Adaptive decentralized prescribed performance control for a class of large-scale nonlinear systems subject to nonsymmetric input saturations
This paper investigates an adaptive decentralized predefined performance control problem for a class of large-scale nonlinear systems with nonsymmetric input saturation by using multi-dimensional taylor network (MTN) approach. Firstly, the input saturation model is approximated by a smooth function...
Saved in:
Published in | Neural computing & applications Vol. 34; no. 13; pp. 11123 - 11140 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates an adaptive decentralized predefined performance control problem for a class of large-scale nonlinear systems with nonsymmetric input saturation by using multi-dimensional taylor network (MTN) approach. Firstly, the input saturation model is approximated by a smooth function with a bounded approximation error and unknown nonlinear functions are estimated by MTNs. Secondly, a decentralized tracking control algorithm is established by integrating the idea of prescribed performance control into backstepping recursive technique. Thirdly, by using the designed MTN-based adaptive decentralized controller, all the closed-loop signals are bounded and all the tracking errors satisfy the predefined transient and steady-state performance, respectively. Finally, the presented control method is effective by introducing three examples, and the simulation results verify that the correctness and reasonableness of the proposed control algorithm. |
---|---|
AbstractList | This paper investigates an adaptive decentralized predefined performance control problem for a class of large-scale nonlinear systems with nonsymmetric input saturation by using multi-dimensional taylor network (MTN) approach. Firstly, the input saturation model is approximated by a smooth function with a bounded approximation error and unknown nonlinear functions are estimated by MTNs. Secondly, a decentralized tracking control algorithm is established by integrating the idea of prescribed performance control into backstepping recursive technique. Thirdly, by using the designed MTN-based adaptive decentralized controller, all the closed-loop signals are bounded and all the tracking errors satisfy the predefined transient and steady-state performance, respectively. Finally, the presented control method is effective by introducing three examples, and the simulation results verify that the correctness and reasonableness of the proposed control algorithm. |
Author | Han, Yu-Qun Zhu, Shan-Liang |
Author_xml | – sequence: 1 givenname: Shan-Liang surname: Zhu fullname: Zhu, Shan-Liang organization: School of Mathematics and Physics, Qingdao University of Science and Technology – sequence: 2 givenname: Yu-Qun orcidid: 0000-0002-9055-2954 surname: Han fullname: Han, Yu-Qun email: yuqunhan@qust.edu.cn organization: School of Mathematics and Physics, Qingdao University of Science and Technology |
BookMark | eNp9kMtq3DAUhkVJIJM0L5CVIGunRxeP5WUIuRQC3bRrIcvHQYNtuTpyYPoMfehoMoFCF1npoP__z-U7ZydznJGxKwE3AqD5RgC1FBVIWUEDSlbmC9sIrVSloDYnbAOtLvJWqzN2TrQDAL019Yb9ve3dksMr8h49zjm5MfzBni8JyafQHUpMQ0yTmz1yH4sljrx8cMf96Ih4HPjo0gtW5N2IvGw2hhld4rSnjBNxWrsd-sxzPIi0nybMKXge5mXNnFxek8uhKF_Z6eBGwsuP94L9erj_efdUPf94_H53-1x5JdpcmU5p5WpnQHYAg1J147UUotN9V3ujdI9Qq7rdgjO6uIYeVdeCE22jlfC9umDXx75Lir9XpGx3cU1zGWnl1hRKQjZNccmjy6dIlHCwSwqTS3srwB6o2yN1W6jbd-rWlJD5L-RDfr-uoA3j51F1jFKZM79g-rfVJ6k3F_6byg |
CitedBy_id | crossref_primary_10_1002_acs_3503 crossref_primary_10_1002_acs_3977 crossref_primary_10_1002_asjc_3163 crossref_primary_10_1002_rnc_7517 crossref_primary_10_1177_09596518241236978 crossref_primary_10_1016_j_ejcon_2024_101127 crossref_primary_10_1016_j_isatra_2022_10_048 crossref_primary_10_1080_00207179_2023_2285900 crossref_primary_10_1080_00207179_2023_2241921 crossref_primary_10_1007_s00521_023_08361_y crossref_primary_10_1016_j_isatra_2023_12_008 crossref_primary_10_1177_01423312231198920 crossref_primary_10_1016_j_neunet_2022_10_025 crossref_primary_10_1109_TASE_2023_3277470 crossref_primary_10_1002_rnc_6258 crossref_primary_10_1002_asjc_3317 crossref_primary_10_1007_s40815_024_01694_3 crossref_primary_10_1016_j_ejcon_2024_101091 crossref_primary_10_1155_2023_5541378 crossref_primary_10_1007_s11063_022_11020_3 |
Cites_doi | 10.1002/acs.3224 10.1109/TFUZZ.2020.2992632 10.1109/TFUZZ.2012.2204065 10.1016/j.jfranklin.2018.09.001 10.1109/9.956061 10.3390/electronics9091455 10.1109/TSMC.2017.2685638 10.1016/j.neunet.2017.12.013 10.1016/j.neucom.2018.01.023 10.1109/TAC.2009.2031572 10.1016/j.automatica.2012.06.054 10.1016/j.isatra.2019.09.015 10.1016/j.asoc.2019.106043 10.1109/ACCESS.2020.3009958 10.3166/ejc.15.624-633 10.1109/TFUZZ.2016.2566803 10.1080/00207721.2020.1793232 10.1016/j.neucom.2015.01.063 10.1016/j.physa.2020.124203 10.1080/00207179.2019.1590649 10.1080/00207179.2018.1521994 10.1109/TCSII.2020.2966298 10.1002/rnc.1609 10.1016/j.automatica.2009.02.021 10.1109/TSMCB.2012.2196432 10.1109/TSMC.2017.2777472 10.1109/TFUZZ.2018.2873971 10.1109/TAC.2016.2600340 10.1109/TFUZZ.2014.2382132 10.1002/rnc.2943 10.1016/j.automatica.2019.02.002 10.1109/TCYB.2017.2692384 10.1109/TCYB.2014.2365778 10.1049/iet-cta.2019.0934 10.1016/j.automatica.2008.07.019 10.1016/j.neucom.2017.02.030 10.1016/j.neucom.2019.08.076 10.1016/j.ins.2013.09.043 10.1109/TNN.2011.2146788 10.1016/j.automatica.2014.07.024 10.1016/j.ins.2020.03.055 10.1109/TCYB.2014.2363073 10.1049/iet-cta.2017.0538 10.1109/TNNLS.2019.2912082 10.1109/TSMC.2017.2784451 10.1109/TNNLS.2014.2378991 10.1016/j.asoc.2020.106241 10.1049/iet-cta.2020.0336 10.1016/j.ins.2016.12.017 10.1109/TSMC.2016.2635678 10.1016/S0167-6911(99)00007-9 10.1016/j.neucom.2018.06.053 10.1109/TCYB.2013.2240296 10.1016/j.asoc.2015.07.036 10.1016/j.neucom.2014.04.032 10.1016/j.neucom.2018.01.026 10.1109/TCYB.2016.2607166 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-022-07032-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 11140 |
ExternalDocumentID | 10_1007_s00521_022_07032_8 |
GrantInformation_xml | – fundername: natural science foundation of shandong province grantid: ZR2020QF055 funderid: http://dx.doi.org/10.13039/501100007129 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-8b343a5a802b00f3357c4211b4db5c834de0535960a84a80fde3b90a197431cd3 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 04:29:40 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jul 01 01:47:04 EDT 2025 Fri Feb 21 02:45:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Multi-dimensional Taylor network Input saturation Prescribed performance Adaptive control Large-scale nonlinear systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8b343a5a802b00f3357c4211b4db5c834de0535960a84a80fde3b90a197431cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9055-2954 |
PQID | 2680641277 |
PQPubID | 2043988 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2680641277 crossref_primary_10_1007_s00521_022_07032_8 crossref_citationtrail_10_1007_s00521_022_07032_8 springer_journals_10_1007_s00521_022_07032_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Si, Dong, Yang (CR22) 2018; 99 Liu, Wang, Huang, Zhang (CR33) 2017; 25 Duan, Chu, Han (CR39) 2020; 8 Zhang, Liu (CR6) 2014; 50 Li, Chen, Li (CR49) 2011; 21 Mosavi, Qasem, Shokri, Band, Mohammadzadeh (CR56) 2020; 9 Liu, Chen, Wen, Tong (CR7) 2011; 22 Yang, Tan, Yue (CR34) 2020; 50 Cheng, Zhang, Liu (CR46) 2019; 370 Chen, Zhou, Guo (CR30) 2014; 144 Mahmoud, Almutairi (CR2) 2009; 15 Yoo, Park, Choi (CR52) 2009; 45 Jiang, Repperger, Hill (CR4) 2001; 10 Tong, Li (CR18) 2013; 21 Mahmoud (CR1) 2009; 54 Long, Zhao (CR21) 2015; 23 Sun, Sui, Tong (CR20) 2018; 48 Chen, Liu, Liu, Lin (CR50) 2009; 45 Esfandiari, Abdollahi, Talebi (CR25) 2015; 26 Wang, Yang (CR43) 2018; 284 Niu, Wang, Li, Xie, Alotaibi, Alsaadi (CR16) 2019; 49 Wang, Shi, Li, Zhou (CR9) 2017; 47 Deng, Yang (CR19) 2017; 382–383 Liu, Liu, Wang, Zhou, Lu, Xu (CR44) 2020; 99 Wang, Chen, Lin (CR10) 2014; 24 Liu, Wang, Gao, Chen (CR32) 2017; 241 Zhou, Shi, Liu, Xu (CR13) 2012; 42 Han, Yan (CR14) 2020; 93 Song, Li, Wang, Huang, Liu (CR26) 2020; 67 Liu, Jiang, Hill (CR5) 2012; 48 Han, Li, He, Zhu (CR36) 2021 Mohammadzadeh, Kaynak (CR57) 2020; 88 Gao, Sun, Wen, Wang (CR37) 2017; 62 Zhou, Shi, Tian, Wang (CR29) 2015; 45 Zhu, Liu, Wen (CR11) 2020; 527 Han, Zhu, Yang, Chu (CR8) 2021; 94 Li, Bai, Zhou, Lu, Wang (CR27) 2017; 47 Guo, Jiang, Hill (CR3) 1999; 37 Wang, Liu, Bao, Xie, Li (CR23) 2020; 31 Wang, Liu, Liu, Chen, Lin (CR12) 2015; 45 Li, Guo, Xiang (CR41) 2018; 283 Wang, Chen, Liu, Liu, Lin (CR28) 2014; 269 Bu, He, Wei (CR42) 2018; 355 Ouyang, Wu, Zhao, Gao (CR45) 2020; 51 Wang, Chen, Zhang (CR31) 2019; 103 Du, Pan, Li, Lam (CR51) 2020 Sui, Tong, Li (CR35) 2015; 158 Mohammadzadeh, Hashemzadeh (CR53) 2015; 37 Mohammadzadeh, Kumbasar (CR55) 2020; 91 Han, Yan (CR15) 2018; 12 Han (CR38) 2020; 14 Cao, Li, Wang, Zhou (CR24) 2019; 27 Wang, Chen, Liu, Liu, Lin (CR47) 2013; 43 Niu, Ahn, Li, Liu (CR17) 2018; 48 Han (CR48) 2020; 14 Balootaki, Rahmani, Moeinkhah, Mohammadzadeh (CR54) 2020; 551 Wang, Zou, Liu, Liu (CR40) 2018; 314 S Li (7032_CR41) 2018; 283 ZB Song (7032_CR26) 2020; 67 L Cao (7032_CR24) 2019; 27 A Mohammadzadeh (7032_CR55) 2020; 91 B Chen (7032_CR50) 2009; 45 HQ Wang (7032_CR9) 2017; 47 PH Du (7032_CR51) 2020 C Cheng (7032_CR46) 2019; 370 B Niu (7032_CR17) 2018; 48 K Esfandiari (7032_CR25) 2015; 26 TF Liu (7032_CR5) 2012; 48 HQ Wang (7032_CR47) 2013; 43 CG Liu (7032_CR44) 2020; 99 MS Mahmoud (7032_CR1) 2009; 54 Y Guo (7032_CR3) 1999; 37 S Sui (7032_CR35) 2015; 158 A Mohammadzadeh (7032_CR53) 2015; 37 X Zhang (7032_CR6) 2014; 50 HQ Wang (7032_CR40) 2018; 314 Q Zhou (7032_CR29) 2015; 45 HQ Wang (7032_CR28) 2014; 269 MA Balootaki (7032_CR54) 2020; 551 DY Duan (7032_CR39) 2020; 8 SC Tong (7032_CR18) 2013; 21 XY Ouyang (7032_CR45) 2020; 51 SJ Yoo (7032_CR52) 2009; 45 YQ Han (7032_CR36) 2021 Y Yang (7032_CR34) 2020; 50 L Liu (7032_CR33) 2017; 25 CC Wang (7032_CR43) 2018; 284 HQ Wang (7032_CR23) 2020; 31 MS Mahmoud (7032_CR2) 2009; 15 C Deng (7032_CR19) 2017; 382–383 A Mosavi (7032_CR56) 2020; 9 Q Zhou (7032_CR13) 2012; 42 HY Li (7032_CR27) 2017; 47 HQ Wang (7032_CR10) 2014; 24 WJ Si (7032_CR22) 2018; 99 Y Han (7032_CR14) 2020; 93 BH Wang (7032_CR31) 2019; 103 YQ Han (7032_CR38) 2020; 14 XP Liu (7032_CR32) 2017; 241 YJ Liu (7032_CR7) 2011; 22 ZP Jiang (7032_CR4) 2001; 10 YQ Han (7032_CR15) 2018; 12 M Chen (7032_CR30) 2014; 144 B Niu (7032_CR16) 2019; 49 A Mohammadzadeh (7032_CR57) 2020; 88 LJ Long (7032_CR21) 2015; 23 YQ Han (7032_CR48) 2020; 14 HQ Wang (7032_CR12) 2015; 45 YF Gao (7032_CR37) 2017; 62 KK Sun (7032_CR20) 2018; 48 YQ Han (7032_CR8) 2021; 94 J Li (7032_CR49) 2011; 21 XW Bu (7032_CR42) 2018; 355 QD Zhu (7032_CR11) 2020; 527 |
References_xml | – volume: 551 start-page: 124203 year: 2020 ident: CR54 article-title: On the synchronization and stabilization of fractional-order chaotic systems: recent advances and future perspectives publication-title: Phys A Stat Mech Appl – volume: 48 start-page: 2560 issue: 10 year: 2012 end-page: 2568 ident: CR5 article-title: Decentralized output-feedback control of large-scale nonlinear systems with sensor noise publication-title: Automatica – volume: 37 start-page: 71 issue: 2 year: 1999 end-page: 85 ident: CR3 article-title: Decentralized robust disturbance attenuation for a class of large-scale nonlinear systems publication-title: Syst Control Lett – volume: 15 start-page: 624 issue: 6 year: 2009 end-page: 633 ident: CR2 article-title: Decentralized stabilization of interconnected systems with time-varying delays publication-title: Eur J Control – volume: 54 start-page: 2663 issue: 11 year: 2009 end-page: 2668 ident: CR1 article-title: Decentralized stabilization of interconnected systems with time-varying delays publication-title: IEEE Trans Autom Control – volume: 62 start-page: 2498 issue: 5 year: 2017 end-page: 2504 ident: CR37 article-title: Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation publication-title: IEEE Trans Autom Control – volume: 283 start-page: 282 year: 2018 end-page: 292 ident: CR41 article-title: Sampled-data adaptive prescribed performance control of a class of nonlinear systems publication-title: Neurocomputing – volume: 241 start-page: 71 year: 2017 end-page: 80 ident: CR32 article-title: Adaptive fuzzy funnel control for a class of strict feedback nonlinear systems publication-title: Neurocomputing – volume: 27 start-page: 1201 issue: 6 year: 2019 end-page: 1214 ident: CR24 article-title: Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems publication-title: IEEE Trans Fuzzy Syst – volume: 49 start-page: 418 issue: 2 year: 2019 end-page: 432 ident: CR16 article-title: A novel neural-network-based adaptive control scheme for output-constrained stochastic switched nonlinear systems publication-title: IEEE Trans Syst Man Cybern Syst – volume: 94 start-page: 277 issue: 2 year: 2021 end-page: 285 ident: CR8 article-title: Adaptive multi-dimensional Taylor network tracking control for a class of nonlinear systems publication-title: Int J Control – volume: 42 start-page: 1608 issue: 6 year: 2012 end-page: 1619 ident: CR13 article-title: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 9 start-page: 1455 issue: 9 year: 2020 ident: CR56 article-title: Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature publication-title: Electronics – volume: 25 start-page: 527 issue: 3 year: 2017 end-page: 542 ident: CR33 article-title: Adaptive predefined performance control for MIMO systems with unknown direction via generalized fuzzy hyperbolic model publication-title: IEEE Trans Fuzzy Syst – volume: 26 start-page: 2311 issue: 10 year: 2015 end-page: 2322 ident: CR25 article-title: Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks publication-title: IEEE Trans Neural Netw Learn Syst – volume: 355 start-page: 8510 issue: 17 year: 2018 end-page: 8536 ident: CR42 article-title: A new prescribed performance control approach for uncertain nonlinear dynamic systems via back-stepping publication-title: J Franklin Inst – volume: 158 start-page: 100 year: 2015 end-page: 108 ident: CR35 article-title: Observer-based fuzzy adaptive prescribed performance tracking control for nonlinear stochastic systems with input saturation publication-title: Neurocomputing – volume: 93 start-page: 1605 issue: 7 year: 2020 end-page: 1618 ident: CR14 article-title: Observer-based multi-dimensional Taylor network decentralised adaptive tracking control of large-scale stochastic nonlinear systems publication-title: Int J Control – volume: 370 start-page: 94 year: 2019 end-page: 103 ident: CR46 article-title: Neural observer-based adaptive prescribed performance control for uncertain nonlinear systems with input saturation publication-title: Neurocomputing – volume: 31 start-page: 972 issue: 3 year: 2020 end-page: 983 ident: CR23 article-title: Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances publication-title: IEEE Trans Neural Netw Learn Syst – volume: 47 start-page: 3075 issue: 10 year: 2017 end-page: 3087 ident: CR9 article-title: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties publication-title: IEEE Trans Cybern – volume: 45 start-page: 1977 issue: 9 year: 2015 end-page: 1987 ident: CR12 article-title: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems publication-title: IEEE Trans Cybern – volume: 99 start-page: 123 year: 2018 end-page: 133 ident: CR22 article-title: Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics publication-title: Neural Netw – volume: 47 start-page: 2185 issue: 8 year: 2017 end-page: 2197 ident: CR27 article-title: Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation publication-title: IEEE Trans Syst Man Cybern Syst – volume: 48 start-page: 1326 issue: 4 year: 2018 end-page: 1339 ident: CR20 article-title: Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems publication-title: IEEE Trans Cybern – volume: 50 start-page: 1733 issue: 5 year: 2020 end-page: 1745 ident: CR34 article-title: Prescribed performance tracking control of a class of uncertain pure-feedback nonlinear systems with input saturation publication-title: IEEE Trans Syst Man Cybern Syst – volume: 67 start-page: 3152 issue: 12 year: 2020 end-page: 3156 ident: CR26 article-title: Adaptive tracking control for switched uncertain nonlinear systems with input saturation and unmodeled dynamics publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 43 start-page: 2093 issue: 6 year: 2013 end-page: 2104 ident: CR47 article-title: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints publication-title: IEEE Trans Cybern – volume: 23 start-page: 1844 issue: 5 year: 2015 end-page: 1860 ident: CR21 article-title: Decentralized adaptive fuzzy output-feedback control of switched large-scale nonlinear systems publication-title: IEEE Trans Fuzzy Syst – volume: 8 start-page: 132265 year: 2020 end-page: 132272 ident: CR39 article-title: Multi-dimensional Taylor network-based adaptive funnel tracking control of a class of nonlinear systems with prescribed performance publication-title: IEEE Access – volume: 314 start-page: 299 year: 2018 end-page: 309 ident: CR40 article-title: Robust fuzzy adaptive funnel control of nonlinear systems with dynamic uncertainties publication-title: Neurocomputing – volume: 45 start-page: 1554 issue: 6 year: 2009 end-page: 1560 ident: CR50 article-title: Novel adaptive neural control design for nonlinear MIMO time-delay systems publication-title: Automatica – volume: 48 start-page: 1701 issue: 10 year: 2018 end-page: 1714 ident: CR17 article-title: Adaptive control for stochastic switched nonlower triangular nonlinear systems and its application to a one-link manipulator publication-title: IEEE Trans Syst Man Cybern Syst – volume: 45 start-page: 2119 issue: 10 year: 2015 end-page: 2128 ident: CR29 article-title: Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation publication-title: IEEE Trans Cybern – year: 2021 ident: CR36 article-title: Adaptive multi-dimensional Taylor network funnel control of a class of nonlinear systems with asymmetric input saturation publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.3224 – volume: 10 start-page: 1623 issue: 46 year: 2001 end-page: 1629 ident: CR4 article-title: Decentralized nonlinear output-feedback stabilization with disturbance attenuation publication-title: IEEE Trans Autom Control – volume: 382–383 start-page: 334 year: 2017 end-page: 349 ident: CR19 article-title: Decentralized fault-tolerant control for a class of nonlinear large-scale systems with actuator faults publication-title: Inf Sci – volume: 37 start-page: 204 year: 2015 end-page: 216 ident: CR53 article-title: A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems publication-title: Appl Soft Comput – volume: 88 start-page: 106043 year: 2020 ident: CR57 article-title: A novel fractional-order fuzzy control method based on immersion and invariance approach publication-title: Appl Soft Comput – volume: 103 start-page: 363 year: 2019 end-page: 373 ident: CR31 article-title: Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback publication-title: Automatica – volume: 284 start-page: 17 year: 2018 end-page: 26 ident: CR43 article-title: Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation publication-title: Neurocomputing – volume: 91 start-page: 106241 year: 2020 ident: CR55 article-title: A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation publication-title: Appl Soft Comput – volume: 51 start-page: 2238 issue: 12 year: 2020 end-page: 2257 ident: CR45 article-title: Event-triggered adaptive prescribed performance control for a class of pure-feedback stochastic nonlinear systems with input saturation constraints publication-title: Int J Syst Sci – volume: 21 start-page: 452 issue: 4 year: 2011 end-page: 472 ident: CR49 article-title: Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems publication-title: Int J Robust Nonlinear Control – volume: 50 start-page: 2419 issue: 9 year: 2014 end-page: 2423 ident: CR6 article-title: Nonlinear decentralized control of large-scale systems with strong interconnections publication-title: Automatica – volume: 24 start-page: 1262 issue: 7 year: 2014 end-page: 1280 ident: CR10 article-title: Adaptive neural tracking control for a class of stochastic nonlinear systems publication-title: Int J Robust Nonlinear Control – volume: 14 start-page: 2147 issue: 15 year: 2020 end-page: 2153 ident: CR48 article-title: Adaptive tracking control for a class of stochastic non-linear systems with input delay: a novel approach based on multi-dimensional Taylor network publication-title: IET Control Theory Appl – year: 2020 ident: CR51 article-title: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2992632 – volume: 12 start-page: 1107 issue: 8 year: 2018 end-page: 1115 ident: CR15 article-title: Adaptive multi-dimensional Taylor network tracking control for SISO uncertain stochastic non-linear systems publication-title: IET Control Theory Appl – volume: 269 start-page: 300 year: 2014 end-page: 315 ident: CR28 article-title: Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation publication-title: Inf Sci – volume: 22 start-page: 1162 issue: 7 year: 2011 end-page: 7 ident: CR7 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw – volume: 144 start-page: 436 year: 2014 end-page: 447 ident: CR30 article-title: Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO publication-title: Neurocomputing – volume: 14 start-page: 1193 issue: 9 year: 2020 end-page: 1199 ident: CR38 article-title: Adaptive tracking control for a class of stochastic non-linear systems with input saturation constraint using multi-dimensional Taylor network publication-title: IET Control Theory Appl – volume: 21 start-page: 134 issue: 1 year: 2013 end-page: 146 ident: CR18 article-title: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs publication-title: IEEE Trans Fuzzy Syst – volume: 527 start-page: 191 year: 2020 end-page: 209 ident: CR11 article-title: Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with input saturation publication-title: Inf Sci – volume: 99 start-page: 130 year: 2020 end-page: 138 ident: CR44 article-title: Event-triggered adaptive tracking control for uncertain nonlinear systems based on a new funnel function publication-title: ISA Trans – volume: 45 start-page: 436 issue: 2 year: 2009 end-page: 443 ident: CR52 article-title: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs publication-title: Automatica – volume: 21 start-page: 134 issue: 1 year: 2013 ident: 7032_CR18 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2204065 – volume: 355 start-page: 8510 issue: 17 year: 2018 ident: 7032_CR42 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2018.09.001 – volume: 10 start-page: 1623 issue: 46 year: 2001 ident: 7032_CR4 publication-title: IEEE Trans Autom Control doi: 10.1109/9.956061 – volume: 9 start-page: 1455 issue: 9 year: 2020 ident: 7032_CR56 publication-title: Electronics doi: 10.3390/electronics9091455 – volume: 48 start-page: 1701 issue: 10 year: 2018 ident: 7032_CR17 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2685638 – volume: 99 start-page: 123 year: 2018 ident: 7032_CR22 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.12.013 – volume: 284 start-page: 17 year: 2018 ident: 7032_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.023 – volume: 54 start-page: 2663 issue: 11 year: 2009 ident: 7032_CR1 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2009.2031572 – volume: 48 start-page: 2560 issue: 10 year: 2012 ident: 7032_CR5 publication-title: Automatica doi: 10.1016/j.automatica.2012.06.054 – volume: 99 start-page: 130 year: 2020 ident: 7032_CR44 publication-title: ISA Trans doi: 10.1016/j.isatra.2019.09.015 – volume: 88 start-page: 106043 year: 2020 ident: 7032_CR57 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106043 – volume: 8 start-page: 132265 year: 2020 ident: 7032_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009958 – volume: 15 start-page: 624 issue: 6 year: 2009 ident: 7032_CR2 publication-title: Eur J Control doi: 10.3166/ejc.15.624-633 – volume: 25 start-page: 527 issue: 3 year: 2017 ident: 7032_CR33 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2566803 – volume: 51 start-page: 2238 issue: 12 year: 2020 ident: 7032_CR45 publication-title: Int J Syst Sci doi: 10.1080/00207721.2020.1793232 – volume: 158 start-page: 100 year: 2015 ident: 7032_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.063 – volume: 551 start-page: 124203 year: 2020 ident: 7032_CR54 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2020.124203 – volume: 94 start-page: 277 issue: 2 year: 2021 ident: 7032_CR8 publication-title: Int J Control doi: 10.1080/00207179.2019.1590649 – volume: 93 start-page: 1605 issue: 7 year: 2020 ident: 7032_CR14 publication-title: Int J Control doi: 10.1080/00207179.2018.1521994 – volume: 67 start-page: 3152 issue: 12 year: 2020 ident: 7032_CR26 publication-title: IEEE Trans Circuits Syst II Express Briefs doi: 10.1109/TCSII.2020.2966298 – volume: 21 start-page: 452 issue: 4 year: 2011 ident: 7032_CR49 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.1609 – volume: 45 start-page: 1554 issue: 6 year: 2009 ident: 7032_CR50 publication-title: Automatica doi: 10.1016/j.automatica.2009.02.021 – volume: 42 start-page: 1608 issue: 6 year: 2012 ident: 7032_CR13 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2012.2196432 – year: 2020 ident: 7032_CR51 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2992632 – volume: 49 start-page: 418 issue: 2 year: 2019 ident: 7032_CR16 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2777472 – volume: 27 start-page: 1201 issue: 6 year: 2019 ident: 7032_CR24 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2873971 – volume: 62 start-page: 2498 issue: 5 year: 2017 ident: 7032_CR37 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2016.2600340 – volume: 23 start-page: 1844 issue: 5 year: 2015 ident: 7032_CR21 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2014.2382132 – volume: 24 start-page: 1262 issue: 7 year: 2014 ident: 7032_CR10 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.2943 – volume: 103 start-page: 363 year: 2019 ident: 7032_CR31 publication-title: Automatica doi: 10.1016/j.automatica.2019.02.002 – volume: 48 start-page: 1326 issue: 4 year: 2018 ident: 7032_CR20 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2692384 – volume: 45 start-page: 2119 issue: 10 year: 2015 ident: 7032_CR29 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2365778 – volume: 14 start-page: 1193 issue: 9 year: 2020 ident: 7032_CR38 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2019.0934 – volume: 45 start-page: 436 issue: 2 year: 2009 ident: 7032_CR52 publication-title: Automatica doi: 10.1016/j.automatica.2008.07.019 – volume: 241 start-page: 71 year: 2017 ident: 7032_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.030 – volume: 370 start-page: 94 year: 2019 ident: 7032_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.076 – volume: 269 start-page: 300 year: 2014 ident: 7032_CR28 publication-title: Inf Sci doi: 10.1016/j.ins.2013.09.043 – volume: 22 start-page: 1162 issue: 7 year: 2011 ident: 7032_CR7 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2146788 – year: 2021 ident: 7032_CR36 publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.3224 – volume: 50 start-page: 2419 issue: 9 year: 2014 ident: 7032_CR6 publication-title: Automatica doi: 10.1016/j.automatica.2014.07.024 – volume: 527 start-page: 191 year: 2020 ident: 7032_CR11 publication-title: Inf Sci doi: 10.1016/j.ins.2020.03.055 – volume: 45 start-page: 1977 issue: 9 year: 2015 ident: 7032_CR12 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2363073 – volume: 12 start-page: 1107 issue: 8 year: 2018 ident: 7032_CR15 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2017.0538 – volume: 31 start-page: 972 issue: 3 year: 2020 ident: 7032_CR23 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2912082 – volume: 50 start-page: 1733 issue: 5 year: 2020 ident: 7032_CR34 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2017.2784451 – volume: 26 start-page: 2311 issue: 10 year: 2015 ident: 7032_CR25 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2378991 – volume: 91 start-page: 106241 year: 2020 ident: 7032_CR55 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106241 – volume: 14 start-page: 2147 issue: 15 year: 2020 ident: 7032_CR48 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2020.0336 – volume: 382–383 start-page: 334 year: 2017 ident: 7032_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2016.12.017 – volume: 47 start-page: 2185 issue: 8 year: 2017 ident: 7032_CR27 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2016.2635678 – volume: 37 start-page: 71 issue: 2 year: 1999 ident: 7032_CR3 publication-title: Syst Control Lett doi: 10.1016/S0167-6911(99)00007-9 – volume: 314 start-page: 299 year: 2018 ident: 7032_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.053 – volume: 43 start-page: 2093 issue: 6 year: 2013 ident: 7032_CR47 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2240296 – volume: 37 start-page: 204 year: 2015 ident: 7032_CR53 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.036 – volume: 144 start-page: 436 year: 2014 ident: 7032_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.032 – volume: 283 start-page: 282 year: 2018 ident: 7032_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.026 – volume: 47 start-page: 3075 issue: 10 year: 2017 ident: 7032_CR9 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2607166 |
SSID | ssj0004685 |
Score | 2.4063568 |
Snippet | This paper investigates an adaptive decentralized predefined performance control problem for a class of large-scale nonlinear systems with nonsymmetric input... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11123 |
SubjectTerms | Adaptive control Algorithms Approximation Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Control algorithms Control methods Control theory Controllers Data Mining and Knowledge Discovery Design Image Processing and Computer Vision Nonlinear systems Original Article Probability and Statistics in Computer Science Recursive methods Saturation Tracking control Tracking errors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8RADB50vXjxLa4vcvCmg51Ht7MnUXFZPIiIgrfSeRQE3V3tetDf4I82aaeuCnor82ppJpkk8yVh7EDavsvK4Lgu0UTR2va47XnBhQhOWlmUNtRoi6ve8E5f3qf30eFWRVhlKxNrQe3Hjnzkx7Jn8PQUMstOJs-cqkbR7WosoTHPFlAEG9NhC2cXV9c33yIj66KcaMMQvkerGDZTB8-RRxRbJaEvE4Vy4efRNNM3f12R1ifPYIUtRZURThsar7K5MFpjy205Bojcuc4-Tn0xIekFPkTM5cN78EBQV5QNlh5nYQIQQeqADVCAIy0axiU8EjScV0i6AKMmj0bxAk3C5wqqV0uOG5iOqbN6e3qiilwOHkb4MVBRltDGBbjB7gYXt-dDHostcIdcOOXGKq2KtDCJRE4slUozp9E6tNrb1BmlPRWRSNHgKYzGUaUPyvaTQvRJB3FebbIOvjhsMQhZ6kWQwQvldBlMXyaU9g5VPSWdd6bLRPufcxczkVNBjMf8K4dyTZscaZPXtMlxzuHXnEmTh-Pf0bst-fLIk1U-20FddtSSdNb992rb_6-2wxZls4t4InZZZ_ryGvZQU5na_bgdPwFK9-cs priority: 102 providerName: ProQuest |
Title | Adaptive decentralized prescribed performance control for a class of large-scale nonlinear systems subject to nonsymmetric input saturations |
URI | https://link.springer.com/article/10.1007/s00521-022-07032-8 https://www.proquest.com/docview/2680641277 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vXjxLT7LHLxpIPtIkx5bbSsKRcSCnkL2ERC0iqkH_Q3-aGeSTauigqeE7CMhs7M7s_vNN4wdCt0xce5MoHJ0UZTS7UC3LQ84d0ZokeXalWiLUftsrM5vohsfFFbUaPf6SLKcqWfBbrSDia6vILRkKFGPF1kzQt-dgFxj0f0UDVkm4kS_hTA9SvpQmZ_7-LoczW3Mb8ei5WozWGXL3kyEbiXXNbbgJutspU7BAF4jN9h712ZPNGOBdR5neffmLBC8FecDTbfz0ADwwHTAB5CBIcsZHnO4Jzh4UKC4HEwq7ozsGSqS5wKKF02bNTB9pMLi9eGBsnAZuJvgx0BBzKDVtt8mGw_61ydngU-wEBjUvGmQaKlkFmVJKFD7cimj2Cj0CLWyOjKJVJYSR0To5GSJwlq5dVJ3wox3yO4wVm6xBr7YbTNwcWS5E85yaVTuko4IieoOzTspjDXJDuP1f06NZx-nJBj36Yw3uZRNirJJS9mk2OZo1uap4t74s_Z-Lb7U62GRinaCQ4CLON5hx7VI58W_97b7v-p7bElUoyoI-T5rTJ9f3AFaK1PdYovJYNhizW7vtDeg6_D2oo_XXn90edUqh-4H2BfoGw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYoHNoLLVAELQUf4ERHZB7ZZA-oQoVleZ5A4pZmHpGQYHdLFlX0N_S39Ddi58ECEty4RZOZSRQ7fs1nG2Bd2a5LiuCEKchFMcZ2hO14KaQMTlmVFzZUaIvTTv_cHF7EF1Pwv82FYVhlKxMrQe2HjmPkW6qTkvaUKkl-jH4L7hrFp6ttC42aLY7C3R9y2crtg12i74ZSvb2zn33RdBUQjthtLFKrjc7jPI0UsVyhdZw4Q26QNd7GLtXGc7eEmCz7PDU0q_BB226Uyy4rW-c17fsOZowmTc6Z6b39R3mYVQtQ8pgYTWR0k6RTpepx_JVGFWM9I01S6KkinFi3zw5kKz3X-wSzjYGKOzVHzcFUGMzDx7b5AzayYAH-7fh8xLISfWgQnpd_g0cG1pIksnw5SUrABhKPNIA5OrbZcVjgFQPRRUmMEnBQV-3Ib7AuL11ieWs5TITjId8s766vuf-Xw8sBvQyWXJO0Djh-hvM3IcIiTNODwxJgSGIvgwpeameKkHZVxEX2yLDUynmXLoNsv3Pmmrrn3H7jKnuo2FzRJiPaZBVtMlqz-bBmVFf9eHX2Sku-rJEAZTbh12X43pJ0cvvl3b68vtsavO-fnRxnxwenR1_hg6o5SkRyBabHN7fhG9lIY7taMSbCr7f-E-4BRI4hJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLT6qzsGbBrOPNOmxqKU-EA8WvIXsI1CwD5p40N_gj3Ymj1ZFBW8h2d2EzMzuzO433zB2InTbhKkznkoxRFFKtzzdstzj3BmhRZJqV6At7lu9vrp5Cp4-ZfEXaPf6SLLMaSCWplF-PrHp-SzxjXYzMQwWhJz0Jdr0IltSlA2MGt0XnU-ZkUVRToxhCN-jZJU28_MYX5emub_57Yi0WHm662y1chmhU8p4gy240SZbq8sxQGWdW-y9Y5MJzV5gXYW5HLw5CwR1xblB0-U8TQAqkDrgDUjAkBcN4xSeCRruZSg6B6OSRyOZQkn4nEH2omnjBvIxPcxeh0OqyGVgMMKPgYxYQsstwG3W7149XvS8qtiCZ9AKcy_SUskkSCJfoCWmUgahURgdamV1YCKpLBWRCDDgSSKFrVLrpG77CW-TD2Ks3GENfLHbZeDCwHInnOXSqNRFbeET7R26elIYa6I9xuv_HJuKiZwKYjzHMw7lQjYxyiYuZBNjn9NZn0nJw_Fn62YtvriyySwWrQhVgIsw3GNntUjnj38fbf9_zY_Z8sNlN767vr89YCuiVDDP503WyKcv7hCdmFwfFXr6AfHO6bs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+decentralized+prescribed+performance+control+for+a+class+of+large-scale+nonlinear+systems+subject+to+nonsymmetric+input+saturations&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhu%2C+Shan-Liang&rft.au=Han%2C+Yu-Qun&rft.date=2022-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=13&rft.spage=11123&rft.epage=11140&rft_id=info:doi/10.1007%2Fs00521-022-07032-8&rft.externalDocID=10_1007_s00521_022_07032_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |