CE-FPN: enhancing channel information for object detection
Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 21; pp. 30685 - 30704 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps may cause serious aliasing effects. In this paper, we present a novel channel enhancement feature pyramid network (CE-FPN) to alleviate these problems. Specifically, inspired by sub-pixel convolution, we propose sub-pixel skip fusion (SSF) to perform both channel enhancement and upsampling. Instead of the original 1 × 1 convolution and linear upsampling, it mitigates the information loss due to channel reduction. Then we propose sub-pixel context enhancement (SCE) for extracting stronger feature representations, which is superior to other context methods due to the utilization of rich channel information by sub-pixel convolution. Furthermore, we introduce a channel attention guided module (CAG) to optimize the final integrated features on each level. It alleviates the aliasing effect only with a few computational burdens. We evaluate our approaches on Pascal VOC and MS COCO benchmark. Extensive experiments show that CE-FPN achieves competitive performance and is more lightweight compared to state-of-the-art FPN-based detectors. |
---|---|
AbstractList | Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps may cause serious aliasing effects. In this paper, we present a novel channel enhancement feature pyramid network (CE-FPN) to alleviate these problems. Specifically, inspired by sub-pixel convolution, we propose sub-pixel skip fusion (SSF) to perform both channel enhancement and upsampling. Instead of the original 1 × 1 convolution and linear upsampling, it mitigates the information loss due to channel reduction. Then we propose sub-pixel context enhancement (SCE) for extracting stronger feature representations, which is superior to other context methods due to the utilization of rich channel information by sub-pixel convolution. Furthermore, we introduce a channel attention guided module (CAG) to optimize the final integrated features on each level. It alleviates the aliasing effect only with a few computational burdens. We evaluate our approaches on Pascal VOC and MS COCO benchmark. Extensive experiments show that CE-FPN achieves competitive performance and is more lightweight compared to state-of-the-art FPN-based detectors. |
Author | Guo, Jingjuan Shen, Haibo Luo, Yihao Wang, Tianjiang Feng, Qi Cao, Xiang Zhang, Juntao |
Author_xml | – sequence: 1 givenname: Yihao surname: Luo fullname: Luo, Yihao organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 2 givenname: Xiang surname: Cao fullname: Cao, Xiang organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 3 givenname: Juntao surname: Zhang fullname: Zhang, Juntao organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 4 givenname: Jingjuan surname: Guo fullname: Guo, Jingjuan organization: School of Information Science and Technology, Jiujiang University – sequence: 5 givenname: Haibo surname: Shen fullname: Shen, Haibo organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 6 givenname: Tianjiang surname: Wang fullname: Wang, Tianjiang organization: School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 7 givenname: Qi orcidid: 0000-0002-1247-2211 surname: Feng fullname: Feng, Qi email: fengqi@hust.edu.cn organization: School of Computer Science and Technology, Huazhong University of Science and Technology |
BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnqMzSXaT7U1KW4WiHvQcsmm2bmmzNdke_PemXUHw0NM8hvfNPN6IDHzrHSG3CPcIIB8iIghGgTGKWAqgeEGGmEtOpWQ4SJoroDIHvCKjGDcAWORMDMlkOqPzt5dJ5vyn8bbx68wm4d02a3zdhp3pmtZnSWVttXG2y1auSyMtr8llbbbR3fzOMfmYz96nT3T5uniePi6p5Vh2VFmUNRqmSqxra1BUIFZWYMELU0hjSrSohOWGW3B5VQgoFed2ZQubM2UqPiZ3_d19aL8OLnZ60x6CTy81k5B-qJxhcqneZUMbY3C1tk13Ct8F02w1gj42pfumdGpKn5rSR5T9Q_eh2ZnwfR7iPRST2a9d-Et1hvoBURN7iQ |
CitedBy_id | crossref_primary_10_1111_mice_12991 crossref_primary_10_1016_j_image_2023_116919 crossref_primary_10_1109_ACCESS_2022_3204818 crossref_primary_10_1016_j_asoc_2024_112181 crossref_primary_10_1007_s00530_024_01378_w crossref_primary_10_1109_TII_2024_3441649 crossref_primary_10_3390_agronomy14081808 crossref_primary_10_1016_j_bspc_2024_106655 crossref_primary_10_3390_rs16234487 crossref_primary_10_1109_ACCESS_2022_3211394 crossref_primary_10_1007_s44196_021_00056_3 crossref_primary_10_3390_s24217007 crossref_primary_10_1007_s11042_022_13164_9 crossref_primary_10_1109_JSTARS_2022_3229729 crossref_primary_10_1109_LGRS_2023_3234267 crossref_primary_10_1016_j_neucom_2024_128102 crossref_primary_10_3390_electronics13193949 crossref_primary_10_1371_journal_pone_0297068 crossref_primary_10_1016_j_gmod_2025_101259 crossref_primary_10_1109_TGRS_2024_3381774 crossref_primary_10_1080_2150704X_2023_2221794 crossref_primary_10_1109_LGRS_2024_3406345 crossref_primary_10_32604_cmes_2024_052759 crossref_primary_10_1007_s11760_025_03842_0 crossref_primary_10_1007_s00530_024_01532_4 crossref_primary_10_3390_electronics12010093 crossref_primary_10_1007_s11042_023_14800_8 crossref_primary_10_1049_ipr2_12766 crossref_primary_10_1016_j_patcog_2024_110983 crossref_primary_10_1007_s00371_023_03178_1 crossref_primary_10_3389_fpls_2022_1091655 crossref_primary_10_3788_IRLA20240253 crossref_primary_10_1007_s11042_023_16502_7 crossref_primary_10_3390_e24111699 crossref_primary_10_1038_s41598_024_75243_1 crossref_primary_10_1109_TCSVT_2022_3221755 crossref_primary_10_3390_app13148037 crossref_primary_10_3390_rs16132405 crossref_primary_10_1016_j_dsp_2024_104674 crossref_primary_10_1007_s10278_024_01133_7 crossref_primary_10_1109_TCBB_2024_3469178 crossref_primary_10_1016_j_eswa_2023_121688 crossref_primary_10_1007_s11042_023_14472_4 crossref_primary_10_1038_s41598_024_71001_5 crossref_primary_10_1016_j_vrih_2024_06_003 crossref_primary_10_1109_TGRS_2024_3367959 crossref_primary_10_1088_1361_6501_acfdbe crossref_primary_10_1109_ACCESS_2024_3394052 crossref_primary_10_7717_peerj_cs_2470 crossref_primary_10_1088_2631_8695_ada976 crossref_primary_10_1016_j_bspc_2024_106152 crossref_primary_10_1109_TGRS_2023_3265361 crossref_primary_10_1371_journal_pone_0270356 crossref_primary_10_1109_ACCESS_2024_3396224 crossref_primary_10_1109_TGRS_2023_3294241 crossref_primary_10_1109_ACCESS_2024_3444900 crossref_primary_10_3389_fpls_2024_1501043 crossref_primary_10_1016_j_bspc_2024_107368 crossref_primary_10_1007_s00138_024_01577_5 crossref_primary_10_1007_s11227_023_05585_6 crossref_primary_10_1007_s11760_024_03441_5 crossref_primary_10_1007_s00371_023_03024_4 crossref_primary_10_1016_j_compbiomed_2024_107917 crossref_primary_10_1016_j_compbiomed_2023_107149 crossref_primary_10_3390_electronics11121882 crossref_primary_10_3390_rs15133365 crossref_primary_10_1088_1361_6560_ad3c0c crossref_primary_10_1016_j_eswa_2023_122788 crossref_primary_10_1177_00405175221129654 crossref_primary_10_3390_rs16060975 crossref_primary_10_3390_s22186857 crossref_primary_10_1109_TCSVT_2022_3198329 crossref_primary_10_1007_s00530_024_01360_6 crossref_primary_10_1109_TIP_2025_3541564 crossref_primary_10_1016_j_compag_2024_109706 crossref_primary_10_1016_j_patcog_2023_110148 crossref_primary_10_1007_s00521_022_06984_1 crossref_primary_10_1007_s11042_023_17112_z crossref_primary_10_1109_TGRS_2024_3387572 crossref_primary_10_1007_s10509_025_04414_x crossref_primary_10_3390_app14052124 crossref_primary_10_1117_1_JEI_33_5_053023 crossref_primary_10_1007_s00371_022_02758_x crossref_primary_10_1016_j_neucom_2025_129966 crossref_primary_10_1007_s10278_024_01321_5 crossref_primary_10_1117_1_JRS_17_044515 crossref_primary_10_1016_j_imavis_2025_105469 crossref_primary_10_1109_JSTARS_2024_3394887 crossref_primary_10_1007_s11063_024_11471_w crossref_primary_10_1007_s10489_022_03393_8 crossref_primary_10_1109_TGRS_2023_3289878 crossref_primary_10_3390_rs15133338 crossref_primary_10_1007_s00138_024_01606_3 |
Cites_doi | 10.1609/aaai.v34i07.6834 10.1109/ICCV.2019.00682 10.1109/TIP.2018.2865280 10.1007/s11263-009-0275-4 10.1007/s11042-020-09500-6 10.1109/CVPR42600.2020.01261 10.1007/s11263-018-1101-7 10.1109/ICCV.2015.135 10.1007/s11042-019-7446-2 10.1109/CVPR.2016.596 10.1007/s00170-019-03407-9 10.1109/CVPR.2019.00091 10.1109/CVPR.2018.00813 10.1109/CVPR.2017.683 10.1016/j.neucom.2020.10.098 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2017.15 10.1007/978-3-030-01234-2_1 10.1016/j.eswa.2019.06.041 10.1109/CVPR.2017.660 10.1609/aaai.v33i01.33019259 10.1007/978-3-030-58452-8_13 10.1109/CVPR.2018.00913 10.1016/j.dsp.2022.103514 10.1109/TIP.2020.3034487 10.1109/ICCV.2019.00310 10.1007/978-3-030-01237-3_5 10.1007/978-3-319-46448-0_2 10.3390/s19224855 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2018.00377 10.1109/CVPR.2017.634 10.1109/CVPR.2016.314 10.1109/CVPR.2018.00644 10.1109/ICCV.2019.00972 10.1016/j.ssci.2020.104812 10.1109/TPAMI.2016.2577031 10.3390/sym12030434 10.1109/CVPR.2016.91 10.1016/j.neucom.2018.05.007 10.1109/CVPR.2017.106 10.1109/ICCV.2017.212 10.1109/CVPR.2016.207 10.1109/CVPR.2016.90 10.1109/MITS.2019.2903525 10.1109/CVPR.2018.00935 10.1109/CVPR.2017.690 10.1007/978-3-030-01264-9_45 10.1109/ICCV.2017.322 10.1109/ICCV.2017.324 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-022-11940-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 30704 |
ExternalDocumentID | 10_1007_s11042_022_11940_1 |
GrantInformation_xml | – fundername: huazhong university of science and technology grantid: 2020kfyXGYJ114 funderid: https://doi.org/10.13039/501100003397 – fundername: national natural science foundation of china grantid: 61572214 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-8c17f1a2891ffca14b04dc41636a67aa91c184c3a3c0e5b6409833cdc6c528ab3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:55:32 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 04:13:14 EDT 2025 Fri Feb 21 02:46:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Sub-pixel convolution Feature pyramid network Channel enhancement Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8c17f1a2891ffca14b04dc41636a67aa91c184c3a3c0e5b6409833cdc6c528ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1247-2211 |
PQID | 2703198521 |
PQPubID | 54626 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2703198521 crossref_citationtrail_10_1007_s11042_022_11940_1 crossref_primary_10_1007_s11042_022_11940_1 springer_journals_10_1007_s11042_022_11940_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wang J, Chen K, Xu R, Liu Z, Loy CC, Lin D (2019) Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3007–3016 GeZJieZHuangXLiCYoshieODelving deep into the imbalance of positive proposals in two-stage object detectionNeurocomputing202142510711610.1016/j.neucom.2020.10.098 Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266 Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2117–2125 Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7794–7803 Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision (ECCV), pp 740–755 EveringhamMGoolLVWilliamsCKIWinnJMZissermanAThe pascal visual object classes (VOC) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4 Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6517–6525 PangYCaoJLiYXieJSunHGongJTJU-DHD : a diverse high-resolution dataset for object detectionIEEE Trans Image Process20213020721910.1109/TIP.2020.3034487 Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790 ChenZChenDZhangYChengXZhangMWuCDeep learning for autonomous ship-oriented small ship detectionSaf Sci202013010481210.1016/j.ssci.2020.104812 Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2980–2988 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (neurIPS), pp 1097–1105 Chen Z, Huang S, Tao D (2018) Context refinement for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 71–86 YuanCGuoJFengPZhaoZLuoYXuCWangTDuanKLearning deep embedding with mini-cluster loss for person re-identificationMultimed Tools Appl20197815211452116610.1007/s11042-019-7446-2 Redmon J, Divvala SK, Girshick RB, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788 Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767 Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6154–6162 Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. arXiv:2107.04191 GuoJYuanCZhaoZFengPLuoYWangTObject detector with enriched global context informationMultimed Tools Appl20207939295512957110.1007/s11042-020-09500-6 Singh B, Davis LS (2018) An analysis of scale invariance in object detection SNIP. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3578–3587 Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar MN, Lee BA (2021) A survey of modern deep learning based object detection models. arXiv:2104.11892 ZhuYZhaoCGuoHWangJZhaoXLuHAttention couplenet: fully convolutional attention coupling network for object detectionIEEE Trans Image Process2018281113126386316810.1109/TIP.2018.2865280 Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142 ChenZZhangYWuCRanBUnderstanding individualization driving states via latent dirichlet allocation modelIEEE Intell Transp Syst Mag2019112415310.1109/MITS.2019.2903525 Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) Thundernet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6718–6727 Bell S, Zitnick CL, Bala K, Girshick RB (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883 Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: Proceedings of the European conference on computer vision (ECCV), pp 213–229 Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19 Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8971–8980 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 770–778 Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1874–1883 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32 Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890 He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2961–2969 GeHZhuZLouKWeiWLiuRDamaševičiusRWoźniakMClassification of infrared objects in manifold space using kullback-leibler divergence of gaussian distributions of image pointsSymmetry202012343410.3390/sym12030434 LiHLiuYOuyangWWangXZoom out-and-in network with map attention decision for region proposal and object detectionInt J Comput Vis2019127322523810.1007/s11263-018-1101-7 Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8759–8768 Yang S, Luo P, Loy CC, Tang X (2016) WIDER FACE: a face detection benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5525–5533 Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), pp 734–750 Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 821–830 FengPXuCZhaoZLiuFGuoJYuanCWangTDuanKA deep features based generative model for visual trackingNeurocomputing201830824525410.1016/j.neucom.2018.05.007 Yu X, Liu T, Wang X, Tao D (2017) On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7370–7379 ChenZCaiHZhangYWuCMuMLiZSoteloMAA novel sparse representation model for pedestrian abnormal trajectory understandingExpert Syst Appl201913811275310.1016/j.eswa.2019.06.041 Cao J, Chen Q, Guo J, Shi R (2020) Attention-guided context feature pyramid network for object detection. arXiv:2005.11475 Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9627–9636 Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164 RenSHeKGirshickRSunJFaster r-cnn: towards real-time object detection with region proposal networksIEEE Transactions on Pattern Analysis and Machine Intelligence20163961137114910.1109/TPAMI.2016.2577031 ZhouBDuanXYeDWeiWWoźniakMPołapDDamaševičiusRMulti-level features extraction for discontinuous target tracking in remote sensing image monitoringSensors20191922485510.3390/s19224855 Chen K, Wang J, Pang J, et al. (2019) MMDetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155 JuočasLRaudonisVMaskeliūnasRDamaševičiusRWoźniakMMulti-focusing algorithm for microscopy imagery in assembly line using low-cost cameraInt J Adv Manuf Syst201910293217322710.1007/s00170-019-03407-9 Shen Z, Liu Z, Li J, Jiang Y, Chen Y, Xue X (2017) DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1937–1945 Xie S, Girshick RB, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 5987–5995 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Proceedings of the European conference on computer vision (ECCV), pp 21–37 Guo C, Fan B, Zhang Q, Xiang S, Pan C (2020) Augfpn: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 11940_CR40 11940_CR42 11940_CR41 11940_CR44 11940_CR43 Z Ge (11940_CR14) 2021; 425 11940_CR46 11940_CR45 11940_CR48 Y Zhu (11940_CR56) 2018; 28 11940_CR47 11940_CR49 J Guo (11940_CR17) 2020; 79 Y Pang (11940_CR32) 2021; 30 11940_CR50 11940_CR53 11940_CR52 Z Chen (11940_CR7) 2019; 138 11940_CR54 11940_CR15 Z Chen (11940_CR10) 2019; 11 M Everingham (11940_CR11) 2010; 88 11940_CR16 11940_CR3 11940_CR4 11940_CR1 11940_CR2 11940_CR5 S Ren (11940_CR38) 2016; 39 11940_CR6 11940_CR9 L Juočas (11940_CR20) 2019; 102 11940_CR22 11940_CR21 11940_CR23 11940_CR26 11940_CR25 11940_CR28 11940_CR27 11940_CR19 11940_CR18 H Li (11940_CR24) 2019; 127 Z Chen (11940_CR8) 2020; 130 11940_CR31 11940_CR30 11940_CR33 P Feng (11940_CR12) 2018; 308 11940_CR35 11940_CR34 11940_CR37 11940_CR36 11940_CR39 H Ge (11940_CR13) 2020; 12 B Zhou (11940_CR55) 2019; 19 11940_CR29 C Yuan (11940_CR51) 2019; 78 |
References_xml | – reference: Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2980–2988 – reference: YuanCGuoJFengPZhaoZLuoYXuCWangTDuanKLearning deep embedding with mini-cluster loss for person re-identificationMultimed Tools Appl20197815211452116610.1007/s11042-019-7446-2 – reference: Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19 – reference: ChenZZhangYWuCRanBUnderstanding individualization driving states via latent dirichlet allocation modelIEEE Intell Transp Syst Mag2019112415310.1109/MITS.2019.2903525 – reference: Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9627–9636 – reference: Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 821–830 – reference: Chen K, Wang J, Pang J, et al. (2019) MMDetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155 – reference: Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7794–7803 – reference: JuočasLRaudonisVMaskeliūnasRDamaševičiusRWoźniakMMulti-focusing algorithm for microscopy imagery in assembly line using low-cost cameraInt J Adv Manuf Syst201910293217322710.1007/s00170-019-03407-9 – reference: Yu X, Liu T, Wang X, Tao D (2017) On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7370–7379 – reference: Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: Proceedings of the European conference on computer vision (ECCV), pp 213–229 – reference: Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Proceedings of the European conference on computer vision (ECCV), pp 21–37 – reference: ZhouBDuanXYeDWeiWWoźniakMPołapDDamaševičiusRMulti-level features extraction for discontinuous target tracking in remote sensing image monitoringSensors20191922485510.3390/s19224855 – reference: GeZJieZHuangXLiCYoshieODelving deep into the imbalance of positive proposals in two-stage object detectionNeurocomputing202142510711610.1016/j.neucom.2020.10.098 – reference: Xie S, Girshick RB, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 5987–5995 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (neurIPS), pp 1097–1105 – reference: EveringhamMGoolLVWilliamsCKIWinnJMZissermanAThe pascal visual object classes (VOC) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4 – reference: Redmon J, Divvala SK, Girshick RB, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788 – reference: GeHZhuZLouKWeiWLiuRDamaševičiusRWoźniakMClassification of infrared objects in manifold space using kullback-leibler divergence of gaussian distributions of image pointsSymmetry202012343410.3390/sym12030434 – reference: Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) Thundernet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6718–6727 – reference: Cao J, Chen Q, Guo J, Shi R (2020) Attention-guided context feature pyramid network for object detection. arXiv:2005.11475 – reference: Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266 – reference: Liu Y, Wang Y, Wang S, Liang T, Zhao Q, Tang Z, Ling H (2020) Cbnet: a novel composite backbone network architecture for object detection. In: Proceedings of the AAAI conference on artificial intelligence, pp 11653–11660 – reference: ChenZChenDZhangYChengXZhangMWuCDeep learning for autonomous ship-oriented small ship detectionSaf Sci202013010481210.1016/j.ssci.2020.104812 – reference: Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6517–6525 – reference: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164 – reference: LiHLiuYOuyangWWangXZoom out-and-in network with map attention decision for region proposal and object detectionInt J Comput Vis2019127322523810.1007/s11263-018-1101-7 – reference: Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142 – reference: Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890 – reference: Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32 – reference: Chen Z, Huang S, Tao D (2018) Context refinement for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 71–86 – reference: ChenZCaiHZhangYWuCMuMLiZSoteloMAA novel sparse representation model for pedestrian abnormal trajectory understandingExpert Syst Appl201913811275310.1016/j.eswa.2019.06.041 – reference: Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar MN, Lee BA (2021) A survey of modern deep learning based object detection models. arXiv:2104.11892 – reference: ZhuYZhaoCGuoHWangJZhaoXLuHAttention couplenet: fully convolutional attention coupling network for object detectionIEEE Trans Image Process2018281113126386316810.1109/TIP.2018.2865280 – reference: FengPXuCZhaoZLiuFGuoJYuanCWangTDuanKA deep features based generative model for visual trackingNeurocomputing201830824525410.1016/j.neucom.2018.05.007 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 770–778 – reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision (ECCV), pp 740–755 – reference: Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790 – reference: Singh B, Davis LS (2018) An analysis of scale invariance in object detection SNIP. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3578–3587 – reference: Guo C, Fan B, Zhang Q, Xiang S, Pan C (2020) Augfpn: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12595–12604 – reference: Bell S, Zitnick CL, Bala K, Girshick RB (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883 – reference: Yang S, Luo P, Loy CC, Tang X (2016) WIDER FACE: a face detection benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5525–5533 – reference: Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), pp 734–750 – reference: Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8971–8980 – reference: Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1874–1883 – reference: Shen Z, Liu Z, Li J, Jiang Y, Chen Y, Xue X (2017) DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1937–1945 – reference: Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6154–6162 – reference: GuoJYuanCZhaoZFengPLuoYWangTObject detector with enriched global context informationMultimed Tools Appl20207939295512957110.1007/s11042-020-09500-6 – reference: Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767 – reference: RenSHeKGirshickRSunJFaster r-cnn: towards real-time object detection with region proposal networksIEEE Transactions on Pattern Analysis and Machine Intelligence20163961137114910.1109/TPAMI.2016.2577031 – reference: Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8759–8768 – reference: Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. arXiv:2107.04191 – reference: Wang J, Chen K, Xu R, Liu Z, Loy CC, Lin D (2019) Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3007–3016 – reference: Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2117–2125 – reference: He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2961–2969 – reference: PangYCaoJLiYXieJSunHGongJTJU-DHD : a diverse high-resolution dataset for object detectionIEEE Trans Image Process20213020721910.1109/TIP.2020.3034487 – ident: 11940_CR30 doi: 10.1609/aaai.v34i07.6834 – ident: 11940_CR34 doi: 10.1109/ICCV.2019.00682 – volume: 28 start-page: 113 issue: 1 year: 2018 ident: 11940_CR56 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2865280 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 11940_CR11 publication-title: Int J Comput Vis doi: 10.1007/s11263-009-0275-4 – volume: 79 start-page: 29551 issue: 39 year: 2020 ident: 11940_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09500-6 – ident: 11940_CR16 doi: 10.1109/CVPR42600.2020.01261 – volume: 127 start-page: 225 issue: 3 year: 2019 ident: 11940_CR24 publication-title: Int J Comput Vis doi: 10.1007/s11263-018-1101-7 – ident: 11940_CR15 doi: 10.1109/ICCV.2015.135 – volume: 78 start-page: 21145 issue: 15 year: 2019 ident: 11940_CR51 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7446-2 – ident: 11940_CR49 doi: 10.1109/CVPR.2016.596 – volume: 102 start-page: 3217 issue: 9 year: 2019 ident: 11940_CR20 publication-title: Int J Adv Manuf Syst doi: 10.1007/s00170-019-03407-9 – ident: 11940_CR31 doi: 10.1109/CVPR.2019.00091 – ident: 11940_CR5 – ident: 11940_CR46 doi: 10.1109/CVPR.2018.00813 – ident: 11940_CR44 doi: 10.1109/CVPR.2017.683 – volume: 425 start-page: 107 year: 2021 ident: 11940_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.098 – ident: 11940_CR42 doi: 10.1109/CVPR42600.2020.01079 – ident: 11940_CR50 doi: 10.1109/CVPR.2017.15 – ident: 11940_CR47 doi: 10.1007/978-3-030-01234-2_1 – volume: 138 start-page: 112753 year: 2019 ident: 11940_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.041 – ident: 11940_CR53 doi: 10.1109/CVPR.2017.660 – ident: 11940_CR54 doi: 10.1609/aaai.v33i01.33019259 – ident: 11940_CR4 doi: 10.1007/978-3-030-58452-8_13 – ident: 11940_CR28 doi: 10.1109/CVPR.2018.00913 – ident: 11940_CR52 doi: 10.1016/j.dsp.2022.103514 – volume: 30 start-page: 207 year: 2021 ident: 11940_CR32 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3034487 – ident: 11940_CR45 doi: 10.1109/ICCV.2019.00310 – ident: 11940_CR6 – ident: 11940_CR9 doi: 10.1007/978-3-030-01237-3_5 – ident: 11940_CR29 doi: 10.1007/978-3-319-46448-0_2 – volume: 19 start-page: 4855 issue: 22 year: 2019 ident: 11940_CR55 publication-title: Sensors doi: 10.3390/s19224855 – ident: 11940_CR27 doi: 10.1007/978-3-319-10602-1_48 – ident: 11940_CR41 doi: 10.1109/CVPR.2018.00377 – ident: 11940_CR48 doi: 10.1109/CVPR.2017.634 – ident: 11940_CR1 doi: 10.1109/CVPR.2016.314 – ident: 11940_CR2 doi: 10.1109/CVPR.2018.00644 – ident: 11940_CR43 doi: 10.1109/ICCV.2019.00972 – volume: 130 start-page: 104812 year: 2020 ident: 11940_CR8 publication-title: Saf Sci doi: 10.1016/j.ssci.2020.104812 – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 11940_CR38 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – ident: 11940_CR37 – volume: 12 start-page: 434 issue: 3 year: 2020 ident: 11940_CR13 publication-title: Symmetry doi: 10.3390/sym12030434 – ident: 11940_CR33 – ident: 11940_CR35 doi: 10.1109/CVPR.2016.91 – volume: 308 start-page: 245 year: 2018 ident: 11940_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.007 – ident: 11940_CR25 doi: 10.1109/CVPR.2017.106 – ident: 11940_CR3 – ident: 11940_CR21 – ident: 11940_CR39 doi: 10.1109/ICCV.2017.212 – ident: 11940_CR40 doi: 10.1109/CVPR.2016.207 – ident: 11940_CR19 doi: 10.1109/CVPR.2016.90 – volume: 11 start-page: 41 issue: 2 year: 2019 ident: 11940_CR10 publication-title: IEEE Intell Transp Syst Mag doi: 10.1109/MITS.2019.2903525 – ident: 11940_CR23 doi: 10.1109/CVPR.2018.00935 – ident: 11940_CR36 doi: 10.1109/CVPR.2017.690 – ident: 11940_CR22 doi: 10.1007/978-3-030-01264-9_45 – ident: 11940_CR18 doi: 10.1109/ICCV.2017.322 – ident: 11940_CR26 doi: 10.1109/ICCV.2017.324 |
SSID | ssj0016524 |
Score | 2.6244748 |
Snippet | Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30685 |
SubjectTerms | Aliasing Computer Communication Networks Computer Science Context Convolution Data Structures and Information Theory Deep learning Feature extraction Feature maps Flaw detection Localization Multimedia Multimedia Information Systems Object recognition Performance evaluation Pixels Reduction Sensors Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8DAo4AoL3lgA4s4D8fpgqBqVSFRVYhK3SLbcWCo0kLL_8eXOg0g0UyR4nj4zr6HfXcfwHWem0yEkU-RdoCGJstoksiIhjkXXPHIPlg7_Dzkg3H4NIkm7sBt4dIqK51YKupspvGM_M7HRuuJsNbmfv5BkTUKb1cdhcY2NK0KFqIBzcfecPSyvkfgkaO1FR61tpG5splV8RzD0hTMZmc2kvco-22aan_zzxVpaXn6B7DnXEbysJLxIWyZogX7FR0DcbuzBbs_egseQafbo_3RsENM8Y49NYo3gkW-hZkS1ywVRULsG5kpPIwhmVmWeVnFMYz7vdfugDqiBKotJksqNItzJm3sxPJcSxYqL8w0ulpc8ljKhGkbyOlABtozkeI2phNBoDPNdeQLqYITaBSzwpwCCYRVYZxrHscylNJTFjqlVZCjq2SduTawCqNUuy7iSGYxTev-x4hranFNS1xT1oab9T_zVQ-NjaMvKuhTt58WaS39NtxW4qg__z_b2ebZzmHHxxVQJo1dQGP5-WUurZexVFduKX0DCS7KWQ priority: 102 providerName: ProQuest |
Title | CE-FPN: enhancing channel information for object detection |
URI | https://link.springer.com/article/10.1007/s11042-022-11940-1 https://www.proquest.com/docview/2703198521 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPTgAzWiSHrwpk22-yiFGxAWopEQI4meNm23qweyGMH_73Tpgho1cS_dZLs9TDudb9qZbwAus8ykIox8assO0NCkKW23ZUTDjAuueISPzR2-G_PRNLx5jB5dUtiijHYvrySLnXqT7MZsKomNPmfoeXsUfZ5qhL67DeSa-t313QGPXClb4VG0h8ylyvw8xldztMGY365FC2sTH8Ceg4mku5rXQ9gyeQ32yxIMxGlkDXY_8QkeQac_oPFk3CEmf7E8GvkzsYm9uZkRR5Bqp4HgG5krewBDUrMsYrHyY5jGg4f-iLriCFSj1iyp0KyVMYn-EssyLVmovDDVFl5xyVtStplG500HMtCeiRRHP04EgU4115EvpApOoJLPc3MKJBC4bXGueaslQyk9haJTWgWZhUcI4OrAShkl2jGH2wIWs2TDeWzlmqBck0KuCavD1fqf1xVvxp-9G6XoE6dDi8S31PptgfiiDtfldGw-_z7a2f-6n8OOb1dEETjWgMry7d1cINJYqiZsi3jYhGo37vXGth0-3Q6w7Q3Gk_tmsew-ANA7y1Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8RgQA5wgoilj6ydhBACxnhNHDaJW0nSFA5TN9gQ4k_xG7G7lgES3OipUlsfHNd2Yn-fAXaSxMaB5zucxg5wz8YxD0Plcy-RgdTSx4uwwzct2ex4l3f-3QS8F1gYaqssfGLmqOOeoTPyA4eI1sMAo81R_4nT1CiqrhYjNEZmcWXfXnHLNji8OMX13XWcxln7pMnzqQLcoIAhD4yoJULhRkMkiVHC01UvNpSXSCVrSoXC4K7HuMo1VetriRugwHVNbKTxnUBpF-VOwpTnYiQnZHrj_LNqIf18iG5Q5RiJRQ7SGUH1BAFhqHdeiJDqqd8D4Ti7_VGQzeJcYwHm8gSVHY8sahEmbLoE88XwB5b7giWY_cJkuAz1kzPeuG3VmU0ficEjfWAEKU5tl-XUrGQADO9YT9PRD4vtMOsCS1eg8y8KXIVS2kvtGjA3QIcppZG1mvKUqmpUnTbaTSgxw9SxDKLQUWRyznIandGNxmzLpNcI9Rpleo1EGfY-v-mPGDv-fLtSqD7K_95BNLa1MuwXyzF-_Lu09b-lbcN0s31zHV1ftK42YMYha8ja1SpQGj6_2E3Mb4Z6KzMqBvf_bcUfxNUF4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-MwFH5iioSGA-uMKBTwAU5gUWdxkkoIsbRirSo0SNwytuPAAaUsRYi_xq_jvdShgAQ3coqUxIfnL2_xWz6AtTy3WRyEHifaAR7YLONJokIe5DKWWoZ4Ue_wWVceXgTHl-HlGLxUvTBUVlnpxFJRZ31DZ-RbHg1aT2K0Nlu5K4voHXR2bu84MUhRprWi0xhC5MQ-P2H49rB9dIB7ve55nfa__UPuGAa4wcUGPDYiyoXCoEPkuVEi0M0gM-SjSCUjpRJhMAIyvvJN04ZaYjAU-77JjDShFyvt47q_YDyiqKgG43vtbu_8LYchQ0epGzc52mXhWnaGjXuC2mKokl6IhLKrH83iyNf9lJ4trV5nBqacu8p2h_iahTFbzMF0RQXBnGaYg8l3cw3nobXf5p1et8VscU3zPIorRg3Ghb1hblArwYHhHetrOghimR2UNWHFH7j4ERH-hVrRL-wCMD9G9SmlkVGkAqWaGkWnjfZzctPQkayDqGSUGjfBnIg0btLR7GWSa4pyTUu5pqIOG2_f3A7nd3z7dqMSfer-5Yd0hLw6bFbbMXr89WqL36-2ChOI4PT0qHuyBL89AkNZu9aA2uD-0S6jszPQKw5VDP7_NJBfAaCUC3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CE-FPN%3A+enhancing+channel+information+for+object+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Luo%2C+Yihao&rft.au=Cao%2C+Xiang&rft.au=Zhang%2C+Juntao&rft.au=Guo%2C+Jingjuan&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=21&rft.spage=30685&rft.epage=30704&rft_id=info:doi/10.1007%2Fs11042-022-11940-1&rft.externalDocID=10_1007_s11042_022_11940_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |