Deep learning in molecular biology marker recognition of patients with acute myeloid leukemia

In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 wer...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 78; no. 9; pp. 11283 - 11297
Main Authors Chen, Lieguang, Lu, Ying, Pei, Renzhi, Zhang, Pisheng, Liu, Xuhui, Du, Xiaohong, Chen, Dong, Cao, Junjie, Li, Shuangyue, Zhuang, Xianxu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 were selected as the research subjects and set as the AML group. Another 9 non-leukemia patients were selected as the control group. The expression levels of WT1 in the two groups were compared, and DBN was used to classify the patients based on the WT1 expression levels. The real-time quantitative PCR was used to detect the abnormalities of FLT3, PML-RAR, and other molecular markers at different WT1 expression levels. The results showed that the expression of WT1 in AML patients was significantly higher than that in non-leukemia patients. The expression of WT1 in patients of M3 type was the highest, and that was the lowest in patients of the M5 type. The accuracy, precision, recall, and F1 indexes for WT1 expression identification using deep belief network were 94.06%, 93.82%, 93.59%, and 93.63%, respectively. In conclusion, deep learning technology is very sensitive in identifying the molecular biology markers in AML patients, which provides a reference for efficient and intelligent disease diagnosis.
AbstractList In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 were selected as the research subjects and set as the AML group. Another 9 non-leukemia patients were selected as the control group. The expression levels of WT1 in the two groups were compared, and DBN was used to classify the patients based on the WT1 expression levels. The real-time quantitative PCR was used to detect the abnormalities of FLT3, PML-RAR, and other molecular markers at different WT1 expression levels. The results showed that the expression of WT1 in AML patients was significantly higher than that in non-leukemia patients. The expression of WT1 in patients of M3 type was the highest, and that was the lowest in patients of the M5 type. The accuracy, precision, recall, and F1 indexes for WT1 expression identification using deep belief network were 94.06%, 93.82%, 93.59%, and 93.63%, respectively. In conclusion, deep learning technology is very sensitive in identifying the molecular biology markers in AML patients, which provides a reference for efficient and intelligent disease diagnosis.
Author Zhang, Pisheng
Lu, Ying
Chen, Dong
Pei, Renzhi
Chen, Lieguang
Liu, Xuhui
Cao, Junjie
Li, Shuangyue
Zhuang, Xianxu
Du, Xiaohong
Author_xml – sequence: 1
  givenname: Lieguang
  surname: Chen
  fullname: Chen, Lieguang
  email: chenlieguangnb@163.com
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 2
  givenname: Ying
  surname: Lu
  fullname: Lu, Ying
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 3
  givenname: Renzhi
  surname: Pei
  fullname: Pei, Renzhi
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 4
  givenname: Pisheng
  surname: Zhang
  fullname: Zhang, Pisheng
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 5
  givenname: Xuhui
  surname: Liu
  fullname: Liu, Xuhui
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 6
  givenname: Xiaohong
  surname: Du
  fullname: Du, Xiaohong
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 7
  givenname: Dong
  surname: Chen
  fullname: Chen, Dong
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 8
  givenname: Junjie
  surname: Cao
  fullname: Cao, Junjie
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 9
  givenname: Shuangyue
  surname: Li
  fullname: Li, Shuangyue
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
– sequence: 10
  givenname: Xianxu
  surname: Zhuang
  fullname: Zhuang, Xianxu
  organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52q-j1E8oeNGjhGx2tqbdJjXJIv33pq4geOhpyPA-M5NnhibWWUDokpJrSkh5EyhlrMwIoxkRlIisPkFTmpc8PSsxQVNSM5JVuWBnaBbCmhAieMmn6P0OYId7UN4au8LG4q3rQQ-98rgxrnerPd4qvwGPPWi3siYaZ7Hr8E5FAzYG_GXiB1Z6iIC3e-idadO8YQNbo87Raaf6ABe_dY7eHu5fF0_Z8uXxeXG7zDSndcyqtsuhKUVNW93koqGtUGVZVwUttKAceFMAT23QtKAkV9C1nW6Bq04QSIXP0dU4d-fd5wAhyrUbvE0rJSuKouac1SylqjGlvQvBQye1ierwn-iV6SUl8iBTjjJlkil_ZMo6oewfuvMmedkfh_gIhRS2K_B_Vx2hvgFnm4rf
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106459
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_1016_j_fhj_2024_100182
Cites_doi 10.1056/NEJMra1406184
10.1016/j.blre.2016.08.005
10.1038/s41598-017-04075-z
10.1002/2211-5463.12652
10.1038/s41591-018-0177-5
10.1038/bcj.2016.50
10.1200/JCO.2016.71.2208
10.1038/s41591-019-0472-9
10.2174/1871529X18666180515130136
10.1155/2019/1609128
10.1590/1516-3180.2016.020104102016
10.1056/NEJMoa1301689
10.1016/j.cell.2019.11.013
10.1056/NEJMoa1516192
10.1080/16078454.2019.1631507
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11227-021-04104-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Biology
EISSN 1573-0484
EndPage 11297
ExternalDocumentID 10_1007_s11227_021_04104_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-8df5eb7491dcb54b1d4a7798616c413e3b6e34b1ec16105aefdfcde3af40ee3a3
IEDL.DBID U2A
ISSN 0920-8542
IngestDate Fri Jul 25 04:34:54 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jul 01 03:04:33 EDT 2025
Fri Feb 21 02:45:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep belief network
Gene expression level
Acute myeloid leukemia
Wilm’s tumor 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8df5eb7491dcb54b1d4a7798616c413e3b6e34b1ec16105aefdfcde3af40ee3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2666933292
PQPubID 2043774
PageCount 15
ParticipantIDs proquest_journals_2666933292
crossref_citationtrail_10_1007_s11227_021_04104_9
crossref_primary_10_1007_s11227_021_04104_9
springer_journals_10_1007_s11227_021_04104_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Suguna, Farhana, Kanimozhi (CR13) 2018; 18
Pan, Schoppe, Parra-Damas (CR8) 2019; 179
Coudray, Ocampo, Sakellaropoulos (CR9) 2018; 24
Pandey, Moazam, Ghimirey (CR11) 2019; 42
Smolander, Dehmer, Emmert-Streib (CR14) 2019; 9
Papaemmanuil, Gerstung, Bullinger (CR19) 2016; 374
Yang, Zhao, Qiang (CR15) 2016; 16
Chapuis, Egan, Bar (CR5) 2019; 25
Du, Zhu, Wang (CR6) 2019; 48
Ley, Miller (CR17) 2013; 368
Dohner, Weisdorf, Bloomfield (CR1) 2015; 373
Han, Wei, Zheng (CR12) 2017; 7
Prada-Arismendy, Arroyave, Rothlisberger (CR3) 2017; 31
De Kouchkovsky, Abdul-Hay (CR2) 2016; 6
Niktoreh, Walter, Zimmermann (CR7) 2019; 2019
Zuo, Cheng, Zhang (CR10) 2019; 24
Li, Shi, Yu (CR16) 2019; 36
Bullinger, Dohner, Dohner (CR4) 2017; 35
Zhang, Yang, Peng, Chen, Feng (CR18) 2017; 135
Huang, Li, Qin, Xu, Hu, Pan, Qu, Liu, Zhang, Xiao (CR20) 2020; 41
L Bullinger (4104_CR4) 2017; 35
Y Zuo (4104_CR10) 2019; 24
D Du (4104_CR6) 2019; 48
I De Kouchkovsky (4104_CR2) 2016; 6
E Suguna (4104_CR13) 2018; 18
ZC Li (4104_CR16) 2019; 36
X Zhang (4104_CR18) 2017; 135
AG Chapuis (4104_CR5) 2019; 25
JL Yang (4104_CR15) 2016; 16
TJ Ley (4104_CR17) 2013; 368
N Niktoreh (4104_CR7) 2019; 2019
HJ Huang (4104_CR20) 2020; 41
J Prada-Arismendy (4104_CR3) 2017; 31
S Pandey (4104_CR11) 2019; 42
Z Han (4104_CR12) 2017; 7
C Pan (4104_CR8) 2019; 179
N Coudray (4104_CR9) 2018; 24
H Dohner (4104_CR1) 2015; 373
J Smolander (4104_CR14) 2019; 9
E Papaemmanuil (4104_CR19) 2016; 374
References_xml – volume: 373
  start-page: 1136
  issue: 12
  year: 2015
  end-page: 1152
  ident: CR1
  article-title: Acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1406184
– volume: 48
  start-page: 50
  issue: 1
  year: 2019
  end-page: 57
  ident: CR6
  article-title: Expression of WT1 gene and its prognostic value in patients with acute myeloid leukemia
  publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban
– volume: 31
  start-page: 63
  issue: 1
  year: 2017
  end-page: 76
  ident: CR3
  article-title: Molecular biomarkers in acute myeloid leukemia
  publication-title: Blood Rev
  doi: 10.1016/j.blre.2016.08.005
– volume: 7
  start-page: 4172
  issue: 1
  year: 2017
  ident: CR12
  article-title: Breast cancer multi-classification from histopathological images with structured deep learning model
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04075-z
– volume: 16
  start-page: 69
  issue: 032
  year: 2016
  end-page: 74
  ident: CR15
  article-title: Classification of benign and malignant pulmonary nodules based on deep belief network
  publication-title: Sci Rep
– volume: 9
  start-page: 1232
  issue: 7
  year: 2019
  end-page: 1248
  ident: CR14
  article-title: Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12652
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  end-page: 1567
  ident: CR9
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 6
  start-page: e441
  issue: 7
  year: 2016
  ident: CR2
  article-title: Acute myeloid leukemia: a comprehensive review and 2016 update
  publication-title: Blood Cancer
  doi: 10.1038/bcj.2016.50
– volume: 35
  start-page: 934
  issue: 9
  year: 2017
  end-page: 946
  ident: CR4
  article-title: Genomics of acute myeloid leukemia diagnosis and pathways
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.71.2208
– volume: 25
  start-page: 1064
  issue: 7
  year: 2019
  end-page: 1072
  ident: CR5
  article-title: T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0472-9
– volume: 18
  start-page: 199
  issue: 3
  year: 2018
  end-page: 207
  ident: CR13
  article-title: Acute myeloid leukemia: diagnosis and management based on current molecular genetics approach
  publication-title: Cardiovasc Hematol Disord Drug Targets
  doi: 10.2174/1871529X18666180515130136
– volume: 2019
  start-page: 1609128
  year: 2019
  ident: CR7
  article-title: Mutated WT1, FLT3-ITD, and NUP98-NSD1 fusion in various combinations define a poor prognostic group in pediatric acute myeloid leukemia
  publication-title: J Oncol
  doi: 10.1155/2019/1609128
– volume: 135
  start-page: 179
  issue: 2
  year: 2017
  end-page: 184
  ident: CR18
  article-title: Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report
  publication-title: Sao Paulo Med J.
  doi: 10.1590/1516-3180.2016.020104102016
– volume: 368
  start-page: 2059
  issue: 22
  year: 2013
  end-page: 2074
  ident: CR17
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1301689
– volume: 41
  start-page: 723
  issue: 9
  year: 2020
  end-page: 730
  ident: CR20
  article-title: Molecular features and prognostic value of RAS mutations in patients with myelodysplastic syndromes
  publication-title: Zhonghua Xue Ye Xue Za Zhi
– volume: 179
  start-page: 1661
  issue: 7
  year: 2019
  end-page: 1676
  ident: CR8
  article-title: Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.013
– volume: 374
  start-page: 2209
  issue: 23
  year: 2016
  end-page: 2221
  ident: CR19
  article-title: Genomic classification and prognosis in acute myeloid leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1516192
– volume: 42
  start-page: 2016
  issue: 5
  year: 2019
  end-page: 2028
  ident: CR11
  article-title: WT1 regulates cyclin A1 expression in K562 cells
  publication-title: Oncol Rep
– volume: 24
  start-page: 480
  issue: 1
  year: 2019
  end-page: 486
  ident: CR10
  article-title: Wilms' tumor 1 mRNA expression: a good tool for differentiating between myelodysplastic syndrome and aplastic anemia in children?
  publication-title: Hematology
  doi: 10.1080/16078454.2019.1631507
– volume: 36
  start-page: 195
  issue: 02
  year: 2019
  end-page: 199
  ident: CR16
  article-title: Inhibition classification of CYP450 2C9 based on deep belief network
  publication-title: Sci Rep
– volume: 368
  start-page: 2059
  issue: 22
  year: 2013
  ident: 4104_CR17
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1301689
– volume: 41
  start-page: 723
  issue: 9
  year: 2020
  ident: 4104_CR20
  publication-title: Zhonghua Xue Ye Xue Za Zhi
– volume: 374
  start-page: 2209
  issue: 23
  year: 2016
  ident: 4104_CR19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1516192
– volume: 135
  start-page: 179
  issue: 2
  year: 2017
  ident: 4104_CR18
  publication-title: Sao Paulo Med J.
  doi: 10.1590/1516-3180.2016.020104102016
– volume: 25
  start-page: 1064
  issue: 7
  year: 2019
  ident: 4104_CR5
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0472-9
– volume: 179
  start-page: 1661
  issue: 7
  year: 2019
  ident: 4104_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.013
– volume: 6
  start-page: e441
  issue: 7
  year: 2016
  ident: 4104_CR2
  publication-title: Blood Cancer
  doi: 10.1038/bcj.2016.50
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  ident: 4104_CR9
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 18
  start-page: 199
  issue: 3
  year: 2018
  ident: 4104_CR13
  publication-title: Cardiovasc Hematol Disord Drug Targets
  doi: 10.2174/1871529X18666180515130136
– volume: 9
  start-page: 1232
  issue: 7
  year: 2019
  ident: 4104_CR14
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12652
– volume: 31
  start-page: 63
  issue: 1
  year: 2017
  ident: 4104_CR3
  publication-title: Blood Rev
  doi: 10.1016/j.blre.2016.08.005
– volume: 36
  start-page: 195
  issue: 02
  year: 2019
  ident: 4104_CR16
  publication-title: Sci Rep
– volume: 16
  start-page: 69
  issue: 032
  year: 2016
  ident: 4104_CR15
  publication-title: Sci Rep
– volume: 373
  start-page: 1136
  issue: 12
  year: 2015
  ident: 4104_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1406184
– volume: 7
  start-page: 4172
  issue: 1
  year: 2017
  ident: 4104_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04075-z
– volume: 35
  start-page: 934
  issue: 9
  year: 2017
  ident: 4104_CR4
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.71.2208
– volume: 24
  start-page: 480
  issue: 1
  year: 2019
  ident: 4104_CR10
  publication-title: Hematology
  doi: 10.1080/16078454.2019.1631507
– volume: 2019
  start-page: 1609128
  year: 2019
  ident: 4104_CR7
  publication-title: J Oncol
  doi: 10.1155/2019/1609128
– volume: 42
  start-page: 2016
  issue: 5
  year: 2019
  ident: 4104_CR11
  publication-title: Oncol Rep
– volume: 48
  start-page: 50
  issue: 1
  year: 2019
  ident: 4104_CR6
  publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban
SSID ssj0004373
Score 2.2887015
Snippet In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11283
SubjectTerms Abnormalities
Algorithms
Belief networks
Biology
Biomedical Image Analysis Using Supercomputing Deep Learning
Compilers
Computer Science
Deep learning
Gene expression
Interpreters
Leukemia
Machine learning
Markers
Molecular biology
Processor Architectures
Programming Languages
Title Deep learning in molecular biology marker recognition of patients with acute myeloid leukemia
URI https://link.springer.com/article/10.1007/s11227-021-04104-9
https://www.proquest.com/docview/2666933292
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR27TsMw0IJ2YeGNKJTKAxtYamzn4bGlLRVITFQqA4ps54IqmrTqY-DvsVOnEQiQmCwl5xvufL473wuha6HTlFNFCSgdEQ5cEQk8IhFQJoMQjNIvsi2eguGIP4z9sSsKW5bZ7mVIsripq2I3j9KQ2JSCNjdOBBG7qO5b392c4hHtVNWQbBNXFsYxinxOXanMzzi-qqPKxvwWFi20zeAQ7TszEXc2fD1CO5Afo4NyBAN2EnmCXnsAc-xGP7zhSY6zct4tdv2VcGYzcBZ4myo0y_Esxa6h6hLbl1gstcGLsw-YziaJwbd-h2wiT9Fo0H--GxI3MYFoI0orEiWpDyrkwku08rnyEi7DUESBF2hu3ztVAMx8Bm0MvbYvIU1SnQCTKW-DWdgZquWzHM4RDnymEgsaKcFpGKg2l0xq2yDOkC4VDeSVhIu1aydup1pM46oRsiV2bIgdF8SOzZ6b7Z75ppnGn9DNkh-xE6xlbOyJQDBGBW2g25JH1e_fsV38D_wS7VFb6FC8tzRRbbVYw5UxP1aqheqdbq87sOv9y2O_VZy-T9My1CQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzEYkAM3iLQm6SPHCZgGjJ02aRdUJamLJtZu2uPAvyfp0lUgQOJUqXV8sOPacezPCF0LnaacKkpA6Yhw4IpI4BGJgDIZhGCcflFt0Qs6A_409IeuKWxeVruXV5LFn7pqdvMoDYktKWhyc4ggYhNtmWAgsoVcA9qquiHZ6l5ZmINR5HPqWmV-5vHVHVUx5rdr0cLbtPfRrgsTcWul1wO0Afkh2itHMGBnkUfo9R5git3ohzc8ynFWzrvFDl8JZ7YCZ4bXpUKTHE9S7ABV59hmYrHUhi_OPmA8GSWG3_IdspE8RoP2Q_-uQ9zEBKKNKS1IlKQ-qJALL9HK58pLuAxDEQVeoLnNd6oAmHkN2gR6TV9CmqQ6ASZT3gTzYCeolk9yOEU48JlKLGmkBKdhoJpcMqktQJwRXSrqyCsFF2sHJ26nWozjCgjZCjs2wo4LYcdmzc16zXQFpvEndaPUR-wMax6beCIQjFFB6-i21FH1-XduZ_8jv0Lbnf5LN-4-9p7P0Q61TQ9F7qWBaovZEi5MKLJQl8XO-wStmtQR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN-KNBzawaGzn4REBFS8hBip1QZHtnFFFk1alHfj32InTAAIkpkjJ-YY7O3e-x3cIHQttDKeKElA6IRy4IhJ4QhKgTEYxWKNfVls8RNddftsLe5-6-Mtq9zolWfU0OJSmYnI2ysxZ0_gWUBoTV17Q5vZCQcQ8WrC_48Dt6y49bzojWZVjFvaSlISc-raZn3l8NU2Nv_ktRVpans4qWvYuIz6vdLyG5qBYRyv1OAbsT-cGer4EGGE_BuIF9wuc17NvscdawrmrxhnjWdnQsMBDgz246ht2UVksteWL83cYDPuZ5Td9hbwvN1G3c_V0cU389ASirRwmJMlMCCrmIsi0CrkKMi7jWCRREGnuYp8qAmZfg7ZOXzuUYDKjM2DS8DbYB9tCrWJYwDbCUchU5kgTJTiNI9XmkkntwOKs6IzYQUEtuFR7aHE34WKQNqDITtipFXZaCju1a05ma0YVsMaf1Pu1PlJ_yN5S61tEgjEq6A46rXXUfP6d2-7_yI_Q4uNlJ72_ebjbQ0vU9T-UYZh91JqMp3BgvZKJOiw33gcbmNhN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+molecular+biology+marker+recognition+of+patients+with+acute+myeloid+leukemia&rft.jtitle=The+Journal+of+supercomputing&rft.au=Chen+Lieguang&rft.au=Lu%2C+Ying&rft.au=Pei+Renzhi&rft.au=Zhang+Pisheng&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=9&rft.spage=11283&rft.epage=11297&rft_id=info:doi/10.1007%2Fs11227-021-04104-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon