Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation

Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin on solubility and dissolution rat...

Full description

Saved in:
Bibliographic Details
Published inJournal of inclusion phenomena and macrocyclic chemistry Vol. 96; no. 3-4; pp. 333 - 351
Main Authors Sadaquat, Hadia, Akhtar, Muhammad
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1388-3127
1573-1111
DOI10.1007/s10847-020-00977-0

Cover

Loading…
Abstract Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance ( 1 H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin as confirmed by FTIR. 1 H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether 7 β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether 7 β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1.
AbstractList Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin as confirmed by FTIR. 1H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether7 β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether7 β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1.
Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance ( 1 H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin as confirmed by FTIR. 1 H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether 7 β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether 7 β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1.
Author Akhtar, Muhammad
Sadaquat, Hadia
Author_xml – sequence: 1
  givenname: Hadia
  surname: Sadaquat
  fullname: Sadaquat, Hadia
  organization: Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0003-1759-8224
  surname: Akhtar
  fullname: Akhtar, Muhammad
  email: muhammad.akhtar@iub.edu.pk
  organization: Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur
BookMark eNp9UdFKXDEQDWUFXesP-BToa1MnyfUm97FdrBYEhepziMlczXK92SZZ2f2Y_oQf0m9qdrcgbMF5mWHOOTMHzpRMxjgiIaccvnAAdZY56EYxEMAAOlWnD-SInyvJeK1JnaXWTHKhDsk05zmAaEUjj8jvWXxe2GRLeEGKfY-uZBp7-ueVubUbosdVSWH8TK9u2d6O2tHTn98u1H9AHGl5QprjsHwIQyjrLdWHvNmUUOH6wUeHxa5woC_B0jC6YZk3kKuGBlzZDe8jOejtkPHkXz8m998v7mZX7Prm8sfs6zVzkneFaYd92z5o5bjn0irUWtpeeFBWCiVQc9VxKzqhmsZ70SgNqu2shXOOEpyXx-TT7u4ixV9LzMXM4zKN9aURUkOrWtWIytI7lksx54S9caFsfZZkw2A4mE0YZheGqWGYbRgGqlTsSRcpPNu0fl8kd6JcyeMjpjdX76j-AkTfo0U
CitedBy_id crossref_primary_10_3390_molecules27165077
crossref_primary_10_1016_j_ijbiomac_2024_130623
crossref_primary_10_1021_acsomega_3c09098
crossref_primary_10_1016_j_surfin_2025_105749
crossref_primary_10_1016_j_carbpol_2022_120347
crossref_primary_10_1039_D3CE01047C
crossref_primary_10_1007_s40005_024_00712_8
crossref_primary_10_1016_j_foodhyd_2024_110065
crossref_primary_10_1002_app_56953
crossref_primary_10_1016_j_matlet_2022_133592
crossref_primary_10_1016_j_hazadv_2023_100300
crossref_primary_10_1016_j_matchemphys_2023_127762
crossref_primary_10_1016_j_molstruc_2022_134168
crossref_primary_10_1016_j_molliq_2023_123348
crossref_primary_10_1016_j_ijpharm_2025_125296
crossref_primary_10_3390_molecules26237227
crossref_primary_10_4274_tjh_galenos_2021_2021_0607
crossref_primary_10_1016_j_molliq_2020_113936
crossref_primary_10_3390_foods12071484
crossref_primary_10_1016_j_carpta_2025_100767
crossref_primary_10_1016_j_jwpe_2024_105777
