Deep learning in molecular biology marker recognition of patients with acute myeloid leukemia
In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 wer...
Saved in:
Published in | The Journal of supercomputing Vol. 78; no. 9; pp. 11283 - 11297 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 were selected as the research subjects and set as the AML group. Another 9 non-leukemia patients were selected as the control group. The expression levels of WT1 in the two groups were compared, and DBN was used to classify the patients based on the WT1 expression levels. The real-time quantitative PCR was used to detect the abnormalities of FLT3, PML-RAR, and other molecular markers at different WT1 expression levels. The results showed that the expression of WT1 in AML patients was significantly higher than that in non-leukemia patients. The expression of WT1 in patients of M3 type was the highest, and that was the lowest in patients of the M5 type. The accuracy, precision, recall, and F1 indexes for WT1 expression identification using deep belief network were 94.06%, 93.82%, 93.59%, and 93.63%, respectively. In conclusion, deep learning technology is very sensitive in identifying the molecular biology markers in AML patients, which provides a reference for efficient and intelligent disease diagnosis. |
---|---|
AbstractList | In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1 expression in the classification of acute myeloid leukemia (AML) was explored. 121 AML patients diagnosed in the hospital from 2017.10 to 2019.10 were selected as the research subjects and set as the AML group. Another 9 non-leukemia patients were selected as the control group. The expression levels of WT1 in the two groups were compared, and DBN was used to classify the patients based on the WT1 expression levels. The real-time quantitative PCR was used to detect the abnormalities of FLT3, PML-RAR, and other molecular markers at different WT1 expression levels. The results showed that the expression of WT1 in AML patients was significantly higher than that in non-leukemia patients. The expression of WT1 in patients of M3 type was the highest, and that was the lowest in patients of the M5 type. The accuracy, precision, recall, and F1 indexes for WT1 expression identification using deep belief network were 94.06%, 93.82%, 93.59%, and 93.63%, respectively. In conclusion, deep learning technology is very sensitive in identifying the molecular biology markers in AML patients, which provides a reference for efficient and intelligent disease diagnosis. |
Author | Zhang, Pisheng Lu, Ying Chen, Dong Pei, Renzhi Chen, Lieguang Liu, Xuhui Cao, Junjie Li, Shuangyue Zhuang, Xianxu Du, Xiaohong |
Author_xml | – sequence: 1 givenname: Lieguang surname: Chen fullname: Chen, Lieguang email: chenlieguangnb@163.com organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 2 givenname: Ying surname: Lu fullname: Lu, Ying organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 3 givenname: Renzhi surname: Pei fullname: Pei, Renzhi organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 4 givenname: Pisheng surname: Zhang fullname: Zhang, Pisheng organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 5 givenname: Xuhui surname: Liu fullname: Liu, Xuhui organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 6 givenname: Xiaohong surname: Du fullname: Du, Xiaohong organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 7 givenname: Dong surname: Chen fullname: Chen, Dong organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 8 givenname: Junjie surname: Cao fullname: Cao, Junjie organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 9 givenname: Shuangyue surname: Li fullname: Li, Shuangyue organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University – sequence: 10 givenname: Xianxu surname: Zhuang fullname: Zhuang, Xianxu organization: Department of Hematology, The Affiliated People’s Hospital of Ningbo University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52q-j1E8oeNGjhGx2tqbdJjXJIv33pq4geOhpyPA-M5NnhibWWUDokpJrSkh5EyhlrMwIoxkRlIisPkFTmpc8PSsxQVNSM5JVuWBnaBbCmhAieMmn6P0OYId7UN4au8LG4q3rQQ-98rgxrnerPd4qvwGPPWi3siYaZ7Hr8E5FAzYG_GXiB1Z6iIC3e-idadO8YQNbo87Raaf6ABe_dY7eHu5fF0_Z8uXxeXG7zDSndcyqtsuhKUVNW93koqGtUGVZVwUttKAceFMAT23QtKAkV9C1nW6Bq04QSIXP0dU4d-fd5wAhyrUbvE0rJSuKouac1SylqjGlvQvBQye1ierwn-iV6SUl8iBTjjJlkil_ZMo6oewfuvMmedkfh_gIhRS2K_B_Vx2hvgFnm4rf |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106459 crossref_primary_10_2174_1574893618666230227105703 crossref_primary_10_1016_j_fhj_2024_100182 |
Cites_doi | 10.1056/NEJMra1406184 10.1016/j.blre.2016.08.005 10.1038/s41598-017-04075-z 10.1002/2211-5463.12652 10.1038/s41591-018-0177-5 10.1038/bcj.2016.50 10.1200/JCO.2016.71.2208 10.1038/s41591-019-0472-9 10.2174/1871529X18666180515130136 10.1155/2019/1609128 10.1590/1516-3180.2016.020104102016 10.1056/NEJMoa1301689 10.1016/j.cell.2019.11.013 10.1056/NEJMoa1516192 10.1080/16078454.2019.1631507 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-021-04104-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Biology |
EISSN | 1573-0484 |
EndPage | 11297 |
ExternalDocumentID | 10_1007_s11227_021_04104_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-8df5eb7491dcb54b1d4a7798616c413e3b6e34b1ec16105aefdfcde3af40ee3a3 |
IEDL.DBID | U2A |
ISSN | 0920-8542 |
IngestDate | Fri Jul 25 04:34:54 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 03:04:33 EDT 2025 Fri Feb 21 02:45:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep belief network Gene expression level Acute myeloid leukemia Wilm’s tumor 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8df5eb7491dcb54b1d4a7798616c413e3b6e34b1ec16105aefdfcde3af40ee3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2666933292 |
PQPubID | 2043774 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2666933292 crossref_citationtrail_10_1007_s11227_021_04104_9 crossref_primary_10_1007_s11227_021_04104_9 springer_journals_10_1007_s11227_021_04104_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Suguna, Farhana, Kanimozhi (CR13) 2018; 18 Pan, Schoppe, Parra-Damas (CR8) 2019; 179 Coudray, Ocampo, Sakellaropoulos (CR9) 2018; 24 Pandey, Moazam, Ghimirey (CR11) 2019; 42 Smolander, Dehmer, Emmert-Streib (CR14) 2019; 9 Papaemmanuil, Gerstung, Bullinger (CR19) 2016; 374 Yang, Zhao, Qiang (CR15) 2016; 16 Chapuis, Egan, Bar (CR5) 2019; 25 Du, Zhu, Wang (CR6) 2019; 48 Ley, Miller (CR17) 2013; 368 Dohner, Weisdorf, Bloomfield (CR1) 2015; 373 Han, Wei, Zheng (CR12) 2017; 7 Prada-Arismendy, Arroyave, Rothlisberger (CR3) 2017; 31 De Kouchkovsky, Abdul-Hay (CR2) 2016; 6 Niktoreh, Walter, Zimmermann (CR7) 2019; 2019 Zuo, Cheng, Zhang (CR10) 2019; 24 Li, Shi, Yu (CR16) 2019; 36 Bullinger, Dohner, Dohner (CR4) 2017; 35 Zhang, Yang, Peng, Chen, Feng (CR18) 2017; 135 Huang, Li, Qin, Xu, Hu, Pan, Qu, Liu, Zhang, Xiao (CR20) 2020; 41 L Bullinger (4104_CR4) 2017; 35 Y Zuo (4104_CR10) 2019; 24 D Du (4104_CR6) 2019; 48 I De Kouchkovsky (4104_CR2) 2016; 6 E Suguna (4104_CR13) 2018; 18 ZC Li (4104_CR16) 2019; 36 X Zhang (4104_CR18) 2017; 135 AG Chapuis (4104_CR5) 2019; 25 JL Yang (4104_CR15) 2016; 16 TJ Ley (4104_CR17) 2013; 368 N Niktoreh (4104_CR7) 2019; 2019 HJ Huang (4104_CR20) 2020; 41 J Prada-Arismendy (4104_CR3) 2017; 31 S Pandey (4104_CR11) 2019; 42 Z Han (4104_CR12) 2017; 7 C Pan (4104_CR8) 2019; 179 N Coudray (4104_CR9) 2018; 24 H Dohner (4104_CR1) 2015; 373 J Smolander (4104_CR14) 2019; 9 E Papaemmanuil (4104_CR19) 2016; 374 |
References_xml | – volume: 373 start-page: 1136 issue: 12 year: 2015 end-page: 1152 ident: CR1 article-title: Acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJMra1406184 – volume: 48 start-page: 50 issue: 1 year: 2019 end-page: 57 ident: CR6 article-title: Expression of WT1 gene and its prognostic value in patients with acute myeloid leukemia publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban – volume: 31 start-page: 63 issue: 1 year: 2017 end-page: 76 ident: CR3 article-title: Molecular biomarkers in acute myeloid leukemia publication-title: Blood Rev doi: 10.1016/j.blre.2016.08.005 – volume: 7 start-page: 4172 issue: 1 year: 2017 ident: CR12 article-title: Breast cancer multi-classification from histopathological images with structured deep learning model publication-title: Sci Rep doi: 10.1038/s41598-017-04075-z – volume: 16 start-page: 69 issue: 032 year: 2016 end-page: 74 ident: CR15 article-title: Classification of benign and malignant pulmonary nodules based on deep belief network publication-title: Sci Rep – volume: 9 start-page: 1232 issue: 7 year: 2019 end-page: 1248 ident: CR14 article-title: Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12652 – volume: 24 start-page: 1559 issue: 10 year: 2018 end-page: 1567 ident: CR9 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 6 start-page: e441 issue: 7 year: 2016 ident: CR2 article-title: Acute myeloid leukemia: a comprehensive review and 2016 update publication-title: Blood Cancer doi: 10.1038/bcj.2016.50 – volume: 35 start-page: 934 issue: 9 year: 2017 end-page: 946 ident: CR4 article-title: Genomics of acute myeloid leukemia diagnosis and pathways publication-title: J Clin Oncol doi: 10.1200/JCO.2016.71.2208 – volume: 25 start-page: 1064 issue: 7 year: 2019 end-page: 1072 ident: CR5 article-title: T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant publication-title: Nat Med doi: 10.1038/s41591-019-0472-9 – volume: 18 start-page: 199 issue: 3 year: 2018 end-page: 207 ident: CR13 article-title: Acute myeloid leukemia: diagnosis and management based on current molecular genetics approach publication-title: Cardiovasc Hematol Disord Drug Targets doi: 10.2174/1871529X18666180515130136 – volume: 2019 start-page: 1609128 year: 2019 ident: CR7 article-title: Mutated WT1, FLT3-ITD, and NUP98-NSD1 fusion in various combinations define a poor prognostic group in pediatric acute myeloid leukemia publication-title: J Oncol doi: 10.1155/2019/1609128 – volume: 135 start-page: 179 issue: 2 year: 2017 end-page: 184 ident: CR18 article-title: Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARα and Flt3-ITD mutation: a rare case report publication-title: Sao Paulo Med J. doi: 10.1590/1516-3180.2016.020104102016 – volume: 368 start-page: 2059 issue: 22 year: 2013 end-page: 2074 ident: CR17 article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJMoa1301689 – volume: 41 start-page: 723 issue: 9 year: 2020 end-page: 730 ident: CR20 article-title: Molecular features and prognostic value of RAS mutations in patients with myelodysplastic syndromes publication-title: Zhonghua Xue Ye Xue Za Zhi – volume: 179 start-page: 1661 issue: 7 year: 2019 end-page: 1676 ident: CR8 article-title: Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body publication-title: Cell doi: 10.1016/j.cell.2019.11.013 – volume: 374 start-page: 2209 issue: 23 year: 2016 end-page: 2221 ident: CR19 article-title: Genomic classification and prognosis in acute myeloid leukemia publication-title: N Engl J Med doi: 10.1056/NEJMoa1516192 – volume: 42 start-page: 2016 issue: 5 year: 2019 end-page: 2028 ident: CR11 article-title: WT1 regulates cyclin A1 expression in K562 cells publication-title: Oncol Rep – volume: 24 start-page: 480 issue: 1 year: 2019 end-page: 486 ident: CR10 article-title: Wilms' tumor 1 mRNA expression: a good tool for differentiating between myelodysplastic syndrome and aplastic anemia in children? publication-title: Hematology doi: 10.1080/16078454.2019.1631507 – volume: 36 start-page: 195 issue: 02 year: 2019 end-page: 199 ident: CR16 article-title: Inhibition classification of CYP450 2C9 based on deep belief network publication-title: Sci Rep – volume: 368 start-page: 2059 issue: 22 year: 2013 ident: 4104_CR17 publication-title: N Engl J Med doi: 10.1056/NEJMoa1301689 – volume: 41 start-page: 723 issue: 9 year: 2020 ident: 4104_CR20 publication-title: Zhonghua Xue Ye Xue Za Zhi – volume: 374 start-page: 2209 issue: 23 year: 2016 ident: 4104_CR19 publication-title: N Engl J Med doi: 10.1056/NEJMoa1516192 – volume: 135 start-page: 179 issue: 2 year: 2017 ident: 4104_CR18 publication-title: Sao Paulo Med J. doi: 10.1590/1516-3180.2016.020104102016 – volume: 25 start-page: 1064 issue: 7 year: 2019 ident: 4104_CR5 publication-title: Nat Med doi: 10.1038/s41591-019-0472-9 – volume: 179 start-page: 1661 issue: 7 year: 2019 ident: 4104_CR8 publication-title: Cell doi: 10.1016/j.cell.2019.11.013 – volume: 6 start-page: e441 issue: 7 year: 2016 ident: 4104_CR2 publication-title: Blood Cancer doi: 10.1038/bcj.2016.50 – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 4104_CR9 publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 18 start-page: 199 issue: 3 year: 2018 ident: 4104_CR13 publication-title: Cardiovasc Hematol Disord Drug Targets doi: 10.2174/1871529X18666180515130136 – volume: 9 start-page: 1232 issue: 7 year: 2019 ident: 4104_CR14 publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12652 – volume: 31 start-page: 63 issue: 1 year: 2017 ident: 4104_CR3 publication-title: Blood Rev doi: 10.1016/j.blre.2016.08.005 – volume: 36 start-page: 195 issue: 02 year: 2019 ident: 4104_CR16 publication-title: Sci Rep – volume: 16 start-page: 69 issue: 032 year: 2016 ident: 4104_CR15 publication-title: Sci Rep – volume: 373 start-page: 1136 issue: 12 year: 2015 ident: 4104_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMra1406184 – volume: 7 start-page: 4172 issue: 1 year: 2017 ident: 4104_CR12 publication-title: Sci Rep doi: 10.1038/s41598-017-04075-z – volume: 35 start-page: 934 issue: 9 year: 2017 ident: 4104_CR4 publication-title: J Clin Oncol doi: 10.1200/JCO.2016.71.2208 – volume: 24 start-page: 480 issue: 1 year: 2019 ident: 4104_CR10 publication-title: Hematology doi: 10.1080/16078454.2019.1631507 – volume: 2019 start-page: 1609128 year: 2019 ident: 4104_CR7 publication-title: J Oncol doi: 10.1155/2019/1609128 – volume: 42 start-page: 2016 issue: 5 year: 2019 ident: 4104_CR11 publication-title: Oncol Rep – volume: 48 start-page: 50 issue: 1 year: 2019 ident: 4104_CR6 publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban |
SSID | ssj0004373 |
Score | 2.2887015 |
Snippet | In this study, the deep belief network (DBN) algorithm was used to identify the Wilm’s tumor 1 (WT1) gene expression levels, and then, the role of WT1... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11283 |
SubjectTerms | Abnormalities Algorithms Belief networks Biology Biomedical Image Analysis Using Supercomputing Deep Learning Compilers Computer Science Deep learning Gene expression Interpreters Leukemia Machine learning Markers Molecular biology Processor Architectures Programming Languages |
Title | Deep learning in molecular biology marker recognition of patients with acute myeloid leukemia |
URI | https://link.springer.com/article/10.1007/s11227-021-04104-9 https://www.proquest.com/docview/2666933292 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR27TsMw0IJ2YeGNKJTKAxtYamzn4bGlLRVITFQqA4ps54IqmrTqY-DvsVOnEQiQmCwl5xvufL473wuha6HTlFNFCSgdEQ5cEQk8IhFQJoMQjNIvsi2eguGIP4z9sSsKW5bZ7mVIsripq2I3j9KQ2JSCNjdOBBG7qO5b392c4hHtVNWQbBNXFsYxinxOXanMzzi-qqPKxvwWFi20zeAQ7TszEXc2fD1CO5Afo4NyBAN2EnmCXnsAc-xGP7zhSY6zct4tdv2VcGYzcBZ4myo0y_Esxa6h6hLbl1gstcGLsw-YziaJwbd-h2wiT9Fo0H--GxI3MYFoI0orEiWpDyrkwku08rnyEi7DUESBF2hu3ztVAMx8Bm0MvbYvIU1SnQCTKW-DWdgZquWzHM4RDnymEgsaKcFpGKg2l0xq2yDOkC4VDeSVhIu1aydup1pM46oRsiV2bIgdF8SOzZ6b7Z75ppnGn9DNkh-xE6xlbOyJQDBGBW2g25JH1e_fsV38D_wS7VFb6FC8tzRRbbVYw5UxP1aqheqdbq87sOv9y2O_VZy-T9My1CQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzEYkAM3iLQm6SPHCZgGjJ02aRdUJamLJtZu2uPAvyfp0lUgQOJUqXV8sOPacezPCF0LnaacKkpA6Yhw4IpI4BGJgDIZhGCcflFt0Qs6A_409IeuKWxeVruXV5LFn7pqdvMoDYktKWhyc4ggYhNtmWAgsoVcA9qquiHZ6l5ZmINR5HPqWmV-5vHVHVUx5rdr0cLbtPfRrgsTcWul1wO0Afkh2itHMGBnkUfo9R5git3ohzc8ynFWzrvFDl8JZ7YCZ4bXpUKTHE9S7ABV59hmYrHUhi_OPmA8GSWG3_IdspE8RoP2Q_-uQ9zEBKKNKS1IlKQ-qJALL9HK58pLuAxDEQVeoLnNd6oAmHkN2gR6TV9CmqQ6ASZT3gTzYCeolk9yOEU48JlKLGmkBKdhoJpcMqktQJwRXSrqyCsFF2sHJ26nWozjCgjZCjs2wo4LYcdmzc16zXQFpvEndaPUR-wMax6beCIQjFFB6-i21FH1-XduZ_8jv0Lbnf5LN-4-9p7P0Q61TQ9F7qWBaovZEi5MKLJQl8XO-wStmtQR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN-KNBzawaGzn4REBFS8hBip1QZHtnFFFk1alHfj32InTAAIkpkjJ-YY7O3e-x3cIHQttDKeKElA6IRy4IhJ4QhKgTEYxWKNfVls8RNddftsLe5-6-Mtq9zolWfU0OJSmYnI2ysxZ0_gWUBoTV17Q5vZCQcQ8WrC_48Dt6y49bzojWZVjFvaSlISc-raZn3l8NU2Nv_ktRVpans4qWvYuIz6vdLyG5qBYRyv1OAbsT-cGer4EGGE_BuIF9wuc17NvscdawrmrxhnjWdnQsMBDgz246ht2UVksteWL83cYDPuZ5Td9hbwvN1G3c_V0cU389ASirRwmJMlMCCrmIsi0CrkKMi7jWCRREGnuYp8qAmZfg7ZOXzuUYDKjM2DS8DbYB9tCrWJYwDbCUchU5kgTJTiNI9XmkkntwOKs6IzYQUEtuFR7aHE34WKQNqDITtipFXZaCju1a05ma0YVsMaf1Pu1PlJ_yN5S61tEgjEq6A46rXXUfP6d2-7_yI_Q4uNlJ72_ebjbQ0vU9T-UYZh91JqMp3BgvZKJOiw33gcbmNhN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+molecular+biology+marker+recognition+of+patients+with+acute+myeloid+leukemia&rft.jtitle=The+Journal+of+supercomputing&rft.au=Chen+Lieguang&rft.au=Lu%2C+Ying&rft.au=Pei+Renzhi&rft.au=Zhang+Pisheng&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=9&rft.spage=11283&rft.epage=11297&rft_id=info:doi/10.1007%2Fs11227-021-04104-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |