0NWRlnQVmSAFzJrEXYTcmz0Wm3KAklcW4p0Ss-iYVkZY9Q55ammqeEnxBjtLoKBCREQFqxTnfhvokm-Au-FKpvohFIC0RXYipjAQ3RqfkxgWBCLUHneXWJ6YkIbe1MN4S54x044SElVhhJaWwPDitekwLAo4_2rbsllftyt324Hgp3YSUx0ZE1ASzxZw6R5JbTv7Qg51C7FVnstMxJ7S79_Og-7Bqpy5yAQ-gns8WeEj4JNdH7mB-ALHi3sE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADj_EazyJxQSLb2qxNKnHhNW2wTQgNiVuVZO4FtCHoLvx6nLSrAAHi1kOSJnEsf44dfwDHSgeh5jxgGGrNmoorFnNEZvTQTy29baBctkU_aj80bx7Dxxk4Ld_CIKJLPsOa_XSx_OHYTOxVWV1ybh_RzsI82f3Qz19rlTEDSznrYpuhYIKA_zQo2Yjrg86dzeKSNXIwbAGwL0bIsar8DjCdoWmtQG86xTy_5Kk2yXTNvH-r3vjfNazCcoE4vfP8iKzBDI4qsFKgT6_Q7bcKLH0qTbgOZ4NXewWfsQsyc0PvCvHFa-fES14_Tx33CO96l3aBrDce0i_uHTsXHd0NeGhdDy7brGBaYIZUMGMS_QgbMfkuMuUGJSktxr4SsWqaVERa-oZ8tTTVPCUAgxyl0VEgIiMC1Ipzvglzo_EIt8GTSjVFLAJpS9GFmMpIcGN0So5cEIhQV6E-3frEFGXILRvGc-LckUackLASK6ykEFYVTsoeL3kJjj_artstL9sVu12Fo6l0E1IfGxNRIxxP3qhzJLmtyh9WYSsXe9mZLHXMCe_u_DzoISy0B71u0u30b3dh0U4jzwzcg7nsdYL7hFYyfeAO6Qd8ZeIK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triplet-Based+Deep+Hashing+Network+for+Cross-Modal+Retrieval&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Deng%2C+Cheng&rft.au=Chen%2C+Zhaojia&rft.au=Liu%2C+Xianglong&rft.au=Gao%2C+Xinbo&rft.date=2018-08-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=8&rft.spage=3893&rft.epage=3903&rft_id=info:doi/10.1109%2FTIP.2018.2821921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2821921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon