CE-FPN: enhancing channel information for object detection

Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 21; pp. 30685 - 30704
Main Authors Luo, Yihao, Cao, Xiang, Zhang, Juntao, Guo, Jingjuan, Shen, Haibo, Wang, Tianjiang, Feng, Qi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps may cause serious aliasing effects. In this paper, we present a novel channel enhancement feature pyramid network (CE-FPN) to alleviate these problems. Specifically, inspired by sub-pixel convolution, we propose sub-pixel skip fusion (SSF) to perform both channel enhancement and upsampling. Instead of the original 1 × 1 convolution and linear upsampling, it mitigates the information loss due to channel reduction. Then we propose sub-pixel context enhancement (SCE) for extracting stronger feature representations, which is superior to other context methods due to the utilization of rich channel information by sub-pixel convolution. Furthermore, we introduce a channel attention guided module (CAG) to optimize the final integrated features on each level. It alleviates the aliasing effect only with a few computational burdens. We evaluate our approaches on Pascal VOC and MS COCO benchmark. Extensive experiments show that CE-FPN achieves competitive performance and is more lightweight compared to state-of-the-art FPN-based detectors.
AbstractList Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous feature maps may cause serious aliasing effects. In this paper, we present a novel channel enhancement feature pyramid network (CE-FPN) to alleviate these problems. Specifically, inspired by sub-pixel convolution, we propose sub-pixel skip fusion (SSF) to perform both channel enhancement and upsampling. Instead of the original 1 × 1 convolution and linear upsampling, it mitigates the information loss due to channel reduction. Then we propose sub-pixel context enhancement (SCE) for extracting stronger feature representations, which is superior to other context methods due to the utilization of rich channel information by sub-pixel convolution. Furthermore, we introduce a channel attention guided module (CAG) to optimize the final integrated features on each level. It alleviates the aliasing effect only with a few computational burdens. We evaluate our approaches on Pascal VOC and MS COCO benchmark. Extensive experiments show that CE-FPN achieves competitive performance and is more lightweight compared to state-of-the-art FPN-based detectors.
Author Guo, Jingjuan
Shen, Haibo
Luo, Yihao
Wang, Tianjiang
Feng, Qi
Cao, Xiang
Zhang, Juntao
Author_xml – sequence: 1
  givenname: Yihao
  surname: Luo
  fullname: Luo, Yihao
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 2
  givenname: Xiang
  surname: Cao
  fullname: Cao, Xiang
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 3
  givenname: Juntao
  surname: Zhang
  fullname: Zhang, Juntao
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 4
  givenname: Jingjuan
  surname: Guo
  fullname: Guo, Jingjuan
  organization: School of Information Science and Technology, Jiujiang University
– sequence: 5
  givenname: Haibo
  surname: Shen
  fullname: Shen, Haibo
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 6
  givenname: Tianjiang
  surname: Wang
  fullname: Wang, Tianjiang
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
– sequence: 7
  givenname: Qi
  orcidid: 0000-0002-1247-2211
  surname: Feng
  fullname: Feng, Qi
  email: fengqi@hust.edu.cn
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqMzSXaT7U1KW4WiHvQcsmm2bmmzNdke_PemXUHw0NM8hvfNPN6IDHzrHSG3CPcIIB8iIghGgTGKWAqgeEGGmEtOpWQ4SJoroDIHvCKjGDcAWORMDMlkOqPzt5dJ5vyn8bbx68wm4d02a3zdhp3pmtZnSWVttXG2y1auSyMtr8llbbbR3fzOMfmYz96nT3T5uniePi6p5Vh2VFmUNRqmSqxra1BUIFZWYMELU0hjSrSohOWGW3B5VQgoFed2ZQubM2UqPiZ3_d19aL8OLnZ60x6CTy81k5B-qJxhcqneZUMbY3C1tk13Ct8F02w1gj42pfumdGpKn5rSR5T9Q_eh2ZnwfR7iPRST2a9d-Et1hvoBURN7iQ
CitedBy_id crossref_primary_10_1111_mice_12991
crossref_primary_10_1016_j_image_2023_116919
crossref_primary_10_1109_ACCESS_2022_3204818
crossref_primary_10_1016_j_asoc_2024_112181
crossref_primary_10_1007_s00530_024_01378_w
crossref_primary_10_1109_TII_2024_3441649
crossref_primary_10_3390_agronomy14081808
crossref_primary_10_1016_j_bspc_2024_106655
crossref_primary_10_3390_rs16234487
crossref_primary_10_1109_ACCESS_2022_3211394
crossref_primary_10_1007_s44196_021_00056_3
crossref_primary_10_3390_s24217007
crossref_primary_10_1007_s11042_022_13164_9
crossref_primary_10_1109_JSTARS_2022_3229729
crossref_primary_10_1109_LGRS_2023_3234267
crossref_primary_10_1016_j_neucom_2024_128102
crossref_primary_10_3390_electronics13193949
crossref_primary_10_1371_journal_pone_0297068
crossref_primary_10_1016_j_gmod_2025_101259
crossref_primary_10_1109_TGRS_2024_3381774
crossref_primary_10_1080_2150704X_2023_2221794
crossref_primary_10_1109_LGRS_2024_3406345
crossref_primary_10_32604_cmes_2024_052759
crossref_primary_10_1007_s11760_025_03842_0
crossref_primary_10_1007_s00530_024_01532_4
crossref_primary_10_3390_electronics12010093
crossref_primary_10_1007_s11042_023_14800_8
crossref_primary_10_1049_ipr2_12766
crossref_primary_10_1016_j_patcog_2024_110983
crossref_primary_10_1007_s00371_023_03178_1
crossref_primary_10_3389_fpls_2022_1091655
crossref_primary_10_3788_IRLA20240253
crossref_primary_10_1007_s11042_023_16502_7
crossref_primary_10_3390_e24111699
crossref_primary_10_1038_s41598_024_75243_1
crossref_primary_10_1109_TCSVT_2022_3221755
crossref_primary_10_3390_app13148037
crossref_primary_10_3390_rs16132405
crossref_primary_10_1016_j_dsp_2024_104674
crossref_primary_10_1007_s10278_024_01133_7
crossref_primary_10_1109_TCBB_2024_3469178
crossref_primary_10_1016_j_eswa_2023_121688
crossref_primary_10_1007_s11042_023_14472_4
crossref_primary_10_1038_s41598_024_71001_5
crossref_primary_10_1016_j_vrih_2024_06_003
crossref_primary_10_1109_TGRS_2024_3367959
crossref_primary_10_1088_1361_6501_acfdbe
crossref_primary_10_1109_ACCESS_2024_3394052
crossref_primary_10_7717_peerj_cs_2470
crossref_primary_10_1088_2631_8695_ada976
crossref_primary_10_1016_j_bspc_2024_106152
crossref_primary_10_1109_TGRS_2023_3265361
crossref_primary_10_1371_journal_pone_0270356
crossref_primary_10_1109_ACCESS_2024_3396224
crossref_primary_10_1109_TGRS_2023_3294241
crossref_primary_10_1109_ACCESS_2024_3444900
crossref_primary_10_3389_fpls_2024_1501043
crossref_primary_10_1016_j_bspc_2024_107368
crossref_primary_10_1007_s00138_024_01577_5
crossref_primary_10_1007_s11227_023_05585_6
crossref_primary_10_1007_s11760_024_03441_5
crossref_primary_10_1007_s00371_023_03024_4
crossref_primary_10_1016_j_compbiomed_2024_107917
crossref_primary_10_1016_j_compbiomed_2023_107149
crossref_primary_10_3390_electronics11121882
crossref_primary_10_3390_rs15133365
crossref_primary_10_1088_1361_6560_ad3c0c
crossref_primary_10_1016_j_eswa_2023_122788
crossref_primary_10_1177_00405175221129654
crossref_primary_10_3390_rs16060975
crossref_primary_10_3390_s22186857
crossref_primary_10_1109_TCSVT_2022_3198329
crossref_primary_10_1007_s00530_024_01360_6
crossref_primary_10_1109_TIP_2025_3541564
crossref_primary_10_1016_j_compag_2024_109706
crossref_primary_10_1016_j_patcog_2023_110148
crossref_primary_10_1007_s00521_022_06984_1
crossref_primary_10_1007_s11042_023_17112_z
crossref_primary_10_1109_TGRS_2024_3387572
crossref_primary_10_1007_s10509_025_04414_x
crossref_primary_10_3390_app14052124
crossref_primary_10_1117_1_JEI_33_5_053023
crossref_primary_10_1007_s00371_022_02758_x
crossref_primary_10_1016_j_neucom_2025_129966
crossref_primary_10_1007_s10278_024_01321_5
crossref_primary_10_1117_1_JRS_17_044515
crossref_primary_10_1016_j_imavis_2025_105469
crossref_primary_10_1109_JSTARS_2024_3394887
crossref_primary_10_1007_s11063_024_11471_w
crossref_primary_10_1007_s10489_022_03393_8
crossref_primary_10_1109_TGRS_2023_3289878
crossref_primary_10_3390_rs15133338
crossref_primary_10_1007_s00138_024_01606_3
Cites_doi 10.1609/aaai.v34i07.6834
10.1109/ICCV.2019.00682
10.1109/TIP.2018.2865280
10.1007/s11263-009-0275-4
10.1007/s11042-020-09500-6
10.1109/CVPR42600.2020.01261
10.1007/s11263-018-1101-7
10.1109/ICCV.2015.135
10.1007/s11042-019-7446-2
10.1109/CVPR.2016.596
10.1007/s00170-019-03407-9
10.1109/CVPR.2019.00091
10.1109/CVPR.2018.00813
10.1109/CVPR.2017.683
10.1016/j.neucom.2020.10.098
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2017.15
10.1007/978-3-030-01234-2_1
10.1016/j.eswa.2019.06.041
10.1109/CVPR.2017.660
10.1609/aaai.v33i01.33019259
10.1007/978-3-030-58452-8_13
10.1109/CVPR.2018.00913
10.1016/j.dsp.2022.103514
10.1109/TIP.2020.3034487
10.1109/ICCV.2019.00310
10.1007/978-3-030-01237-3_5
10.1007/978-3-319-46448-0_2
10.3390/s19224855
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2018.00377
10.1109/CVPR.2017.634
10.1109/CVPR.2016.314
10.1109/CVPR.2018.00644
10.1109/ICCV.2019.00972
10.1016/j.ssci.2020.104812
10.1109/TPAMI.2016.2577031
10.3390/sym12030434
10.1109/CVPR.2016.91
10.1016/j.neucom.2018.05.007
10.1109/CVPR.2017.106
10.1109/ICCV.2017.212
10.1109/CVPR.2016.207
10.1109/CVPR.2016.90
10.1109/MITS.2019.2903525
10.1109/CVPR.2018.00935
10.1109/CVPR.2017.690
10.1007/978-3-030-01264-9_45
10.1109/ICCV.2017.322
10.1109/ICCV.2017.324
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-11940-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30704
ExternalDocumentID 10_1007_s11042_022_11940_1
GrantInformation_xml – fundername: huazhong university of science and technology
  grantid: 2020kfyXGYJ114
  funderid: https://doi.org/10.13039/501100003397
– fundername: national natural science foundation of china
  grantid: 61572214
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-8c17f1a2891ffca14b04dc41636a67aa91c184c3a3c0e5b6409833cdc6c528ab3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 22:55:32 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 04:13:14 EDT 2025
Fri Feb 21 02:46:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Sub-pixel convolution
Feature pyramid network
Channel enhancement
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8c17f1a2891ffca14b04dc41636a67aa91c184c3a3c0e5b6409833cdc6c528ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1247-2211
PQID 2703198521
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2703198521
crossref_citationtrail_10_1007_s11042_022_11940_1
crossref_primary_10_1007_s11042_022_11940_1
springer_journals_10_1007_s11042_022_11940_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wang J, Chen K, Xu R, Liu Z, Loy CC, Lin D (2019) Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3007–3016
GeZJieZHuangXLiCYoshieODelving deep into the imbalance of positive proposals in two-stage object detectionNeurocomputing202142510711610.1016/j.neucom.2020.10.098
Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266
Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2117–2125
Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7794–7803
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision (ECCV), pp 740–755
EveringhamMGoolLVWilliamsCKIWinnJMZissermanAThe pascal visual object classes (VOC) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6517–6525
PangYCaoJLiYXieJSunHGongJTJU-DHD : a diverse high-resolution dataset for object detectionIEEE Trans Image Process20213020721910.1109/TIP.2020.3034487
Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790
ChenZChenDZhangYChengXZhangMWuCDeep learning for autonomous ship-oriented small ship detectionSaf Sci202013010481210.1016/j.ssci.2020.104812
Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2980–2988
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (neurIPS), pp 1097–1105
Chen Z, Huang S, Tao D (2018) Context refinement for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 71–86
YuanCGuoJFengPZhaoZLuoYXuCWangTDuanKLearning deep embedding with mini-cluster loss for person re-identificationMultimed Tools Appl20197815211452116610.1007/s11042-019-7446-2
Redmon J, Divvala SK, Girshick RB, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767
Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6154–6162
Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. arXiv:2107.04191
GuoJYuanCZhaoZFengPLuoYWangTObject detector with enriched global context informationMultimed Tools Appl20207939295512957110.1007/s11042-020-09500-6
Singh B, Davis LS (2018) An analysis of scale invariance in object detection SNIP. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3578–3587
Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar MN, Lee BA (2021) A survey of modern deep learning based object detection models. arXiv:2104.11892
ZhuYZhaoCGuoHWangJZhaoXLuHAttention couplenet: fully convolutional attention coupling network for object detectionIEEE Trans Image Process2018281113126386316810.1109/TIP.2018.2865280
Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142
ChenZZhangYWuCRanBUnderstanding individualization driving states via latent dirichlet allocation modelIEEE Intell Transp Syst Mag2019112415310.1109/MITS.2019.2903525
Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) Thundernet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6718–6727
Bell S, Zitnick CL, Bala K, Girshick RB (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883
Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: Proceedings of the European conference on computer vision (ECCV), pp 213–229
Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8971–8980
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 770–778
Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1874–1883
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890
He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2961–2969
GeHZhuZLouKWeiWLiuRDamaševičiusRWoźniakMClassification of infrared objects in manifold space using kullback-leibler divergence of gaussian distributions of image pointsSymmetry202012343410.3390/sym12030434
LiHLiuYOuyangWWangXZoom out-and-in network with map attention decision for region proposal and object detectionInt J Comput Vis2019127322523810.1007/s11263-018-1101-7
Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8759–8768
Yang S, Luo P, Loy CC, Tang X (2016) WIDER FACE: a face detection benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5525–5533
Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), pp 734–750
Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 821–830
FengPXuCZhaoZLiuFGuoJYuanCWangTDuanKA deep features based generative model for visual trackingNeurocomputing201830824525410.1016/j.neucom.2018.05.007
Yu X, Liu T, Wang X, Tao D (2017) On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7370–7379
ChenZCaiHZhangYWuCMuMLiZSoteloMAA novel sparse representation model for pedestrian abnormal trajectory understandingExpert Syst Appl201913811275310.1016/j.eswa.2019.06.041
Cao J, Chen Q, Guo J, Shi R (2020) Attention-guided context feature pyramid network for object detection. arXiv:2005.11475
Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9627–9636
Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164
RenSHeKGirshickRSunJFaster r-cnn: towards real-time object detection with region proposal networksIEEE Transactions on Pattern Analysis and Machine Intelligence20163961137114910.1109/TPAMI.2016.2577031
ZhouBDuanXYeDWeiWWoźniakMPołapDDamaševičiusRMulti-level features extraction for discontinuous target tracking in remote sensing image monitoringSensors20191922485510.3390/s19224855
Chen K, Wang J, Pang J, et al. (2019) MMDetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155
JuočasLRaudonisVMaskeliūnasRDamaševičiusRWoźniakMMulti-focusing algorithm for microscopy imagery in assembly line using low-cost cameraInt J Adv Manuf Syst201910293217322710.1007/s00170-019-03407-9
Shen Z, Liu Z, Li J, Jiang Y, Chen Y, Xue X (2017) DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1937–1945
Xie S, Girshick RB, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 5987–5995
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Proceedings of the European conference on computer vision (ECCV), pp 21–37
Guo C, Fan B, Zhang Q, Xiang S, Pan C (2020) Augfpn: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
11940_CR40
11940_CR42
11940_CR41
11940_CR44
11940_CR43
Z Ge (11940_CR14) 2021; 425
11940_CR46
11940_CR45
11940_CR48
Y Zhu (11940_CR56) 2018; 28
11940_CR47
11940_CR49
J Guo (11940_CR17) 2020; 79
Y Pang (11940_CR32) 2021; 30
11940_CR50
11940_CR53
11940_CR52
Z Chen (11940_CR7) 2019; 138
11940_CR54
11940_CR15
Z Chen (11940_CR10) 2019; 11
M Everingham (11940_CR11) 2010; 88
11940_CR16
11940_CR3
11940_CR4
11940_CR1
11940_CR2
11940_CR5
S Ren (11940_CR38) 2016; 39
11940_CR6
11940_CR9
L Juočas (11940_CR20) 2019; 102
11940_CR22
11940_CR21
11940_CR23
11940_CR26
11940_CR25
11940_CR28
11940_CR27
11940_CR19
11940_CR18
H Li (11940_CR24) 2019; 127
Z Chen (11940_CR8) 2020; 130
11940_CR31
11940_CR30
11940_CR33
P Feng (11940_CR12) 2018; 308
11940_CR35
11940_CR34
11940_CR37
11940_CR36
11940_CR39
H Ge (11940_CR13) 2020; 12
B Zhou (11940_CR55) 2019; 19
11940_CR29
C Yuan (11940_CR51) 2019; 78
References_xml – reference: Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2980–2988
– reference: YuanCGuoJFengPZhaoZLuoYXuCWangTDuanKLearning deep embedding with mini-cluster loss for person re-identificationMultimed Tools Appl20197815211452116610.1007/s11042-019-7446-2
– reference: Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
– reference: ChenZZhangYWuCRanBUnderstanding individualization driving states via latent dirichlet allocation modelIEEE Intell Transp Syst Mag2019112415310.1109/MITS.2019.2903525
– reference: Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9627–9636
– reference: Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 821–830
– reference: Chen K, Wang J, Pang J, et al. (2019) MMDetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155
– reference: Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7794–7803
– reference: JuočasLRaudonisVMaskeliūnasRDamaševičiusRWoźniakMMulti-focusing algorithm for microscopy imagery in assembly line using low-cost cameraInt J Adv Manuf Syst201910293217322710.1007/s00170-019-03407-9
– reference: Yu X, Liu T, Wang X, Tao D (2017) On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7370–7379
– reference: Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: Proceedings of the European conference on computer vision (ECCV), pp 213–229
– reference: Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Proceedings of the European conference on computer vision (ECCV), pp 21–37
– reference: ZhouBDuanXYeDWeiWWoźniakMPołapDDamaševičiusRMulti-level features extraction for discontinuous target tracking in remote sensing image monitoringSensors20191922485510.3390/s19224855
– reference: GeZJieZHuangXLiCYoshieODelving deep into the imbalance of positive proposals in two-stage object detectionNeurocomputing202142510711610.1016/j.neucom.2020.10.098
– reference: Xie S, Girshick RB, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 5987–5995
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (neurIPS), pp 1097–1105
– reference: EveringhamMGoolLVWilliamsCKIWinnJMZissermanAThe pascal visual object classes (VOC) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
– reference: Redmon J, Divvala SK, Girshick RB, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
– reference: GeHZhuZLouKWeiWLiuRDamaševičiusRWoźniakMClassification of infrared objects in manifold space using kullback-leibler divergence of gaussian distributions of image pointsSymmetry202012343410.3390/sym12030434
– reference: Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) Thundernet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6718–6727
– reference: Cao J, Chen Q, Guo J, Shi R (2020) Attention-guided context feature pyramid network for object detection. arXiv:2005.11475
– reference: Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266
– reference: Liu Y, Wang Y, Wang S, Liang T, Zhao Q, Tang Z, Ling H (2020) Cbnet: a novel composite backbone network architecture for object detection. In: Proceedings of the AAAI conference on artificial intelligence, pp 11653–11660
– reference: ChenZChenDZhangYChengXZhangMWuCDeep learning for autonomous ship-oriented small ship detectionSaf Sci202013010481210.1016/j.ssci.2020.104812
– reference: Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6517–6525
– reference: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164
– reference: LiHLiuYOuyangWWangXZoom out-and-in network with map attention decision for region proposal and object detectionInt J Comput Vis2019127322523810.1007/s11263-018-1101-7
– reference: Gidaris S, Komodakis N (2015) Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE international conference on computer vision, pp 1134–1142
– reference: Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890
– reference: Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32
– reference: Chen Z, Huang S, Tao D (2018) Context refinement for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 71–86
– reference: ChenZCaiHZhangYWuCMuMLiZSoteloMAA novel sparse representation model for pedestrian abnormal trajectory understandingExpert Syst Appl201913811275310.1016/j.eswa.2019.06.041
– reference: Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar MN, Lee BA (2021) A survey of modern deep learning based object detection models. arXiv:2104.11892
– reference: ZhuYZhaoCGuoHWangJZhaoXLuHAttention couplenet: fully convolutional attention coupling network for object detectionIEEE Trans Image Process2018281113126386316810.1109/TIP.2018.2865280
– reference: FengPXuCZhaoZLiuFGuoJYuanCWangTDuanKA deep features based generative model for visual trackingNeurocomputing201830824525410.1016/j.neucom.2018.05.007
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 770–778
– reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision (ECCV), pp 740–755
– reference: Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10781–10790
– reference: Singh B, Davis LS (2018) An analysis of scale invariance in object detection SNIP. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3578–3587
– reference: Guo C, Fan B, Zhang Q, Xiang S, Pan C (2020) Augfpn: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12595–12604
– reference: Bell S, Zitnick CL, Bala K, Girshick RB (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2874–2883
– reference: Yang S, Luo P, Loy CC, Tang X (2016) WIDER FACE: a face detection benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5525–5533
– reference: Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV), pp 734–750
– reference: Li B, Yan J, Wu W, Zhu Z, Hu X (2018) High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8971–8980
– reference: Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1874–1883
– reference: Shen Z, Liu Z, Li J, Jiang Y, Chen Y, Xue X (2017) DSOD: learning deeply supervised object detectors from scratch. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1937–1945
– reference: Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6154–6162
– reference: GuoJYuanCZhaoZFengPLuoYWangTObject detector with enriched global context informationMultimed Tools Appl20207939295512957110.1007/s11042-020-09500-6
– reference: Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767
– reference: RenSHeKGirshickRSunJFaster r-cnn: towards real-time object detection with region proposal networksIEEE Transactions on Pattern Analysis and Machine Intelligence20163961137114910.1109/TPAMI.2016.2577031
– reference: Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8759–8768
– reference: Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. arXiv:2107.04191
– reference: Wang J, Chen K, Xu R, Liu Z, Loy CC, Lin D (2019) Carafe: content-aware reassembly of features. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3007–3016
– reference: Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2117–2125
– reference: He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2961–2969
– reference: PangYCaoJLiYXieJSunHGongJTJU-DHD : a diverse high-resolution dataset for object detectionIEEE Trans Image Process20213020721910.1109/TIP.2020.3034487
– ident: 11940_CR30
  doi: 10.1609/aaai.v34i07.6834
– ident: 11940_CR34
  doi: 10.1109/ICCV.2019.00682
– volume: 28
  start-page: 113
  issue: 1
  year: 2018
  ident: 11940_CR56
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2865280
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 11940_CR11
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– volume: 79
  start-page: 29551
  issue: 39
  year: 2020
  ident: 11940_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09500-6
– ident: 11940_CR16
  doi: 10.1109/CVPR42600.2020.01261
– volume: 127
  start-page: 225
  issue: 3
  year: 2019
  ident: 11940_CR24
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-018-1101-7
– ident: 11940_CR15
  doi: 10.1109/ICCV.2015.135
– volume: 78
  start-page: 21145
  issue: 15
  year: 2019
  ident: 11940_CR51
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7446-2
– ident: 11940_CR49
  doi: 10.1109/CVPR.2016.596
– volume: 102
  start-page: 3217
  issue: 9
  year: 2019
  ident: 11940_CR20
  publication-title: Int J Adv Manuf Syst
  doi: 10.1007/s00170-019-03407-9
– ident: 11940_CR31
  doi: 10.1109/CVPR.2019.00091
– ident: 11940_CR5
– ident: 11940_CR46
  doi: 10.1109/CVPR.2018.00813
– ident: 11940_CR44
  doi: 10.1109/CVPR.2017.683
– volume: 425
  start-page: 107
  year: 2021
  ident: 11940_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.098
– ident: 11940_CR42
  doi: 10.1109/CVPR42600.2020.01079
– ident: 11940_CR50
  doi: 10.1109/CVPR.2017.15
– ident: 11940_CR47
  doi: 10.1007/978-3-030-01234-2_1
– volume: 138
  start-page: 112753
  year: 2019
  ident: 11940_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.041
– ident: 11940_CR53
  doi: 10.1109/CVPR.2017.660
– ident: 11940_CR54
  doi: 10.1609/aaai.v33i01.33019259
– ident: 11940_CR4
  doi: 10.1007/978-3-030-58452-8_13
– ident: 11940_CR28
  doi: 10.1109/CVPR.2018.00913
– ident: 11940_CR52
  doi: 10.1016/j.dsp.2022.103514
– volume: 30
  start-page: 207
  year: 2021
  ident: 11940_CR32
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3034487
– ident: 11940_CR45
  doi: 10.1109/ICCV.2019.00310
– ident: 11940_CR6
– ident: 11940_CR9
  doi: 10.1007/978-3-030-01237-3_5
– ident: 11940_CR29
  doi: 10.1007/978-3-319-46448-0_2
– volume: 19
  start-page: 4855
  issue: 22
  year: 2019
  ident: 11940_CR55
  publication-title: Sensors
  doi: 10.3390/s19224855
– ident: 11940_CR27
  doi: 10.1007/978-3-319-10602-1_48
– ident: 11940_CR41
  doi: 10.1109/CVPR.2018.00377
– ident: 11940_CR48
  doi: 10.1109/CVPR.2017.634
– ident: 11940_CR1
  doi: 10.1109/CVPR.2016.314
– ident: 11940_CR2
  doi: 10.1109/CVPR.2018.00644
– ident: 11940_CR43
  doi: 10.1109/ICCV.2019.00972
– volume: 130
  start-page: 104812
  year: 2020
  ident: 11940_CR8
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2020.104812
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 11940_CR38
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– ident: 11940_CR37
– volume: 12
  start-page: 434
  issue: 3
  year: 2020
  ident: 11940_CR13
  publication-title: Symmetry
  doi: 10.3390/sym12030434
– ident: 11940_CR33
– ident: 11940_CR35
  doi: 10.1109/CVPR.2016.91
– volume: 308
  start-page: 245
  year: 2018
  ident: 11940_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.007
– ident: 11940_CR25
  doi: 10.1109/CVPR.2017.106
– ident: 11940_CR3
– ident: 11940_CR21
– ident: 11940_CR39
  doi: 10.1109/ICCV.2017.212
– ident: 11940_CR40
  doi: 10.1109/CVPR.2016.207
– ident: 11940_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 11
  start-page: 41
  issue: 2
  year: 2019
  ident: 11940_CR10
  publication-title: IEEE Intell Transp Syst Mag
  doi: 10.1109/MITS.2019.2903525
– ident: 11940_CR23
  doi: 10.1109/CVPR.2018.00935
– ident: 11940_CR36
  doi: 10.1109/CVPR.2017.690
– ident: 11940_CR22
  doi: 10.1007/978-3-030-01264-9_45
– ident: 11940_CR18
  doi: 10.1109/ICCV.2017.322
– ident: 11940_CR26
  doi: 10.1109/ICCV.2017.324
SSID ssj0016524
Score 2.6244748
Snippet Feature pyramid network (FPN) has been an efficient framework to extract multi-scale features in object detection. However, current FPN-based methods mostly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30685
SubjectTerms Aliasing
Computer Communication Networks
Computer Science
Context
Convolution
Data Structures and Information Theory
Deep learning
Feature extraction
Feature maps
Flaw detection
Localization
Multimedia
Multimedia Information Systems
Object recognition
Performance evaluation
Pixels
Reduction
Sensors
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8DAo4AoL3lgA4s4D8fpgqBqVSFRVYhK3SLbcWCo0kLL_8eXOg0g0UyR4nj4zr6HfXcfwHWem0yEkU-RdoCGJstoksiIhjkXXPHIPlg7_Dzkg3H4NIkm7sBt4dIqK51YKupspvGM_M7HRuuJsNbmfv5BkTUKb1cdhcY2NK0KFqIBzcfecPSyvkfgkaO1FR61tpG5splV8RzD0hTMZmc2kvco-22aan_zzxVpaXn6B7DnXEbysJLxIWyZogX7FR0DcbuzBbs_egseQafbo_3RsENM8Y49NYo3gkW-hZkS1ywVRULsG5kpPIwhmVmWeVnFMYz7vdfugDqiBKotJksqNItzJm3sxPJcSxYqL8w0ulpc8ljKhGkbyOlABtozkeI2phNBoDPNdeQLqYITaBSzwpwCCYRVYZxrHscylNJTFjqlVZCjq2SduTawCqNUuy7iSGYxTev-x4hranFNS1xT1oab9T_zVQ-NjaMvKuhTt58WaS39NtxW4qg__z_b2ebZzmHHxxVQJo1dQGP5-WUurZexVFduKX0DCS7KWQ
  priority: 102
  providerName: ProQuest
Title CE-FPN: enhancing channel information for object detection
URI https://link.springer.com/article/10.1007/s11042-022-11940-1
https://www.proquest.com/docview/2703198521
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXPTgAzWiSHrwpk22-yiFGxAWopEQI4meNm23qweyGMH_73Tpgho1cS_dZLs9TDudb9qZbwAus8ykIox8assO0NCkKW23ZUTDjAuueISPzR2-G_PRNLx5jB5dUtiijHYvrySLnXqT7MZsKomNPmfoeXsUfZ5qhL67DeSa-t313QGPXClb4VG0h8ylyvw8xldztMGY365FC2sTH8Ceg4mku5rXQ9gyeQ32yxIMxGlkDXY_8QkeQac_oPFk3CEmf7E8GvkzsYm9uZkRR5Bqp4HgG5krewBDUrMsYrHyY5jGg4f-iLriCFSj1iyp0KyVMYn-EssyLVmovDDVFl5xyVtStplG500HMtCeiRRHP04EgU4115EvpApOoJLPc3MKJBC4bXGueaslQyk9haJTWgWZhUcI4OrAShkl2jGH2wIWs2TDeWzlmqBck0KuCavD1fqf1xVvxp-9G6XoE6dDi8S31PptgfiiDtfldGw-_z7a2f-6n8OOb1dEETjWgMry7d1cINJYqiZsi3jYhGo37vXGth0-3Q6w7Q3Gk_tmsew-ANA7y1Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHIADb8RgQA5wgoilj6ydhBACxnhNHDaJW0nSFA5TN9gQ4k_xG7G7lgES3OipUlsfHNd2Yn-fAXaSxMaB5zucxg5wz8YxD0Plcy-RgdTSx4uwwzct2ex4l3f-3QS8F1gYaqssfGLmqOOeoTPyA4eI1sMAo81R_4nT1CiqrhYjNEZmcWXfXnHLNji8OMX13XWcxln7pMnzqQLcoIAhD4yoJULhRkMkiVHC01UvNpSXSCVrSoXC4K7HuMo1VetriRugwHVNbKTxnUBpF-VOwpTnYiQnZHrj_LNqIf18iG5Q5RiJRQ7SGUH1BAFhqHdeiJDqqd8D4Ti7_VGQzeJcYwHm8gSVHY8sahEmbLoE88XwB5b7giWY_cJkuAz1kzPeuG3VmU0ficEjfWAEKU5tl-XUrGQADO9YT9PRD4vtMOsCS1eg8y8KXIVS2kvtGjA3QIcppZG1mvKUqmpUnTbaTSgxw9SxDKLQUWRyznIandGNxmzLpNcI9Rpleo1EGfY-v-mPGDv-fLtSqD7K_95BNLa1MuwXyzF-_Lu09b-lbcN0s31zHV1ftK42YMYha8ja1SpQGj6_2E3Mb4Z6KzMqBvf_bcUfxNUF4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-MwFH5iioSGA-uMKBTwAU5gUWdxkkoIsbRirSo0SNwytuPAAaUsRYi_xq_jvdShgAQ3coqUxIfnL2_xWz6AtTy3WRyEHifaAR7YLONJokIe5DKWWoZ4Ue_wWVceXgTHl-HlGLxUvTBUVlnpxFJRZ31DZ-RbHg1aT2K0Nlu5K4voHXR2bu84MUhRprWi0xhC5MQ-P2H49rB9dIB7ve55nfa__UPuGAa4wcUGPDYiyoXCoEPkuVEi0M0gM-SjSCUjpRJhMAIyvvJN04ZaYjAU-77JjDShFyvt47q_YDyiqKgG43vtbu_8LYchQ0epGzc52mXhWnaGjXuC2mKokl6IhLKrH83iyNf9lJ4trV5nBqacu8p2h_iahTFbzMF0RQXBnGaYg8l3cw3nobXf5p1et8VscU3zPIorRg3Ghb1hblArwYHhHetrOghimR2UNWHFH7j4ERH-hVrRL-wCMD9G9SmlkVGkAqWaGkWnjfZzctPQkayDqGSUGjfBnIg0btLR7GWSa4pyTUu5pqIOG2_f3A7nd3z7dqMSfer-5Yd0hLw6bFbbMXr89WqL36-2ChOI4PT0qHuyBL89AkNZu9aA2uD-0S6jszPQKw5VDP7_NJBfAaCUC3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CE-FPN%3A+enhancing+channel+information+for+object+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Luo%2C+Yihao&rft.au=Cao%2C+Xiang&rft.au=Zhang%2C+Juntao&rft.au=Guo%2C+Jingjuan&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=21&rft.spage=30685&rft.epage=30704&rft_id=info:doi/10.1007%2Fs11042-022-11940-1&rft.externalDocID=10_1007_s11042_022_11940_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon