Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation
Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin on solubility and dissolution rat...
Saved in:
| Published in | Journal of inclusion phenomena and macrocyclic chemistry Vol. 96; no. 3-4; pp. 333 - 351 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.04.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1388-3127 1573-1111 |
| DOI | 10.1007/s10847-020-00977-0 |
Cover
Loading…
| Abstract | Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether
7
β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether
7
β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (
1
H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether
7
β-cyclodextrin as confirmed by FTIR.
1
H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether
7
β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether
7
β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1. |
|---|---|
| AbstractList | Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether7 β-cyclodextrin as confirmed by FTIR. 1H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether7 β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether7 β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1. Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to investigate the effect of β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin on solubility and dissolution rate of docetaxel. Four different methods (physical mixture, kneading, freeze drying and solvent evaporation) were employed for inclusion complexation, at varying drug to cyclodextrin ratios 1:1, 1:2 and 1:4. The inclusion complexes of docetaxel with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin at molar ratios 1:1 were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and proton nuclear magnetic resonance ( 1 H NMR). The dissolution profiles of inclusion complexes were compared with pure drug. The results revealed formation of inclusion complexes between drug and β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutyl ether 7 β-cyclodextrin as confirmed by FTIR. 1 H NMR revealed inclusion of drug within cyclodextrin cavity with appearance of proton shifts. Drug crystallinity was reduced with physical mixing and kneading method while amorphous form was attained by freeze drying and solvent evaporation method as revealed by XRD. The DSC and TGA confirmed the formation of inclusion complexes with the absence of melting peak of drug. The effect on solubility and dissolution rate of docetaxel was greater with sulfobutyl ether 7 β-cyclodextrin than hydroxypropyl-β-cyclodextrin and β-cyclodextrin when prepared with similar methods. Drug to cyclodextrin ratio 1:1 was the optimum ratio to increase the solubility and dissolution of docetaxel irrespective of the method. It is concluded that sulfobutyl ether 7 β-cyclodextrin had greater effect on solubility and dissolution rate of docetaxel than β-cyclodextrin and hydroxypropyl-β-cyclodextrin at molar ratios 1:1. |
| Author | Akhtar, Muhammad Sadaquat, Hadia |
| Author_xml | – sequence: 1 givenname: Hadia surname: Sadaquat fullname: Sadaquat, Hadia organization: Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur – sequence: 2 givenname: Muhammad orcidid: 0000-0003-1759-8224 surname: Akhtar fullname: Akhtar, Muhammad email: muhammad.akhtar@iub.edu.pk organization: Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur |
| BookMark | eNp9UdFKXDEQDWUFXesP-BToa1MnyfUm97FdrBYEhepziMlczXK92SZZ2f2Y_oQf0m9qdrcgbMF5mWHOOTMHzpRMxjgiIaccvnAAdZY56EYxEMAAOlWnD-SInyvJeK1JnaXWTHKhDsk05zmAaEUjj8jvWXxe2GRLeEGKfY-uZBp7-ueVubUbosdVSWH8TK9u2d6O2tHTn98u1H9AHGl5QprjsHwIQyjrLdWHvNmUUOH6wUeHxa5woC_B0jC6YZk3kKuGBlzZDe8jOejtkPHkXz8m998v7mZX7Prm8sfs6zVzkneFaYd92z5o5bjn0irUWtpeeFBWCiVQc9VxKzqhmsZ70SgNqu2shXOOEpyXx-TT7u4ixV9LzMXM4zKN9aURUkOrWtWIytI7lksx54S9caFsfZZkw2A4mE0YZheGqWGYbRgGqlTsSRcpPNu0fl8kd6JcyeMjpjdX76j-AkTfo0U |
| CitedBy_id | crossref_primary_10_3390_molecules27165077 crossref_primary_10_1016_j_ijbiomac_2024_130623 crossref_primary_10_1021_acsomega_3c09098 crossref_primary_10_1016_j_surfin_2025_105749 crossref_primary_10_1016_j_carbpol_2022_120347 crossref_primary_10_1039_D3CE01047C crossref_primary_10_1007_s40005_024_00712_8 crossref_primary_10_1016_j_foodhyd_2024_110065 crossref_primary_10_1002_app_56953 crossref_primary_10_1016_j_matlet_2022_133592 crossref_primary_10_1016_j_hazadv_2023_100300 crossref_primary_10_1016_j_matchemphys_2023_127762 crossref_primary_10_1016_j_molstruc_2022_134168 crossref_primary_10_1016_j_molliq_2023_123348 crossref_primary_10_1016_j_ijpharm_2025_125296 crossref_primary_10_3390_molecules26237227 crossref_primary_10_4274_tjh_galenos_2021_2021_0607 crossref_primary_10_1016_j_molliq_2020_113936 crossref_primary_10_3390_foods12071484 crossref_primary_10_1016_j_carpta_2025_100767 crossref_primary_10_1016_j_jwpe_2024_105777 crossref_primary_10_1016_j_molliq_2024_124458 crossref_primary_10_1016_j_pharma_2024_02_003 crossref_primary_10_3390_ijms22094783 crossref_primary_10_1007_s13233_023_00234_6 crossref_primary_10_1016_j_saa_2021_119579 crossref_primary_10_1016_j_envpol_2021_118002 crossref_primary_10_2174_0113816128266398231027100119 crossref_primary_10_3390_nano13202805 crossref_primary_10_1016_j_foodhyd_2024_109749 crossref_primary_10_1016_j_molliq_2021_118002 crossref_primary_10_1186_s41120_023_00083_8 crossref_primary_10_2147_IJN_S405964 crossref_primary_10_1007_s13346_023_01440_6 crossref_primary_10_1016_j_carbpol_2021_118889 crossref_primary_10_1038_s41598_025_88259_y crossref_primary_10_1007_s11011_023_01320_5 crossref_primary_10_1002_adsu_202300164 crossref_primary_10_1016_j_jece_2023_111625 crossref_primary_10_1016_j_molstruc_2024_138972 crossref_primary_10_2147_IJN_S488507 crossref_primary_10_1016_j_ijpharm_2021_120363 crossref_primary_10_1080_10837450_2022_2037635 crossref_primary_10_3390_polym13111759 crossref_primary_10_1039_D2RA05822G crossref_primary_10_1016_j_carres_2021_108256 crossref_primary_10_1007_s10847_024_01265_x crossref_primary_10_1016_j_indcrop_2023_117626 crossref_primary_10_13005_bpj_2410 crossref_primary_10_1039_D3NJ03819J crossref_primary_10_3390_polym17030402 crossref_primary_10_1016_j_jddst_2021_102940 |
| Cites_doi | 10.1016/j.colsurfb.2014.02.026 10.1208/s12249-009-9206-5 10.1016/j.ijpharm.2016.05.002 10.1016/j.jconrel.2012.08.005 10.1016/j.ejpb.2008.06.024 10.1002/jbm.b.33581 10.1016/S0731-7085(02)00421-1 10.4103/0975-1483.83759 10.1016/j.foodchem.2006.01.053 10.1016/j.foodchem.2015.10.023 10.2174/156720109789000519 10.1155/2015/198268 10.1007/s10847-018-0808-y 10.1016/S0378-5173(03)00265-5 10.1016/j.ejps.2009.09.010 10.1208/s12249-013-0023-5 10.1016/j.bbamem.2009.08.015 10.1016/j.colsurfb.2013.11.025 10.3390/ijms140713022 10.1016/j.jpba.2008.02.006 10.1016/j.foodchem.2013.12.067 10.2147/IJN.S46921 10.1016/S0928-0987(02)00107-0 10.1016/j.carbpol.2014.07.042 10.1016/j.ijpharm.2011.05.056 10.3109/03639045.2012.694588 10.1016/j.ejps.2015.05.024 10.1007/s10847-010-9872-7 10.2174/138945011614151119125541 10.3390/molecules16064482 10.1016/S0731-7085(03)00529-6 10.1007/s10847-008-9435-3 10.1007/s00216-017-0590-5 10.1016/j.ijbiomac.2016.03.064 10.1016/j.jconrel.2009.08.015 10.1016/j.ijpharm.2007.08.038 10.1021/js970233x 10.1016/S0939-6411(98)00033-2 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2020 2020© Springer Nature B.V. 2020 |
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: 2020© Springer Nature B.V. 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10847-020-00977-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1573-1111 |
| EndPage | 351 |
| ExternalDocumentID | 10_1007_s10847_020_00977_0 |
| GrantInformation_xml | – fundername: Higher Education Commission, Pakistan grantid: 315-9982-2MD3-029 funderid: http://dx.doi.org/10.13039/501100004681 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P0- P19 P2P P9N PF0 PT4 PT5 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T16 TEORI TSG TSK TSV TUC U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
| ID | FETCH-LOGICAL-c319t-8cef66b87c1d13a7e883af2d07a3272e81791a292744dd24780769aa051e30cd3 |
| IEDL.DBID | U2A |
| ISSN | 1388-3127 |
| IngestDate | Fri Jul 25 11:03:06 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 02:19:24 EDT 2025 Fri Feb 21 02:36:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | Docetaxel Solubility Sulfobutyl ether Hydroxypropyl-β-cyclodextrin β-cyclodextrin Dissolution Inclusion complex |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-8cef66b87c1d13a7e883af2d07a3272e81791a292744dd24780769aa051e30cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1759-8224 |
| PQID | 2380676742 |
| PQPubID | 2043587 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2380676742 crossref_citationtrail_10_1007_s10847_020_00977_0 crossref_primary_10_1007_s10847_020_00977_0 springer_journals_10_1007_s10847_020_00977_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Journal of inclusion phenomena and macrocyclic chemistry |
| PublicationTitleAbbrev | J Incl Phenom Macrocycl Chem |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Ghosh, Biswas, Ghosh (CR10) 2011; 3 Chen, Sha, Jiang, Chen, Ren, Fang (CR7) 2013; 8 Gidwani, Vyas (CR9) 2015; 2015 Iacovino, Rapuano, Caso, Russo, Lavorgna, Russo, Isidori, Russo, Malgieri, Isernia (CR22) 2013; 14 Le-Deygen, Skuredina, Uporov, Kudryashova (CR35) 2017; 409 Patel, Sawant (CR8) 2009; 6 Mura, Maestrelli, Cirri (CR23) 2003; 260 Han, Lee, An, Son, Ko, Lee, Park (CR3) 2016; 104 Zhang, Zhang (CR4) 2013; 8 Spamer, Müller, Wessels, Venter (CR26) 2002; 16 Pralhad, Rajendrakumar (CR33) 2004; 34 Lahiani-Skiba, Bounoure, Fessi, Skiba (CR14) 2011; 69 Song, Yoon, Kim (CR5) 2016; 507 Agüeros, Ruiz-Gatón, Vauthier, Bouchemal, Espuelas, Ponchel (CR21) 2009; 38 Karathanos, Mourtzinos, Yannakopoulou, Andrikopoulos (CR34) 2007; 101 Hirlekar, Kadam (CR29) 2009; 10 Wu, Shen, Fang (CR13) 2013; 39 Mazzaferro, Bouchemal, Skanji, Gueutin, Chacun, Ponchel (CR15) 2012; 162 Williams, Mahaguna, Sriwongjanya (CR30) 1998; 46 Aleem, Kuchekar, Pore, Late (CR36) 2008; 47 Yin, Cui, Mu, Choi, Kim, Chung, Shim, Kim (CR6) 2009; 140 Pires, dos Santos, Augusto, Sinisterra (CR16) 2011; 16 Jiang, Jiang, Law, Chen, Gu, Zhang (CR20) 2011; 415 Venuti, Cannavà, Cristiano, Fresta, Majolino, Paolino, Ventura (CR24) 2014; 115 Bettinetti, Sorrenti, Rossi, Ferrari, Mura, Faucci (CR32) 2002; 30 Beig, Agbaria, Dahan (CR38) 2015; 77 Rachmawati, Edityaningrum, Mauludin (CR31) 2013; 14 Ferrati, Nicolov, Bansal, Hosali, Landis, Grattoni (CR1) 2015; 16 Karande, Mitragotri (CR17) 2009; 1788 Raza, Kumar, Misra, Kaushik, Guru, Kumar, Katare (CR2) 2016; 88 Mangolim, Moriwaki, Nogueira, Sato, Baesso, Neto, Matioli (CR11) 2014; 153 Hsu, Tsai, Tsai (CR18) 2014; 114 Badr-Eldin, Elkheshen, Ghorab (CR27) 2008; 70 Kulhari, Pooja, Shrivastava, Naidu, Sistla (CR40) 2014; 117 Kulhari, Pooja, Shrivastava, Naidu, Sistla (CR25) 2014; 117 Veiga, Díaz, Ahsan (CR28) 1998; 87 Doiphode, Gaikwad, Pore, Kuchekar, Late (CR37) 2008; 62 Paczkowska, Mizera, Lewandowska, Kozak, Miklaszewski, Cielecka-Piontek (CR12) 2018; 91 Fukuda, Miller, Peppas, McGinity (CR19) 2008; 350 Abarca, Rodriguez, Guarda, Galotto, Bruna (CR39) 2016; 196 VT Karathanos (977_CR34) 2007; 101 S Ferrati (977_CR1) 2015; 16 M Agüeros (977_CR21) 2009; 38 A Ghosh (977_CR10) 2011; 3 R Iacovino (977_CR22) 2013; 14 YM Yin (977_CR6) 2009; 140 GP Bettinetti (977_CR32) 2002; 30 P Mura (977_CR23) 2003; 260 SM Badr-Eldin (977_CR27) 2008; 70 H Rachmawati (977_CR31) 2013; 14 L Chen (977_CR7) 2013; 8 CM Hsu (977_CR18) 2014; 114 R Hirlekar (977_CR29) 2009; 10 A Beig (977_CR38) 2015; 77 M Paczkowska (977_CR12) 2018; 91 D Patel (977_CR8) 2009; 6 CS Mangolim (977_CR11) 2014; 153 MA Pires (977_CR16) 2011; 16 P Karande (977_CR17) 2009; 1788 J Wu (977_CR13) 2013; 39 E Spamer (977_CR26) 2002; 16 D Doiphode (977_CR37) 2008; 62 H Kulhari (977_CR40) 2014; 117 L Zhang (977_CR4) 2013; 8 MD Veiga (977_CR28) 1998; 87 O Aleem (977_CR36) 2008; 47 CK Song (977_CR5) 2016; 507 T Pralhad (977_CR33) 2004; 34 M Fukuda (977_CR19) 2008; 350 H Kulhari (977_CR25) 2014; 117 S Mazzaferro (977_CR15) 2012; 162 V Venuti (977_CR24) 2014; 115 RL Abarca (977_CR39) 2016; 196 B Gidwani (977_CR9) 2015; 2015 K Raza (977_CR2) 2016; 88 HS Han (977_CR3) 2016; 104 Y Jiang (977_CR20) 2011; 415 RO Williams III (977_CR30) 1998; 46 IM Le-Deygen (977_CR35) 2017; 409 M Lahiani-Skiba (977_CR14) 2011; 69 |
| References_xml | – volume: 117 start-page: 166 year: 2014 end-page: 173 ident: CR25 article-title: Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel publication-title: Colloids Surface B. doi: 10.1016/j.colsurfb.2014.02.026 – volume: 10 start-page: 276 year: 2009 end-page: 281 ident: CR29 article-title: Preformulation study of the inclusion complex irbesartan-β-cyclodextrin publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-009-9206-5 – volume: 507 start-page: 102 year: 2016 end-page: 108 ident: CR5 article-title: Poloxamer-based solid dispersions for oral delivery of docetaxel: differential effects of F68 and P85 on oral docetaxel bioavailability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.05.002 – volume: 162 start-page: 568 year: 2012 end-page: 574 ident: CR15 article-title: Intestinal permeation enhancement of docetaxel encapsulated into methyl-β-cyclodextrin/poly (isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan publication-title: J. Control. Release. doi: 10.1016/j.jconrel.2012.08.005 – volume: 70 start-page: 819 issue: 3 year: 2008 end-page: 827 ident: CR27 article-title: Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: preparation and in-vitro evaluation publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2008.06.024 – volume: 104 start-page: 789 issue: 4 year: 2016 end-page: 796 ident: CR3 article-title: A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.33581 – volume: 30 start-page: 1173 year: 2002 end-page: 1179 ident: CR32 article-title: Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(02)00421-1 – volume: 3 start-page: 205 year: 2011 end-page: 210 ident: CR10 article-title: Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes publication-title: J. Young Pharm. doi: 10.4103/0975-1483.83759 – volume: 101 start-page: 652 year: 2007 end-page: 658 ident: CR34 article-title: Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.01.053 – volume: 117 start-page: 166 year: 2014 end-page: 173 ident: CR40 article-title: Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2014.02.026 – volume: 196 start-page: 968 year: 2016 end-page: 975 ident: CR39 article-title: Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.10.023 – volume: 6 start-page: 419 year: 2009 end-page: 424 ident: CR8 article-title: Self micro-emulsifying drug delivery system: formulation development and biopharmaceutical evaluation of lipophilic drugs publication-title: Curr. Drug Deliv. doi: 10.2174/156720109789000519 – volume: 2015 start-page: 1 year: 2015 end-page: 15 ident: CR9 article-title: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs publication-title: Biomed. Res. Int. doi: 10.1155/2015/198268 – volume: 91 start-page: 149 year: 2018 end-page: 159 ident: CR12 article-title: Effects of inclusion of cetirizine hydrochloride in β-cyclodextrin publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-018-0808-y – volume: 260 start-page: 293 year: 2003 end-page: 302 ident: CR23 article-title: Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(03)00265-5 – volume: 38 start-page: 405 year: 2009 end-page: 413 ident: CR21 article-title: Combined hydroxypropyl-β-cyclodextrin and poly (anhydride) nanoparticles improve the oral permeability of paclitaxel publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2009.09.010 – volume: 14 start-page: 1303 year: 2013 end-page: 1312 ident: CR31 article-title: Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-013-0023-5 – volume: 1788 start-page: 2362 year: 2009 end-page: 2373 ident: CR17 article-title: Enhancement of transdermal drug delivery via synergistic action of chemicals publication-title: Biochim Biophys Acta Biomembr. doi: 10.1016/j.bbamem.2009.08.015 – volume: 115 start-page: 22 year: 2014 end-page: 28 ident: CR24 article-title: A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity publication-title: Colloids Surface B. doi: 10.1016/j.colsurfb.2013.11.025 – volume: 14 start-page: 13022 year: 2013 end-page: 13041 ident: CR22 article-title: β-Cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: characterization and bioactivity evaluation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140713022 – volume: 47 start-page: 535 year: 2008 end-page: 540 ident: CR36 article-title: Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2008.02.006 – volume: 153 start-page: 361 year: 2014 end-page: 370 ident: CR11 article-title: Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.12.067 – volume: 8 start-page: 2927 year: 2013 ident: CR4 article-title: How nanotechnology can enhance docetaxel therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S46921 – volume: 16 start-page: 247 year: 2002 end-page: 253 ident: CR26 article-title: Characterization of the complexes of furosemide with 2-hydroxypropyl-β-cyclodextrin and sulfobutyl ether-7-β-cyclodextrin publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(02)00107-0 – volume: 114 start-page: 115 year: 2014 end-page: 122 ident: CR18 article-title: Inhibitory effect of Angelica sinensis extract in the presence of 2-hydroxypropyl-β-cyclodextrin publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.07.042 – volume: 415 start-page: 252 year: 2011 end-page: 258 ident: CR20 article-title: Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.056 – volume: 39 start-page: 1010 year: 2013 end-page: 1019 ident: CR13 article-title: Sulfobutylether-β-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2012.694588 – volume: 77 start-page: 73 year: 2015 end-page: 78 ident: CR38 article-title: The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HP-β-CD and the solubility–permeability interplay publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.05.024 – volume: 69 start-page: 481 year: 2011 end-page: 485 ident: CR14 article-title: Effect of cyclodextrins on lonidamine release and in-vitro cytotoxicity publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-010-9872-7 – volume: 16 start-page: 1645 year: 2015 end-page: 1649 ident: CR1 article-title: Docetaxel/2-hydroxypropyl β-cyclodextrin inclusion complex increases docetaxel solubility and release from a nanochannel drug delivery system publication-title: Curr. Drug Target. doi: 10.2174/138945011614151119125541 – volume: 16 start-page: 4482 year: 2011 end-page: 4499 ident: CR16 article-title: Pharmaceutical composition of hydrochlorothiazide: β-cyclo-dextrin: preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation publication-title: Molecules doi: 10.3390/molecules16064482 – volume: 8 start-page: 73 year: 2013 end-page: 84 ident: CR7 article-title: Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation publication-title: Int. J. Nanomed. – volume: 34 start-page: 333 year: 2004 end-page: 339 ident: CR33 article-title: Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(03)00529-6 – volume: 62 start-page: 43 year: 2008 end-page: 50 ident: CR37 article-title: Effect of β-cyclodextrin complexation on physicochemical properties of zaleplon publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-008-9435-3 – volume: 409 start-page: 6451 year: 2017 end-page: 6462 ident: CR35 article-title: Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0590-5 – volume: 88 start-page: 206 year: 2016 end-page: 212 ident: CR2 article-title: Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.03.064 – volume: 140 start-page: 86 year: 2009 end-page: 94 ident: CR6 article-title: Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation publication-title: J. Control Release. doi: 10.1016/j.jconrel.2009.08.015 – volume: 350 start-page: 188 year: 2008 end-page: 196 ident: CR19 article-title: Influence of sulfobutyl ether β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.08.038 – volume: 87 start-page: 891 year: 1998 end-page: 900 ident: CR28 article-title: Interactions of griseofulvin with cyclodextrins in solid binary systems publication-title: J. Pharm. Sci. doi: 10.1021/js970233x – volume: 46 start-page: 355 year: 1998 end-page: 360 ident: CR30 article-title: Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(98)00033-2 – volume: 104 start-page: 789 issue: 4 year: 2016 ident: 977_CR3 publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.33581 – volume: 415 start-page: 252 year: 2011 ident: 977_CR20 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.056 – volume: 69 start-page: 481 year: 2011 ident: 977_CR14 publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-010-9872-7 – volume: 6 start-page: 419 year: 2009 ident: 977_CR8 publication-title: Curr. Drug Deliv. doi: 10.2174/156720109789000519 – volume: 16 start-page: 4482 year: 2011 ident: 977_CR16 publication-title: Molecules doi: 10.3390/molecules16064482 – volume: 8 start-page: 73 year: 2013 ident: 977_CR7 publication-title: Int. J. Nanomed. – volume: 101 start-page: 652 year: 2007 ident: 977_CR34 publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.01.053 – volume: 140 start-page: 86 year: 2009 ident: 977_CR6 publication-title: J. Control Release. doi: 10.1016/j.jconrel.2009.08.015 – volume: 409 start-page: 6451 year: 2017 ident: 977_CR35 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0590-5 – volume: 34 start-page: 333 year: 2004 ident: 977_CR33 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(03)00529-6 – volume: 87 start-page: 891 year: 1998 ident: 977_CR28 publication-title: J. Pharm. Sci. doi: 10.1021/js970233x – volume: 91 start-page: 149 year: 2018 ident: 977_CR12 publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-018-0808-y – volume: 16 start-page: 247 year: 2002 ident: 977_CR26 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(02)00107-0 – volume: 10 start-page: 276 year: 2009 ident: 977_CR29 publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-009-9206-5 – volume: 30 start-page: 1173 year: 2002 ident: 977_CR32 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(02)00421-1 – volume: 70 start-page: 819 issue: 3 year: 2008 ident: 977_CR27 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2008.06.024 – volume: 196 start-page: 968 year: 2016 ident: 977_CR39 publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.10.023 – volume: 114 start-page: 115 year: 2014 ident: 977_CR18 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.07.042 – volume: 14 start-page: 1303 year: 2013 ident: 977_CR31 publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-013-0023-5 – volume: 62 start-page: 43 year: 2008 ident: 977_CR37 publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-008-9435-3 – volume: 46 start-page: 355 year: 1998 ident: 977_CR30 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(98)00033-2 – volume: 117 start-page: 166 year: 2014 ident: 977_CR40 publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2014.02.026 – volume: 162 start-page: 568 year: 2012 ident: 977_CR15 publication-title: J. Control. Release. doi: 10.1016/j.jconrel.2012.08.005 – volume: 14 start-page: 13022 year: 2013 ident: 977_CR22 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140713022 – volume: 117 start-page: 166 year: 2014 ident: 977_CR25 publication-title: Colloids Surface B. doi: 10.1016/j.colsurfb.2014.02.026 – volume: 3 start-page: 205 year: 2011 ident: 977_CR10 publication-title: J. Young Pharm. doi: 10.4103/0975-1483.83759 – volume: 350 start-page: 188 year: 2008 ident: 977_CR19 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.08.038 – volume: 77 start-page: 73 year: 2015 ident: 977_CR38 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.05.024 – volume: 38 start-page: 405 year: 2009 ident: 977_CR21 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2009.09.010 – volume: 2015 start-page: 1 year: 2015 ident: 977_CR9 publication-title: Biomed. Res. Int. doi: 10.1155/2015/198268 – volume: 16 start-page: 1645 year: 2015 ident: 977_CR1 publication-title: Curr. Drug Target. doi: 10.2174/138945011614151119125541 – volume: 88 start-page: 206 year: 2016 ident: 977_CR2 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.03.064 – volume: 507 start-page: 102 year: 2016 ident: 977_CR5 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.05.002 – volume: 39 start-page: 1010 year: 2013 ident: 977_CR13 publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2012.694588 – volume: 115 start-page: 22 year: 2014 ident: 977_CR24 publication-title: Colloids Surface B. doi: 10.1016/j.colsurfb.2013.11.025 – volume: 47 start-page: 535 year: 2008 ident: 977_CR36 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2008.02.006 – volume: 153 start-page: 361 year: 2014 ident: 977_CR11 publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.12.067 – volume: 1788 start-page: 2362 year: 2009 ident: 977_CR17 publication-title: Biochim Biophys Acta Biomembr. doi: 10.1016/j.bbamem.2009.08.015 – volume: 260 start-page: 293 year: 2003 ident: 977_CR23 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(03)00265-5 – volume: 8 start-page: 2927 year: 2013 ident: 977_CR4 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S46921 |
| SSID | ssj0026243 |
| Score | 2.4641016 |
| Snippet | Cyclodextrins possess the ability to increase the apparent solubility and dissolution rate of poorly water soluble drugs. The objectives of the study were to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 333 |
| SubjectTerms | Chemistry Chemistry and Materials Science Complexation Crystallography and Scattering Methods Cyclodextrins Differential scanning calorimetry Dissolution Evaporation Food Science Fourier transforms Freeze drying Inclusion complexes Infrared analysis Infrared spectroscopy NMR Nuclear magnetic resonance Organic Chemistry Original Article Protons Solubility Solvents Thermogravimetric analysis X-ray diffraction |
| Title | Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation |
| URI | https://link.springer.com/article/10.1007/s10847-020-00977-0 https://www.proquest.com/docview/2380676742 |
| Volume | 96 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSsMwFA66XeiN-IvTOXLhnSukadekl9vYHApD0MG8KmmSwmB04jrZHsaX8EF8JnOydtP5A171J2kC_c7JOUnO-YLQZcwU0cIoIA80cXxjEozOKeoIrlhAZCiktGyf_aA38G-GjWGeFDYtot2LLUk7Un9KdjMjqQPTHUg-MHfbqNyAubuR4gFtrqZZAV2G1XscVv4oy1Nlfm7jqzla-5gb26LW2nT30V7uJuLmEtcDtKXTQ7TTLk5nO0Kv7TVtN86DMvAkwe9vjlzIMSSqZ6bpOu7dORvvsEgVvm912LeCSYqNP4hBHG3M7MJWhS37XEChB2UsXibmeoxfRgKPUjmewYobtsHpem6RPkaDbueh3XPyoxYcaXQwc7jUSRDEnElXuZ5gmnNPJFQRJjzKqObAYipoCHyCSlGfccKCUAij0tojUnknqJROUn2KsO8mPPGAATX2fT8hwvUa5tmAIhthHMoKcos_HsmchxyOwxhHawZlQCkyKEUWpYhU0NXqm6clC8eftasFkFGukdPIuCYEyOl8WkH1Atx18e-tnf2v-jnapVa-ILinikrZ80xfGL8li2uo3Oy2Wn24Xj_edmpWbD8A7tLptg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDuWCWEVZfeBGIzlOGjtHqEABSoVEK_UWObYjVYpSRFMEH8NP8CF8E2M3IVAWiVsSO46UN-OZxG-eETpOmCJagAPyQBPHh5AAPqeoI7hiAZGhkNKqffaCaOBfDdvDsihsUrHdqyVJO1N_KnaDmdQxnzum-ACOFtEyJAPcELkG9PTjMyugM1o9tMAMQ1lZKvPzGF_DUZ1jzi2L2mhzsYZWyzQRn85wXUcLOt9AjU61O9smeunUst24JGXgcYrfXh35LDNTqF7A0C0c3Tpz17DIFb47O2ffGsY5hnwQG3O0nNln29Us2ZcGap6gIOIV4kln-HEk8CiX2dT8ccOWnK6fLNJbaHBx3u9ETrnVgiPBBwuHS50GQcKZdJXrCaY590RKFWHCo4xqblRMBQ2NnqBS1GecsCAUAlxae0Qqbxst5eNc7yDsuylPPaOAmvi-nxLhem04B1BkO0xC2URu9cZjWeqQm-0wsrhWUDYoxYBSbFGKSROdfNxzP1Ph-LP3fgVkXHrkJAZDIUaczqdN1KrArZt_H233f92PUCPq33Tj7mXveg-tUGtrhuizj5aKh6k-gBymSA6tyb4DdK3pmQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QX0RrzivefBNy9K0a9LHOTfmhTHQwd5KmqQwKJ1oFf0x_gl_iL_JnLR1Oi_gW9ukCeQ7J-ckOecLQkcxU0QLo4A80MTxjUkwOqeoI7hiAZGhkNKyffaD3tC_GDVHn7L4bbR7dSRZ5DQAS1OWN25V0viU-GZmVQeWPpCIYJ7m0YKZjl2Q6yFtfSy5AlqE2HscdgEpK9Nmfm7jq2ma-pszR6TW8nRX0UrpMuJWgfEamtPZOlpqVze1baCX9pTCG5cBGniS4LdXRz7LFJLWc9P0Ce4NnJlvWGQKX5922LeCSYaNb4hBNG387LOtCsf3pbBCD8pYv1w86RQ_jgUeZzJ9gN03bAPV9ZNFfRMNu52bds8pr11wpBnA3OFSJ0EQcyZd5XqCac49kVBFmPAoo5oDo6mgIXALKkV9xgkLQiGMemuPSOVtoVo2yfQ2wr6b8MQDNtTY9_2ECNdrmncDimyGcSjryK1GPJIlJzlcjZFGUzZlQCkyKEUWpYjU0fHHP7cFI8eftfcqIKNSO-8j46YQIKrzaR2dVOBOi39vbed_1Q_R4uCsG12d9y930TK1ogYxP3uolt896H3jzuTxgZXYd86_7dU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+effects+of+%CE%B2-cyclodextrin%2C+HP-%CE%B2-cyclodextrin+and+SBE7-%CE%B2-cyclodextrin+on+the+solubility+and+dissolution+of+docetaxel+via+inclusion+complexation&rft.jtitle=Journal+of+inclusion+phenomena+and+macrocyclic+chemistry&rft.au=Sadaquat%2C+Hadia&rft.au=Akhtar%2C+Muhammad&rft.date=2020-04-01&rft.issn=1388-3127&rft.eissn=1573-1111&rft.volume=96&rft.issue=3-4&rft.spage=333&rft.epage=351&rft_id=info:doi/10.1007%2Fs10847-020-00977-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10847_020_00977_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-3127&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-3127&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-3127&client=summon |