crossref_primary_10_1016_j_molliq_2024_124458
crossref_primary_10_1016_j_pharma_2024_02_003
crossref_primary_10_3390_ijms22094783
crossref_primary_10_1007_s13233_023_00234_6
crossref_primary_10_1016_j_saa_2021_119579
crossref_primary_10_1016_j_envpol_2021_118002
crossref_primary_10_2174_0113816128266398231027100119
crossref_primary_10_3390_nano13202805
crossref_primary_10_1016_j_foodhyd_2024_109749
crossref_primary_10_1016_j_molliq_2021_118002
crossref_primary_10_1186_s41120_023_00083_8
crossref_primary_10_2147_IJN_S405964
crossref_primary_10_1007_s13346_023_01440_6
crossref_primary_10_1016_j_carbpol_2021_118889
crossref_primary_10_1038_s41598_025_88259_y
crossref_primary_10_1007_s11011_023_01320_5
crossref_primary_10_1002_adsu_202300164
crossref_primary_10_1016_j_jece_2023_111625
crossref_primary_10_1016_j_molstruc_2024_138972
crossref_primary_10_2147_IJN_S488507
crossref_primary_10_1016_j_ijpharm_2021_120363
crossref_primary_10_1080_10837450_2022_2037635
crossref_primary_10_3390_polym13111759
crossref_primary_10_1039_D2RA05822G
crossref_primary_10_1016_j_carres_2021_108256
crossref_primary_10_1007_s10847_024_01265_x
crossref_primary_10_1016_j_indcrop_2023_117626
crossref_primary_10_13005_bpj_2410
crossref_primary_10_1039_D3NJ03819J
crossref_primary_10_3390_polym17030402
crossref_primary_10_1016_j_jddst_2021_102940
Cites_doi 10.1016/j.colsurfb.2014.02.026
10.1208/s12249-009-9206-5
10.1016/j.ijpharm.2016.05.002
10.1016/j.jconrel.2012.08.005
10.1016/j.ejpb.2008.06.024
10.1002/jbm.b.33581
10.1016/S0731-7085(02)00421-1
10.4103/0975-1483.83759
10.1016/j.foodchem.2006.01.053
10.1016/j.foodchem.2015.10.023
10.2174/156720109789000519
10.1155/2015/198268
10.1007/s10847-018-0808-y
10.1016/S0378-5173(03)00265-5
10.1016/j.ejps.2009.09.010
10.1208/s12249-013-0023-5
10.1016/j.bbamem.2009.08.015
10.1016/j.colsurfb.2013.11.025
10.3390/ijms140713022
10.1016/j.jpba.2008.02.006
10.1016/j.foodchem.2013.12.067
10.2147/IJN.S46921
10.1016/S0928-0987(02)00107-0
10.1016/j.carbpol.2014.07.042
10.1016/j.ijpharm.2011.05.056
10.3109/03639045.2012.694588
10.1016/j.ejps.2015.05.024
10.1007/s10847-010-9872-7
10.2174/138945011614151119125541
10.3390/molecules16064482
10.1016/S0731-7085(03)00529-6
10.1007/s10847-008-9435-3
10.1007/s00216-017-0590-5
10.1016/j.ijbiomac.2016.03.064
10.1016/j.jconrel.2009.08.015
10.1016/j.ijpharm.2007.08.038
10.1021/js970233x
10.1016/S0939-6411(98)00033-2
ContentType Journal Article
Copyright Springer Nature B.V. 2020
2020© Springer Nature B.V. 2020
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: 2020© Springer Nature B.V. 2020
DBID AAYXX
CITATION
DOI 10.1007/s10847-020-00977-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1573-1111
EndPage 351
ExternalDocumentID 10_1007_s10847_020_00977_0
GrantInformation_xml – fundername: Higher Education Commission, Pakistan
  grantid: 315-9982-2MD3-029
  funderid: http://dx.doi.org/10.13039/501100004681
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z86
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z91
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-8cef66b87c1d13a7e883af2d07a3272e81791a292744dd24780769aa051e30cd3
IEDL.DBID U2A
ISSN 1388-3127
IngestDate Fri Jul 25 11:03:06 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 02:19:24 EDT 2025
Fri Feb 21 02:36:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Docetaxel
Solubility
Sulfobutyl ether
Hydroxypropyl-β-cyclodextrin
β-cyclodextrin
Dissolution
Inclusion complex
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8cef66b87c1d13a7e883af2d07a3272e81791a292744dd24780769aa051e30cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1759-8224
PQID 2380676742
PQPubID 2043587
PageCount 19
ParticipantIDs proquest_journals_2380676742
crossref_citationtrail_10_1007_s10847_020_00977_0
crossref_primary_10_1007_s10847_020_00977_0
springer_journals_10_1007_s10847_020_00977_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of inclusion phenomena and macrocyclic chemistry
PublicationTitleAbbrev J Incl Phenom Macrocycl Chem
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ghosh, Biswas, Ghosh (CR10) 2011; 3
Chen, Sha, Jiang, Chen, Ren, Fang (CR7) 2013; 8
Gidwani, Vyas (CR9) 2015; 2015
Iacovino, Rapuano, Caso, Russo, Lavorgna, Russo, Isidori, Russo, Malgieri, Isernia (CR22) 2013; 14
Le-Deygen, Skuredina, Uporov, Kudryashova (CR35) 2017; 409
Patel, Sawant (CR8) 2009; 6
Mura, Maestrelli, Cirri (CR23) 2003; 260
Han, Lee, An, Son, Ko, Lee, Park (CR3) 2016; 104
Zhang, Zhang (CR4) 2013; 8
Spamer, Müller, Wessels, Venter (CR26) 2002; 16
Pralhad, Rajendrakumar (CR33) 2004; 34
Lahiani-Skiba, Bounoure, Fessi, Skiba (CR14) 2011; 69
Song, Yoon, Kim (CR5) 2016; 507
Agüeros, Ruiz-Gatón, Vauthier, Bouchemal, Espuelas, Ponchel (CR21) 2009; 38
Karathanos, Mourtzinos, Yannakopoulou, Andrikopoulos (CR34) 2007; 101
Hirlekar, Kadam (CR29) 2009; 10
Wu, Shen, Fang (CR13) 2013; 39
Mazzaferro, Bouchemal, Skanji, Gueutin, Chacun, Ponchel (CR15) 2012; 162
Williams, Mahaguna, Sriwongjanya (CR30) 1998; 46
Aleem, Kuchekar, Pore, Late (CR36) 2008; 47
Yin, Cui, Mu, Choi, Kim, Chung, Shim, Kim (CR6) 2009; 140
Pires, dos Santos, Augusto, Sinisterra (CR16) 2011; 16
Jiang, Jiang, Law, Chen, Gu, Zhang (CR20) 2011; 415
Venuti, Cannavà, Cristiano, Fresta, Majolino, Paolino, Ventura (CR24) 2014; 115
Bettinetti, Sorrenti, Rossi, Ferrari, Mura, Faucci (CR32) 2002; 30
Beig, Agbaria, Dahan (CR38) 2015; 77
Rachmawati, Edityaningrum, Mauludin (CR31) 2013; 14
Ferrati, Nicolov, Bansal, Hosali, Landis, Grattoni (CR1) 2015; 16
Karande, Mitragotri (CR17) 2009; 1788
Raza, Kumar, Misra, Kaushik, Guru, Kumar, Katare (CR2) 2016; 88
Mangolim, Moriwaki, Nogueira, Sato, Baesso, Neto, Matioli (CR11) 2014; 153
Hsu, Tsai, Tsai (CR18) 2014; 114
Badr-Eldin, Elkheshen, Ghorab (CR27) 2008; 70
Kulhari, Pooja, Shrivastava, Naidu, Sistla (CR40) 2014; 117
Kulhari, Pooja, Shrivastava, Naidu, Sistla (CR25) 2014; 117
Veiga, Díaz, Ahsan (CR28) 1998; 87
Doiphode, Gaikwad, Pore, Kuchekar, Late (CR37) 2008; 62
Paczkowska, Mizera, Lewandowska, Kozak, Miklaszewski, Cielecka-Piontek (CR12) 2018; 91
Fukuda, Miller, Peppas, McGinity (CR19) 2008; 350
Abarca, Rodriguez, Guarda, Galotto, Bruna (CR39) 2016; 196
VT Karathanos (977_CR34) 2007; 101
S Ferrati (977_CR1) 2015; 16
M Agüeros (977_CR21) 2009; 38
A Ghosh (977_CR10) 2011; 3
R Iacovino (977_CR22) 2013; 14
YM Yin (977_CR6) 2009; 140
GP Bettinetti (977_CR32) 2002; 30
P Mura (977_CR23) 2003; 260
SM Badr-Eldin (977_CR27) 2008; 70
H Rachmawati (977_CR31) 2013; 14
L Chen (977_CR7) 2013; 8
CM Hsu (977_CR18) 2014; 114
R Hirlekar (977_CR29) 2009; 10
A Beig (977_CR38) 2015; 77
M Paczkowska (977_CR12) 2018; 91
D Patel (977_CR8) 2009; 6
CS Mangolim (977_CR11) 2014; 153
MA Pires (977_CR16) 2011; 16
P Karande (977_CR17) 2009; 1788
J Wu (977_CR13) 2013; 39
E Spamer (977_CR26) 2002; 16
D Doiphode (977_CR37) 2008; 62
H Kulhari (977_CR40) 2014; 117
L Zhang (977_CR4) 2013; 8
MD Veiga (977_CR28) 1998; 87
O Aleem (977_CR36) 2008; 47
CK Song (977_CR5) 2016; 507
T Pralhad (977_CR33) 2004; 34
M Fukuda (977_CR19) 2008; 350
H Kulhari (977_CR25) 2014; 117
S Mazzaferro (977_CR15) 2012; 162
V Venuti (977_CR24) 2014; 115
RL Abarca (977_CR39) 2016; 196
B Gidwani (977_CR9) 2015; 2015
K Raza (977_CR2) 2016; 88
HS Han (977_CR3) 2016; 104
Y Jiang (977_CR20) 2011; 415
RO Williams III (977_CR30) 1998; 46
IM Le-Deygen (977_CR35) 2017; 409
M Lahiani-Skiba (977_CR14) 2011; 69
References_xml – volume: 117
  start-page: 166
  year: 2014
  end-page: 173
  ident: CR25
  article-title: Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel
  publication-title: Colloids Surface B.
  doi: 10.1016/j.colsurfb.2014.02.026
– volume: 10
  start-page: 276
  year: 2009
  end-page: 281
  ident: CR29
  article-title: Preformulation study of the inclusion complex irbesartan-β-cyclodextrin
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-009-9206-5
– volume: 507
  start-page: 102
  year: 2016
  end-page: 108
  ident: CR5
  article-title: Poloxamer-based solid dispersions for oral delivery of docetaxel: differential effects of F68 and P85 on oral docetaxel bioavailability
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.05.002
– volume: 162
  start-page: 568
  year: 2012
  end-page: 574
  ident: CR15
  article-title: Intestinal permeation enhancement of docetaxel encapsulated into methyl-β-cyclodextrin/poly (isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan
  publication-title: J. Control. Release.
  doi: 10.1016/j.jconrel.2012.08.005
– volume: 70
  start-page: 819
  issue: 3
  year: 2008
  end-page: 827
  ident: CR27
  article-title: Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in-vitro evaluation
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2008.06.024
– volume: 104
  start-page: 789
  issue: 4
  year: 2016
  end-page: 796
  ident: CR3
  article-title: A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy
  publication-title: J. Biomed. Mater. Res. B
  doi: 10.1002/jbm.b.33581
– volume: 30
  start-page: 1173
  year: 2002
  end-page: 1179
  ident: CR32
  article-title: Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(02)00421-1
– volume: 3
  start-page: 205
  year: 2011
  end-page: 210
  ident: CR10
  article-title: Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes
  publication-title: J. Young Pharm.
  doi: 10.4103/0975-1483.83759
– volume: 101
  start-page: 652
  year: 2007
  end-page: 658
  ident: CR34
  article-title: Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.01.053
– volume: 117
  start-page: 166
  year: 2014
  end-page: 173
  ident: CR40
  article-title: Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel
  publication-title: Colloids Surf. B.
  doi: 10.1016/j.colsurfb.2014.02.026
– volume: 196
  start-page: 968
  year: 2016
  end-page: 975
  ident: CR39
  article-title: Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.10.023
– volume: 6
  start-page: 419
  year: 2009
  end-page: 424
  ident: CR8
  article-title: Self micro-emulsifying drug delivery system: formulation development and biopharmaceutical evaluation of lipophilic drugs
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/156720109789000519
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR9
  article-title: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/198268
– volume: 91
  start-page: 149
  year: 2018
  end-page: 159
  ident: CR12
  article-title: Effects of inclusion of cetirizine hydrochloride in β-cyclodextrin
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-018-0808-y
– volume: 260
  start-page: 293
  year: 2003
  end-page: 302
  ident: CR23
  article-title: Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(03)00265-5
– volume: 38
  start-page: 405
  year: 2009
  end-page: 413
  ident: CR21
  article-title: Combined hydroxypropyl-β-cyclodextrin and poly (anhydride) nanoparticles improve the oral permeability of paclitaxel
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2009.09.010
– volume: 14
  start-page: 1303
  year: 2013
  end-page: 1312
  ident: CR31
  article-title: Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-013-0023-5
– volume: 1788
  start-page: 2362
  year: 2009
  end-page: 2373
  ident: CR17
  article-title: Enhancement of transdermal drug delivery via synergistic action of chemicals
  publication-title: Biochim Biophys Acta Biomembr.
  doi: 10.1016/j.bbamem.2009.08.015
– volume: 115
  start-page: 22
  year: 2014
  end-page: 28
  ident: CR24
  article-title: A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity
  publication-title: Colloids Surface B.
  doi: 10.1016/j.colsurfb.2013.11.025
– volume: 14
  start-page: 13022
  year: 2013
  end-page: 13041
  ident: CR22
  article-title: β-Cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: characterization and bioactivity evaluation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140713022
– volume: 47
  start-page: 535
  year: 2008
  end-page: 540
  ident: CR36
  article-title: Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2008.02.006
– volume: 153
  start-page: 361
  year: 2014
  end-page: 370
  ident: CR11
  article-title: Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.12.067
– volume: 8
  start-page: 2927
  year: 2013
  ident: CR4
  article-title: How nanotechnology can enhance docetaxel therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S46921
– volume: 16
  start-page: 247
  year: 2002
  end-page: 253
  ident: CR26
  article-title: Characterization of the complexes of furosemide with 2-hydroxypropyl-β-cyclodextrin and sulfobutyl ether-7-β-cyclodextrin
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(02)00107-0
– volume: 114
  start-page: 115
  year: 2014
  end-page: 122
  ident: CR18
  article-title: Inhibitory effect of Angelica sinensis extract in the presence of 2-hydroxypropyl-β-cyclodextrin
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.07.042
– volume: 415
  start-page: 252
  year: 2011
  end-page: 258
  ident: CR20
  article-title: Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.05.056
– volume: 39
  start-page: 1010
  year: 2013
  end-page: 1019
  ident: CR13
  article-title: Sulfobutylether-β-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2012.694588
– volume: 77
  start-page: 73
  year: 2015
  end-page: 78
  ident: CR38
  article-title: The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HP-β-CD and the solubility–permeability interplay
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2015.05.024
– volume: 69
  start-page: 481
  year: 2011
  end-page: 485
  ident: CR14
  article-title: Effect of cyclodextrins on lonidamine release and in-vitro cytotoxicity
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-010-9872-7
– volume: 16
  start-page: 1645
  year: 2015
  end-page: 1649
  ident: CR1
  article-title: Docetaxel/2-hydroxypropyl β-cyclodextrin inclusion complex increases docetaxel solubility and release from a nanochannel drug delivery system
  publication-title: Curr. Drug Target.
  doi: 10.2174/138945011614151119125541
– volume: 16
  start-page: 4482
  year: 2011
  end-page: 4499
  ident: CR16
  article-title: Pharmaceutical composition of hydrochlorothiazide: β-cyclo-dextrin: preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation
  publication-title: Molecules
  doi: 10.3390/molecules16064482
– volume: 8
  start-page: 73
  year: 2013
  end-page: 84
  ident: CR7
  article-title: Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation
  publication-title: Int. J. Nanomed.
– volume: 34
  start-page: 333
  year: 2004
  end-page: 339
  ident: CR33
  article-title: Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(03)00529-6
– volume: 62
  start-page: 43
  year: 2008
  end-page: 50
  ident: CR37
  article-title: Effect of β-cyclodextrin complexation on physicochemical properties of zaleplon
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-008-9435-3
– volume: 409
  start-page: 6451
  year: 2017
  end-page: 6462
  ident: CR35
  article-title: Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0590-5
– volume: 88
  start-page: 206
  year: 2016
  end-page: 212
  ident: CR2
  article-title: Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.03.064
– volume: 140
  start-page: 86
  year: 2009
  end-page: 94
  ident: CR6
  article-title: Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation
  publication-title: J. Control Release.
  doi: 10.1016/j.jconrel.2009.08.015
– volume: 350
  start-page: 188
  year: 2008
  end-page: 196
  ident: CR19
  article-title: Influence of sulfobutyl ether β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.08.038
– volume: 87
  start-page: 891
  year: 1998
  end-page: 900
  ident: CR28
  article-title: Interactions of griseofulvin with cyclodextrins in solid binary systems
  publication-title: J. Pharm. Sci.
  doi: 10.1021/js970233x
– volume: 46
  start-page: 355
  year: 1998
  end-page: 360
  ident: CR30
  article-title: Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(98)00033-2
– volume: 104
  start-page: 789
  issue: 4
  year: 2016
  ident: 977_CR3
  publication-title: J. Biomed. Mater. Res. B
  doi: 10.1002/jbm.b.33581
– volume: 415
  start-page: 252
  year: 2011
  ident: 977_CR20
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.05.056
– volume: 69
  start-page: 481
  year: 2011
  ident: 977_CR14
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-010-9872-7
– volume: 6
  start-page: 419
  year: 2009
  ident: 977_CR8
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/156720109789000519
– volume: 16
  start-page: 4482
  year: 2011
  ident: 977_CR16
  publication-title: Molecules
  doi: 10.3390/molecules16064482
– volume: 8
  start-page: 73
  year: 2013
  ident: 977_CR7
  publication-title: Int. J. Nanomed.
– volume: 101
  start-page: 652
  year: 2007
  ident: 977_CR34
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.01.053
– volume: 140
  start-page: 86
  year: 2009
  ident: 977_CR6
  publication-title: J. Control Release.
  doi: 10.1016/j.jconrel.2009.08.015
– volume: 409
  start-page: 6451
  year: 2017
  ident: 977_CR35
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0590-5
– volume: 34
  start-page: 333
  year: 2004
  ident: 977_CR33
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(03)00529-6
– volume: 87
  start-page: 891
  year: 1998
  ident: 977_CR28
  publication-title: J. Pharm. Sci.
  doi: 10.1021/js970233x
– volume: 91
  start-page: 149
  year: 2018
  ident: 977_CR12
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-018-0808-y
– volume: 16
  start-page: 247
  year: 2002
  ident: 977_CR26
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(02)00107-0
– volume: 10
  start-page: 276
  year: 2009
  ident: 977_CR29
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-009-9206-5
– volume: 30
  start-page: 1173
  year: 2002
  ident: 977_CR32
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(02)00421-1
– volume: 70
  start-page: 819
  issue: 3
  year: 2008
  ident: 977_CR27
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2008.06.024
– volume: 196
  start-page: 968
  year: 2016
  ident: 977_CR39
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.10.023
– volume: 114
  start-page: 115
  year: 2014
  ident: 977_CR18
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.07.042
– volume: 14
  start-page: 1303
  year: 2013
  ident: 977_CR31
  publication-title: AAPS PharmSciTech.
  doi: 10.1208/s12249-013-0023-5
– volume: 62
  start-page: 43
  year: 2008
  ident: 977_CR37
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-008-9435-3
– volume: 46
  start-page: 355
  year: 1998
  ident: 977_CR30
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(98)00033-2
– volume: 117
  start-page: 166
  year: 2014
  ident: 977_CR40
  publication-title: Colloids Surf. B.
  doi: 10.1016/j.colsurfb.2014.02.026
– volume: 162
  start-page: 568
  year: 2012
  ident: 977_CR15
  publication-title: J. Control. Release.
  doi: 10.1016/j.jconrel.2012.08.005
– volume: 14
  start-page: 13022
  year: 2013
  ident: 977_CR22
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140713022
– volume: 117
  start-page: 166
  year: 2014
  ident: 977_CR25
  publication-title: Colloids Surface B.
  doi: 10.1016/j.colsurfb.2014.02.026
– volume: 3
  start-page: 205
  year: 2011
  ident: 977_CR10
  publication-title: J. Young Pharm.
  doi: 10.4103/0975-1483.83759
– volume: 350
  start-page: 188
  year: 2008
  ident: 977_CR19
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.08.038
– volume: 77
  start-page: 73
  year: 2015
  ident: 977_CR38
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2015.05.024
– volume: 38
  start-page: 405
  year: 2009
  ident: 977_CR21
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2009.09.010
– volume: 2015
  start-page: 1
  year: 2015
  ident: 977_CR9
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/198268
– volume: 16
  start-page: 1645
  year: 2015
  ident: 977_CR1
  publication-title: Curr. Drug Target.
  doi: 10.2174/138945011614151119125541
– volume: 88
  start-page: 206
  year: 2016
  ident: 977_CR2
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.03.064
– volume: 507
  start-page: 102
  year: 2016
  ident: 977_CR5
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.05.002
– volume: 39
  start-page: 1010
  year: 2013
  ident: 977_CR13
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2012.694588
– volume: 115
  start-page: 22
  year: 2014
  ident: 977_CR24
  publication-title: Colloids Surface B.
  doi: 10.1016/j.colsurfb.2013.11.025
– volume: 47
  start-page: 535
  year: 2008
  ident: 977_CR36
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2008.02.006
– volume: 153
  start-page: 361
  year: 2014
  ident: 977_CR11
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.12.067
– volume: 1788
  start-page: 2362
  year: 2009
  ident: 977_CR17
  publication-title: Biochim Biophys Acta Biomembr.
  doi: 10.1016/j.bbamem.2009.08.015
– volume: 260
  start-page: 293
  year: 2003
  ident: 977_CR23
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(03)00265-5
– volume: 8
  start-page: 2927
  year: 2013
  ident: 977_CR4
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S46921
SSID ssj0026243
Score 2.4641016
Snippet Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Chemistry
Chemistry and Materials Science
Complexation
Crystallography and Scattering Methods
Cyclodextrins
Differential scanning calorimetry
Dissolution
Evaporation
Food Science
Fourier transforms
Freeze drying
Inclusion complexes
Infrared analysis
Infrared spectroscopy
NMR
Nuclear magnetic resonance
Organic Chemistry
Original Article
Protons
Solubility
Solvents
Thermogravimetric analysis
X-ray diffraction
Title Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation
URI https://link.springer.com/article/10.1007/s10847-020-00977-0
https://www.proquest.com/docview/2380676742
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSsMwFA66XeiN-IvTOXLhnSukadekl9vYHApD0MG8KmmSwmB04jrZHsaX8EF8JnOydtP5A171J2kC_c7JOUnO-YLQZcwU0cIoIA80cXxjEozOKeoIrlhAZCiktGyf_aA38G-GjWGeFDYtot2LLUk7Un9KdjMjqQPTHUg-MHfbqNyAubuR4gFtrqZZAV2G1XscVv4oy1Nlfm7jqzla-5gb26LW2nT30V7uJuLmEtcDtKXTQ7TTLk5nO0Kv7TVtN86DMvAkwe9vjlzIMSSqZ6bpOu7dORvvsEgVvm912LeCSYqNP4hBHG3M7MJWhS37XEChB2UsXibmeoxfRgKPUjmewYobtsHpem6RPkaDbueh3XPyoxYcaXQwc7jUSRDEnElXuZ5gmnNPJFQRJjzKqObAYipoCHyCSlGfccKCUAij0tojUnknqJROUn2KsO8mPPGAATX2fT8hwvUa5tmAIhthHMoKcos_HsmchxyOwxhHawZlQCkyKEUWpYhU0NXqm6clC8eftasFkFGukdPIuCYEyOl8WkH1Atx18e-tnf2v-jnapVa-ILinikrZ80xfGL8li2uo3Oy2Wn24Xj_edmpWbD8A7tLptg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDuWCWEVZfeBGIzlOGjtHqEABSoVEK_UWObYjVYpSRFMEH8NP8CF8E2M3IVAWiVsSO46UN-OZxG-eETpOmCJagAPyQBPHh5AAPqeoI7hiAZGhkNKqffaCaOBfDdvDsihsUrHdqyVJO1N_KnaDmdQxnzum-ACOFtEyJAPcELkG9PTjMyugM1o9tMAMQ1lZKvPzGF_DUZ1jzi2L2mhzsYZWyzQRn85wXUcLOt9AjU61O9smeunUst24JGXgcYrfXh35LDNTqF7A0C0c3Tpz17DIFb47O2ffGsY5hnwQG3O0nNln29Us2ZcGap6gIOIV4kln-HEk8CiX2dT8ccOWnK6fLNJbaHBx3u9ETrnVgiPBBwuHS50GQcKZdJXrCaY590RKFWHCo4xqblRMBQ2NnqBS1GecsCAUAlxae0Qqbxst5eNc7yDsuylPPaOAmvi-nxLhem04B1BkO0xC2URu9cZjWeqQm-0wsrhWUDYoxYBSbFGKSROdfNxzP1Ph-LP3fgVkXHrkJAZDIUaczqdN1KrArZt_H233f92PUCPq33Tj7mXveg-tUGtrhuizj5aKh6k-gBymSA6tyb4DdK3pmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QX0RrzivefBNy9K0a9LHOTfmhTHQwd5KmqQwKJ1oFf0x_gl_iL_JnLR1Oi_gW9ukCeQ7J-ckOecLQkcxU0QLo4A80MTxjUkwOqeoI7hiAZGhkNKyffaD3tC_GDVHn7L4bbR7dSRZ5DQAS1OWN25V0viU-GZmVQeWPpCIYJ7m0YKZjl2Q6yFtfSy5AlqE2HscdgEpK9Nmfm7jq2ma-pszR6TW8nRX0UrpMuJWgfEamtPZOlpqVze1baCX9pTCG5cBGniS4LdXRz7LFJLWc9P0Ce4NnJlvWGQKX5922LeCSYaNb4hBNG387LOtCsf3pbBCD8pYv1w86RQ_jgUeZzJ9gN03bAPV9ZNFfRMNu52bds8pr11wpBnA3OFSJ0EQcyZd5XqCac49kVBFmPAoo5oDo6mgIXALKkV9xgkLQiGMemuPSOVtoVo2yfQ2wr6b8MQDNtTY9_2ECNdrmncDimyGcSjryK1GPJIlJzlcjZFGUzZlQCkyKEUWpYjU0fHHP7cFI8eftfcqIKNSO-8j46YQIKrzaR2dVOBOi39vbed_1Q_R4uCsG12d9y930TK1ogYxP3uolt896H3jzuTxgZXYd86_7dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+effects+of+%CE%B2-cyclodextrin%2C+HP-%CE%B2-cyclodextrin+and+SBE7-%CE%B2-cyclodextrin+on+the+solubility+and+dissolution+of+docetaxel+via+inclusion+complexation&rft.jtitle=Journal+of+inclusion+phenomena+and+macrocyclic+chemistry&rft.au=Sadaquat%2C+Hadia&rft.au=Akhtar%2C+Muhammad&rft.date=2020-04-01&rft.issn=1388-3127&rft.eissn=1573-1111&rft.volume=96&rft.issue=3-4&rft.spage=333&rft.epage=351&rft_id=info:doi/10.1007%2Fs10847-020-00977-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10847_020_00977_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-3127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-3127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-3127&client=summon