The Effects of Pseudomagnetic Fields on Plasmon–Phonon Hybridization in Supported Graphene Probed by a Moving Charged Particle

We analyze the effects of the strain-induced pseudomagnetic field on the subthreshold mechanism of hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a nearby substrate. It is shown that the pseudomagnetic field exerts quite strong influence on t...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 16; no. 4; pp. 1089 - 1098
Main Authors Bai, Xiang-Jia, Zhang, Ying-Ying, Mišković, Zoran L., Radović, Ivan, Li, Chun-Zhi, Song, Yuan-Hong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We analyze the effects of the strain-induced pseudomagnetic field on the subthreshold mechanism of hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a nearby substrate. It is shown that the pseudomagnetic field exerts quite strong influence on the oscillatory pattern in the total potential in the plane of graphene, as well as on the stopping and the image forces on a charge, which moves parallel to the graphene at a speed below the Fermi velocity, specially for small graphene–substrate gap sizes. One may conclude that the subthreshold mechanism of the plasmon–phonon hybridization can be controlled by varying the pseudomagnetic field strength and the doping density in graphene.
AbstractList We analyze the effects of the strain-induced pseudomagnetic field on the subthreshold mechanism of hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a nearby substrate. It is shown that the pseudomagnetic field exerts quite strong influence on the oscillatory pattern in the total potential in the plane of graphene, as well as on the stopping and the image forces on a charge, which moves parallel to the graphene at a speed below the Fermi velocity, specially for small graphene–substrate gap sizes. One may conclude that the subthreshold mechanism of the plasmon–phonon hybridization can be controlled by varying the pseudomagnetic field strength and the doping density in graphene.
Author Song, Yuan-Hong
Bai, Xiang-Jia
Li, Chun-Zhi
Mišković, Zoran L.
Radović, Ivan
Zhang, Ying-Ying
Author_xml – sequence: 1
  givenname: Xiang-Jia
  surname: Bai
  fullname: Bai, Xiang-Jia
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology
– sequence: 2
  givenname: Ying-Ying
  orcidid: 0000-0002-6350-4439
  surname: Zhang
  fullname: Zhang, Ying-Ying
  email: yyzhang1231@dlut.edu.cn
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology
– sequence: 3
  givenname: Zoran L.
  surname: Mišković
  fullname: Mišković, Zoran L.
  organization: Department of Applied Mathematics, University of Waterloo, Waterloo Institute for Nanotechnology, University of Waterloo
– sequence: 4
  givenname: Ivan
  surname: Radović
  fullname: Radović, Ivan
  organization: Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
– sequence: 5
  givenname: Chun-Zhi
  surname: Li
  fullname: Li, Chun-Zhi
  organization: College of Physics and Electronic Information, Inner Mongolia University for the Nationalities
– sequence: 6
  givenname: Yuan-Hong
  surname: Song
  fullname: Song, Yuan-Hong
  organization: Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology
BookMark eNp9kEFOwzAQRS1UJGjhAqwssQ7YsRPHS1RBiwQiErC23GTSGqV2sFOksuIO3JCTYBoEEgtWM-P5z9_-YzSyzgJCJ5ScUULEeaCU50VCUpIQynKZsD10SLNMJFTmbPTTZ9kBGofwRAjnPOeH6O1hBfiyaaDqA3YNLgNsarfWSwu9qfCVgbaOC4vLVoe1sx9v7-XKRXc83y68qc2r7k2cjMX3m65zvocaz7zuVmABl94t4rzYYo1v3YuxSzxdab-MZ6X20aCFI7Tf6DbA8XedoMery4fpPLm5m11PL26SilHZJ0UlYFGnuW5oIWqtuRQV4cB1RlIQuhE5cFZTGRecZIKkjMmmSrnMCxlVhE3Q6XBv593zBkKvntzG22ip0owLkhEpv1TFoKq8C8FDoyrT737Ye21aRYn6ylsNeauYt9rlrVhE0z9o581a--3_EBugEMV2Cf73Vf9Qn46DlnM
CitedBy_id crossref_primary_10_1103_PhysRevB_106_115430
crossref_primary_10_3390_nano14231951
crossref_primary_10_3390_s24237665
Cites_doi 10.1016/j.physleta.2011.08.053
10.1088/0957-4484/21/13/134017
10.1103/PhysRevB.80.195405
10.1103/PhysRevB.97.115455
10.1103/PhysRevLett.100.196803
10.1021/nl500948p
10.1021/nl201771h
10.1103/PhysRevB.81.035408
10.1103/PhysRevB.86.125442
10.1140/epjd/e2019-100450-1
10.1016/j.carbon.2015.09.053
10.1038/nnano.2012.59
10.1103/PhysRevB.78.201403
10.1103/PhysRevB.77.075428
10.1103/PhysRevLett.117.196803
10.1038/nnano.2011.146
10.1103/PhysRevB.100.035443
10.1038/nnano.2014.310
10.1103/PhysRevB.77.233406
10.1103/PhysRevB.80.045401
10.1103/PhysRevB.81.081406
10.1038/nphoton.2013.57
10.1063/1.1405826
10.1038/nphys1420
10.1016/j.nimb.2011.10.028
10.1103/RevModPhys.81.109
10.1021/nl202362d
10.1063/1.5039588
10.1007/s11468-015-9993-3
10.1103/PhysRevB.74.201401
10.1103/RevModPhys.83.407
10.1016/j.physleta.2014.11.044
10.1038/s41699-019-0112-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11468-020-01369-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1557-1963
EndPage 1098
ExternalDocumentID 10_1007_s11468_020_01369_3
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT17LK51
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Inner Mongolia Autonomous Region Talent Development Fund
  grantid: 2016-149
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: National Natural Science Foundation of China
  grantid: 11775042
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Aerospace Science Foundation of China (CN)
  grantid: 11675036
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Natural Science Foundation of China (CN)
  grantid: 11705017
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 2016-03689
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-8c7ebd26af187daa497c04e4a502e7af76e43d19a49405702339fc249689e4a03
IEDL.DBID U2A
ISSN 1557-1955
IngestDate Fri Jul 25 20:55:11 EDT 2025
Tue Jul 01 02:01:14 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8c7ebd26af187daa497c04e4a502e7af76e43d19a49405702339fc249689e4a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6350-4439
PQID 2547050990
PQPubID 2044107
PageCount 10
ParticipantIDs proquest_journals_2547050990
crossref_citationtrail_10_1007_s11468_020_01369_3
crossref_primary_10_1007_s11468_020_01369_3
springer_journals_10_1007_s11468_020_01369_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Plasmonics (Norwell, Mass.)
PublicationTitleAbbrev Plasmonics
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Despoja, Radović, Karbunar, Kalinić, Mišković (CR1) 2019; 100
Liu, Willis (CR20) 2010; 81
Zhang, Guo, Zhai, Jiang (CR28) 2011; 97
Pereira, Castro Neto, Peres (CR27) 2009; 80
Radović, Borka, Mišković (CR24) 2011; 375
Marinković, Radović, Borka, Mišković (CR23) 2015; 10
Castro Neto, Guinea, Peres, Novoselov, Geim (CR14) 2009; 81
Guinea, Katsnelson, Geim (CR25) 2010; 6
Khurgin (CR8) 2015; 10
Guinea, Geim, Katsnelson, Novoselov (CR26) 2010; 81
Marinković, Radović, Borka, Mišković (CR22) 2015; 379
Ju, Geng, Horng, Girit, Martin, Hao, Bechtel, Liang, Zettl, Shen, Wang (CR10) 2011; 6
Politano, Radović, Borka, Mišković, Chiarello (CR19) 2016; 96
Allison, Mišković (CR18) 2010; 21
Zhang, Jiang (CR29) 2018; 25
CR2
Yan, Li, Chandra, Tulevski, Wu, Freitag, Zhu, Avouris, Xia (CR9) 2012; 7
Yan, Low, Zhu, Wu, Freitag, Li, Guinea, Avouris, Xia (CR6) 2013; 7
Koppens, Chang, de Abajo (CR12) 2011; 11
Katsnelson (CR33) 2006; 74
Radović, Borka, Mišković (CR3) 2012; 86
Radović, Jovanović, Borka, Mišković (CR4) 2012; 279
Principi, Katsnelson, Vignale (CR7) 2016; 117
Eberlein, Bangert, Nair, Jones, Gass, Bleloch, Novoselov, Geim, Briddon (CR16) 2008; 77
Allison, Borka, Radović, Lj, Mišković (CR32) 2009; 80
Radović, Lj, Mišković (CR31) 2008; 77
He, Zhang, Misković, Radović, Li, Song (CR30) 2020; 74
Liu, Willis, Emtsev, Seyller (CR17) 2008; 78
Kramberger, Hambach, Giorgetti, Rummeli, Knupfer, Fink, Buchner, Reining, Einarsson, Maruyama, Sottile, Hannewald, Olevano, Marinopoulos, Pichler (CR15) 2008; 100
Zhu, Wang, Yan, Larsen, Boggild, Pedersen, Xiao, Zi, Mortensen (CR21) 2014; 14
Fischetti, Neumayer, Cartier (CR11) 2001; 90
Fei, Andreev, Bao, Zhang, McLeod, Wang, Stewart, Zhao, Dominguez, Thiemens, Fogler, Tauber, Castro-Neto, Lau, Keilmann, Basov (CR5) 2011; 11
Das Sarma, Adam, Hwang, Rossi (CR13) 2011; 83
KF Allison (1369_CR32) 2009; 80
I Radović (1369_CR31) 2008; 77
V Despoja (1369_CR1) 2019; 100
Y Zhang (1369_CR28) 2011; 97
MV Fischetti (1369_CR11) 2001; 90
FHL Koppens (1369_CR12) 2011; 11
T Marinković (1369_CR22) 2015; 379
X Zhu (1369_CR21) 2014; 14
I Radović (1369_CR4) 2012; 279
H Yan (1369_CR6) 2013; 7
Y Liu (1369_CR17) 2008; 78
A Politano (1369_CR19) 2016; 96
I Radović (1369_CR3) 2012; 86
L Ju (1369_CR10) 2011; 6
Y Liu (1369_CR20) 2010; 81
Z Fei (1369_CR5) 2011; 11
T Eberlein (1369_CR16) 2008; 77
AH Castro Neto (1369_CR14) 2009; 81
1369_CR2
H Yan (1369_CR9) 2012; 7
MI Katsnelson (1369_CR33) 2006; 74
Y Zhang (1369_CR29) 2018; 25
JB Khurgin (1369_CR8) 2015; 10
C Kramberger (1369_CR15) 2008; 100
F Guinea (1369_CR25) 2010; 6
T Marinković (1369_CR23) 2015; 10
VM Pereira (1369_CR27) 2009; 80
F Guinea (1369_CR26) 2010; 81
S Das Sarma (1369_CR13) 2011; 83
A Principi (1369_CR7) 2016; 117
I Radović (1369_CR24) 2011; 375
KF Allison (1369_CR18) 2010; 21
XL He (1369_CR30) 2020; 74
References_xml – volume: 375
  start-page: 3720
  year: 2011
  end-page: 3725
  ident: CR24
  article-title: Wake effect in doped graphene due to moving external charge
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2011.08.053
– volume: 21
  start-page: 134017
  year: 2010
  ident: CR18
  article-title: Friction force on slow charges moving over supported graphene
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/13/134017
– volume: 80
  start-page: 195405
  year: 2009
  ident: CR32
  article-title: Dynamic polarization of graphene by moving external charges: Random phase approximation
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.80.195405
– volume: 97
  start-page: 115455
  year: 2011
  ident: CR28
  article-title: Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.97.115455
– volume: 100
  start-page: 196803
  year: 2008
  ident: CR15
  article-title: Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.196803
– volume: 14
  start-page: 2907
  year: 2014
  end-page: 2913
  ident: CR21
  article-title: Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography
  publication-title: Nano Lett
  doi: 10.1021/nl500948p
– ident: CR2
– volume: 11
  start-page: 3370
  year: 2011
  end-page: 3377
  ident: CR12
  article-title: Graphene Plasmonics: A Platform for Strong Light-Matter Interactions
  publication-title: Nano Lett
  doi: 10.1021/nl201771h
– volume: 81
  start-page: 035408
  year: 2010
  ident: CR26
  article-title: Generating quantizing pseudomagnetic fields by bending graphene ribbons
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.035408
– volume: 86
  start-page: 125442
  year: 2012
  ident: CR3
  article-title: Dynamic polarization of graphene by external correlated charges
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.86.125442
– volume: 74
  start-page: 18
  year: 2020
  ident: CR30
  article-title: Interactions of moving charge with supported graphene in the presence of strain-induced pseudomagnetic field
  publication-title: Eur Phys J D
  doi: 10.1140/epjd/e2019-100450-1
– volume: 96
  start-page: 91
  year: 2016
  end-page: 97
  ident: CR19
  article-title: Interband plasmons in supported graphene on metal substrates: Theory and experiments
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.053
– volume: 7
  start-page: 330
  year: 2012
  end-page: 334
  ident: CR9
  article-title: Tunable infrared plasmonic devices using graphene/insulator stacks
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2012.59
– volume: 78
  start-page: 201403(R)
  year: 2008
  ident: CR17
  article-title: Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.201403
– volume: 77
  start-page: 075428
  year: 2008
  ident: CR31
  article-title: Polarization of supported graphene by slowly moving charges
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.075428
– volume: 117
  start-page: 196803
  year: 2016
  ident: CR7
  article-title: Edge plasmons in two-component electron liquids in the presence of pseudomagnetic fields
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.117.196803
– volume: 6
  start-page: 630
  year: 2011
  end-page: 634
  ident: CR10
  article-title: Graphene plasmonics for tunable terahertz metamaterials
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.146
– volume: 100
  start-page: 035443
  year: 2019
  ident: CR1
  article-title: Wake potential in graphene-insulator-graphene composite systems
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.100.035443
– volume: 10
  start-page: 2
  year: 2015
  end-page: 6
  ident: CR8
  article-title: How to deal with the loss in plasmonics and metamaterials
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.310
– volume: 77
  start-page: 233406
  year: 2008
  ident: CR16
  article-title: Plasmon spectroscopy of free-standing graphene films
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.233406
– volume: 80
  start-page: 045401
  year: 2009
  ident: CR27
  article-title: Tight-binding approach to uniaxial strain in graphene
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.80.045401
– volume: 81
  start-page: 081406(R)
  year: 2010
  ident: CR20
  article-title: Plasmon-phonon strongly coupled mode in epitaxial graphene
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.081406
– volume: 7
  start-page: 394
  year: 2013
  end-page: 399
  ident: CR6
  article-title: Damping pathways of mid-infrared plasmons in graphene nanostructures
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2013.57
– volume: 90
  start-page: 4587
  year: 2001
  end-page: 4608
  ident: CR11
  article-title: Effective electron mobility in Si inversionlayers in metal-oxide-semiconductorsystems with a high-Κ insulator: The role ofremote phonon scattering
  publication-title: J Appl Phys
  doi: 10.1063/1.1405826
– volume: 6
  start-page: 30
  year: 2010
  end-page: 33
  ident: CR25
  article-title: Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
  publication-title: Nat Phys
  doi: 10.1038/nphys1420
– volume: 279
  start-page: 165
  year: 2012
  end-page: 168
  ident: CR4
  article-title: Interactions of slowly moving charges with graphene: The role of substrate phonons
  publication-title: Nucl Instrum Methods B
  doi: 10.1016/j.nimb.2011.10.028
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: CR14
  article-title: The electronic properties of graphene
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.81.109
– volume: 11
  start-page: 4701
  year: 2011
  end-page: 4705
  ident: CR5
  article-title: Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface
  publication-title: Nano Lett
  doi: 10.1021/nl202362d
– volume: 25
  start-page: 072107
  year: 2018
  ident: CR29
  article-title: Pseudomagnetic field modulation of stopping power for a charged particle moving above graphene
  publication-title: Phys Plasmas
  doi: 10.1063/1.5039588
– volume: 10
  start-page: 1741
  year: 2015
  end-page: 1749
  ident: CR23
  article-title: Probing the plasmon-phonon hybridization in supported graphene by externally moving charged particles
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9993-3
– volume: 74
  start-page: 201401(R)
  year: 2006
  ident: CR33
  article-title: Nonlinear screening of charge impurities in graphene
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.74.201401
– volume: 83
  start-page: 407
  year: 2011
  end-page: 470
  ident: CR13
  article-title: Electronic transport in two-dimensional graphene
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.83.407
– volume: 379
  start-page: 377
  year: 2015
  end-page: 381
  ident: CR22
  article-title: Wake effect in the interaction of slow correlated charges with supported graphene due to plasmon-phonon hybridization
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2014.11.044
– volume: 100
  start-page: 196803
  year: 2008
  ident: 1369_CR15
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.196803
– volume: 117
  start-page: 196803
  year: 2016
  ident: 1369_CR7
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.117.196803
– volume: 77
  start-page: 075428
  year: 2008
  ident: 1369_CR31
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.075428
– volume: 96
  start-page: 91
  year: 2016
  ident: 1369_CR19
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.053
– volume: 379
  start-page: 377
  year: 2015
  ident: 1369_CR22
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2014.11.044
– volume: 11
  start-page: 4701
  year: 2011
  ident: 1369_CR5
  publication-title: Nano Lett
  doi: 10.1021/nl202362d
– volume: 78
  start-page: 201403(R)
  year: 2008
  ident: 1369_CR17
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.78.201403
– volume: 11
  start-page: 3370
  year: 2011
  ident: 1369_CR12
  publication-title: Nano Lett
  doi: 10.1021/nl201771h
– volume: 25
  start-page: 072107
  year: 2018
  ident: 1369_CR29
  publication-title: Phys Plasmas
  doi: 10.1063/1.5039588
– volume: 77
  start-page: 233406
  year: 2008
  ident: 1369_CR16
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.233406
– volume: 375
  start-page: 3720
  year: 2011
  ident: 1369_CR24
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2011.08.053
– volume: 80
  start-page: 045401
  year: 2009
  ident: 1369_CR27
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.80.045401
– volume: 7
  start-page: 394
  year: 2013
  ident: 1369_CR6
  publication-title: Nat Photonics
  doi: 10.1038/nphoton.2013.57
– volume: 81
  start-page: 081406(R)
  year: 2010
  ident: 1369_CR20
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.081406
– volume: 100
  start-page: 035443
  year: 2019
  ident: 1369_CR1
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.100.035443
– volume: 6
  start-page: 630
  year: 2011
  ident: 1369_CR10
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.146
– volume: 6
  start-page: 30
  year: 2010
  ident: 1369_CR25
  publication-title: Nat Phys
  doi: 10.1038/nphys1420
– volume: 10
  start-page: 2
  year: 2015
  ident: 1369_CR8
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.310
– volume: 7
  start-page: 330
  year: 2012
  ident: 1369_CR9
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2012.59
– volume: 80
  start-page: 195405
  year: 2009
  ident: 1369_CR32
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.80.195405
– volume: 21
  start-page: 134017
  year: 2010
  ident: 1369_CR18
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/13/134017
– volume: 279
  start-page: 165
  year: 2012
  ident: 1369_CR4
  publication-title: Nucl Instrum Methods B
  doi: 10.1016/j.nimb.2011.10.028
– volume: 10
  start-page: 1741
  year: 2015
  ident: 1369_CR23
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9993-3
– volume: 83
  start-page: 407
  year: 2011
  ident: 1369_CR13
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.83.407
– volume: 74
  start-page: 18
  year: 2020
  ident: 1369_CR30
  publication-title: Eur Phys J D
  doi: 10.1140/epjd/e2019-100450-1
– volume: 74
  start-page: 201401(R)
  year: 2006
  ident: 1369_CR33
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.74.201401
– volume: 90
  start-page: 4587
  year: 2001
  ident: 1369_CR11
  publication-title: J Appl Phys
  doi: 10.1063/1.1405826
– volume: 81
  start-page: 109
  year: 2009
  ident: 1369_CR14
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.81.109
– ident: 1369_CR2
  doi: 10.1038/s41699-019-0112-8
– volume: 86
  start-page: 125442
  year: 2012
  ident: 1369_CR3
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.86.125442
– volume: 81
  start-page: 035408
  year: 2010
  ident: 1369_CR26
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.035408
– volume: 14
  start-page: 2907
  year: 2014
  ident: 1369_CR21
  publication-title: Nano Lett
  doi: 10.1021/nl500948p
– volume: 97
  start-page: 115455
  year: 2011
  ident: 1369_CR28
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.97.115455
SSID ssj0044464
Score 2.263464
Snippet We analyze the effects of the strain-induced pseudomagnetic field on the subthreshold mechanism of hybridization taking place between the Dirac plasmon in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1089
SubjectTerms Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Charged particles
Chemistry
Chemistry and Materials Science
Field strength
Graphene
Hybridization
Moving charged particles
Nanotechnology
Phonons
Substrates
Title The Effects of Pseudomagnetic Fields on Plasmon–Phonon Hybridization in Supported Graphene Probed by a Moving Charged Particle
URI https://link.springer.com/article/10.1007/s11468-020-01369-3
https://www.proquest.com/docview/2547050990
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoRn7i-yMGbFrpt0jTHRVwXRenBBT2VNElV0F2xuwdv_gf_ob_EmWzroqjgtXlQ-k0mM535ZgAOlLRSE3WriGMXcKdcoF1oUBmawiitY5USwfniMun1-dm1uK5JYVWT7d6EJL2mnpLdPEuI3B2qM6aCeBbmBfnuKMX9qNPoX44Ojo8lCyGDthKipsr8vMfX62hqY34Li_rbprsCy7WZyDoTXFdhxg3WYPG46c62Bgs-ddNU6_CKSLNJEeKKDUuWVW5sh4_6dkD8RNalFDUcGLAMDWUUuvfXt-xuiF4_670QXasmYrL7AaMWn5R8a9kp1bFGNcgyogtZVrwwzS783wdGEfpbfJbVUrcB_e7J1XEvqPsqBAYP3ChIjXSFjRJdtlNpteZKmpA7rkUYOalLmTge27bCATLn8FaPVWnQT0tShbPCeBPm8C3dFjATljzUouChEzziiU5dKbQS3OLuVkctaDefNzd10XHqffGQT8slEyQ5QpJ7SPK4BYefa54mJTf-nL3boJbXx6_K0euVVNhGhS04apCcDv--2_b_pu_AUkQ5Lj4hcBfmRs9jt4dGyqjYh_nO6c35yb6XzQ9vx9_V
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTttAEB2VVAguFU1BpAW6h95aS4696_UeI0QILUE-JBI3a727pkitg3ByyC3_0D_kS5jZ2EStKBJX73pl-a1nZzzvzQB8UdJKTdKtIo5dwJ1ygXahQWNoCqO0jlVKAufxVTKa8u_X4roRhdUt271NSXpLvRG7eZUQhTtUZ0wF8Ra8RWcgJSLXNBq09pdjgONzyULIoK-EaKQyz6_x93G08TH_SYv602a4B-8aN5EN1ri-hzeu6sLOadudrQvbnrpp6g-wQqTZughxzWYly2q3sLPf-qYifSIbEkUNByqWoaOMm-5h9Sf7OcOon42WJNdqhJjstmLU4pPIt5adUx1rNIMsI7mQZcWSaTb2fx8YZehv8FrW7Lp9mA7PJqejoOmrEBj84OZBaqQrbJTosp9KqzVX0oTccS3CyEldysTx2PYVDpA7h6d6rEqDcVqSKpwVxgfQwad0h8BMWPJQi4KHTvCIJzp1pdBKcIurWx31oN--3tw0Rcep98WvfFMumSDJEZLcQ5LHPfj6dM_duuTGi7OPWtTy5vOrc4x6JRW2UWEPvrVIbob_v9rH103_DDujyfgyv7y4-vEJdiPiu3hy4BF05vcLd4wOy7w48fvzERtD4TQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VVlAuVbuAWGiLD72VqPmx4_hYtWy30K5y6Eq9RY7tLEiQrbq7h976DrwhT8KMk5CCoBJX27Eiz2Q8k5nvG4ADJa3UBN0qk8QF3CkXaBcaNIamNErrRGUEcL6cpOMp_3gtrh-g-H21e5eSbDANxNJUL49ubHXUA988YohCH-IcU0HyBDbQHEek19P4uLPFHIMdn1cWQgaREqKFzfx9j9-vpt7f_CNF6m-e0TZstS4jO25kvANrrh7A5knXqW0AT30Zp1m8gHuUOmsIiRdsXrF84VZ2_k3PasIqshGVq-FEzXJ0mlEBf9x_zz_PaxwY3xF0qwVlsi81o3afVIhr2RlxWqNJZDlBhywr75hml_5PBKNs_QzH8lYDX8J09OHqZBy0PRYCg6e1DDIjXWnjVFdRJq3WXEkTcse1CGMndSVTxxMbKZwg1w5v-ERVBmO2NFO4KkxewTq-pXsNzIQVD7UoeegEj3mqM1cJrQS3uLvV8RCi7ngL0xKQUx-Mr0VPnUwiKVAkhRdJkQzh8NczNw39xqOrdzupFe2nuCgwApZEcqPCIbzvJNlP_3u3N_-3_B08y09HxcX55NNbeB5T6YuvE9yF9eXtyu2h77Is9716_gQtl-Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effects+of+Pseudomagnetic+Fields+on+Plasmon%E2%80%93Phonon+Hybridization+in+Supported+Graphene+Probed+by+a+Moving+Charged+Particle&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Bai%2C+Xiang-Jia&rft.au=Zhang%2C+Ying-Ying&rft.au=Mi%C5%A1kovi%C4%87%2C+Zoran+L.&rft.au=Radovi%C4%87%2C+Ivan&rft.date=2021-08-01&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=16&rft.issue=4&rft.spage=1089&rft.epage=1098&rft_id=info:doi/10.1007%2Fs11468-020-01369-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11468_020_01369_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon