Harmonic oscillator perturbed by a decreasing scalar potential
In this paper we study the perturbation L = H + V , where H = - d 2 m d x 2 m + x 2 m on R , m ∈ N ∗ and V is a decreasing scalar potential. Let λ k be the k th eigenvalue of H . We suppose that the eigenvalues of L around λ k can be written in the form λ k + μ k . The main result of the paper is an...
Saved in:
Published in | Journal of pseudo-differential operators and applications Vol. 11; no. 1; pp. 141 - 157 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we study the perturbation
L
=
H
+
V
, where
H
=
-
d
2
m
d
x
2
m
+
x
2
m
on
R
,
m
∈
N
∗
and
V
is a decreasing scalar potential. Let
λ
k
be the
k
th
eigenvalue of
H
. We suppose that the eigenvalues of
L
around
λ
k
can be written in the form
λ
k
+
μ
k
. The main result of the paper is an asymptotic formula for fluctuation
{
μ
k
}
which is given by a transformation of
V
. In the case
m
=
1
we recover a result on the harmonic oscillator. |
---|---|
AbstractList | In this paper we study the perturbation L=H+V, where H=-d2mdx2m+x2m on R, m∈N∗ and V is a decreasing scalar potential. Let λk be the kth eigenvalue of H. We suppose that the eigenvalues of L around λk can be written in the form λk+μk. The main result of the paper is an asymptotic formula for fluctuation {μk} which is given by a transformation of V. In the case m=1 we recover a result on the harmonic oscillator. In this paper we study the perturbation L = H + V , where H = - d 2 m d x 2 m + x 2 m on R , m ∈ N ∗ and V is a decreasing scalar potential. Let λ k be the k th eigenvalue of H . We suppose that the eigenvalues of L around λ k can be written in the form λ k + μ k . The main result of the paper is an asymptotic formula for fluctuation { μ k } which is given by a transformation of V . In the case m = 1 we recover a result on the harmonic oscillator. |
Author | Aarab, Ilias Tagmouti, Mohamed Ali |
Author_xml | – sequence: 1 givenname: Ilias surname: Aarab fullname: Aarab, Ilias organization: Dept. of Mathematics, University Abdelmalek Essaadi – sequence: 2 givenname: Mohamed Ali surname: Tagmouti fullname: Tagmouti, Mohamed Ali email: tagmoutimohamedali@gmail.com organization: Dept. of Mathematics, University Abdelmalek Essaadi |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnqOZnew2uQhS_IKCFwVvIV8tW7ZJTbaH_nujK3pzYJg5PO-8w3tOJiEGT8glsGtgbHGTAUQrKANJGasFp_yETKFtayqlfJ_87gLOyDznLSuFEgFwSm6fdNrF0NkqZtv1vR5iqvY-DYdkvKvMsdKV8zZ5nbuwqbLVvS5AHHwYOt1fkNO17rOf_8wZeXu4f10-0dXL4_PybkUtghyo0EZqjsAZOGdxrY1tnHNgWssY2PI5d9iAsAa8aASiMYzXrYSW29qixxm5Gu_uU_w4-DyobTykUCxVjQ1fLETpQtUjZVPMOfm12qdup9NRAVNfUakxKlUM1XdUihcRjqJc4LDx6e_0P6pPHB9tQw |
CitedBy_id | crossref_primary_10_1088_1402_4896_abbaa6 crossref_primary_10_1007_s11868_024_00621_2 |
Cites_doi | 10.1088/0266-5611/5/3/007 10.1007/s00023-005-0222-z 10.1007/s00023-005-0253-5 10.2969/jmsj/02320374 10.1006/jfan.1997.3242 10.5802/aif.844 10.1007/BF01218488 10.1007/978-3-642-53393-8 10.1016/0022-1236(83)90034-4 10.5802/jedp.498 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 2019© Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: 2019© Springer Nature Switzerland AG 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11868-019-00284-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1662-999X |
EndPage | 157 |
ExternalDocumentID | 10_1007_s11868_019_00284_4 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 2JY 2VQ 30V 4.4 406 408 409 40D 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BAPOH BGNMA CAG COF CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P9R PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SHX SISQX SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c319t-8ab9a431401ddc3fabc5ddd1b6c001c0194d3518cb1e85833bb04269164c2c3e3 |
IEDL.DBID | AGYKE |
ISSN | 1662-9981 |
IngestDate | Thu Oct 10 20:11:48 EDT 2024 Thu Sep 12 17:24:31 EDT 2024 Sat Dec 16 12:05:17 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | Perturbation theory Eigenvalue asymptotics Averaging method Secondary 00A00 Primary 99Z99 Pseudo-differential operator Spectrum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8ab9a431401ddc3fabc5ddd1b6c001c0194d3518cb1e85833bb04269164c2c3e3 |
PQID | 2354778477 |
PQPubID | 2044151 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2354778477 crossref_primary_10_1007_s11868_019_00284_4 springer_journals_10_1007_s11868_019_00284_4 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of pseudo-differential operators and applications |
PublicationTitleAbbrev | J. Pseudo-Differ. Oper. Appl |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Helffer, Robert (CR16) 1983; 53 Calderon, Vaillancourt (CR13) 1971; 23 Pushnitski, Sorrell (CR7) 2006; 7 Reed, Simon (CR3) 1978 klein, Korotyaev, Pokrovski (CR6) 2005; 6 CR8 Helffer, Robert (CR1) 1982; 7 CR9 CR15 Arnol’d (CR10) 2013 Robert, Helffer (CR11) 1981; 31 CR12 Kato (CR2) 1966 Gurarie (CR5) 1989; 5 Gurarie (CR4) 1987; 112 Tagmouti (CR14) 1998; 156 D Robert (284_CR11) 1981; 31 A Pushnitski (284_CR7) 2006; 7 VI Arnol’d (284_CR10) 2013 284_CR15 M klein (284_CR6) 2005; 6 MA Tagmouti (284_CR14) 1998; 156 T Kato (284_CR2) 1966 284_CR12 B Helffer (284_CR1) 1982; 7 M Reed (284_CR3) 1978 D Gurarie (284_CR5) 1989; 5 AP Calderon (284_CR13) 1971; 23 284_CR9 B Helffer (284_CR16) 1983; 53 284_CR8 D Gurarie (284_CR4) 1987; 112 |
References_xml | – volume: 5 start-page: 293 year: 1989 end-page: 306 ident: CR5 article-title: Asymptotic inverse spectral problem for anharmonic oscillators with odd potentials publication-title: Inverse Probl. doi: 10.1088/0266-5611/5/3/007 contributor: fullname: Gurarie – volume: 6 start-page: 747 year: 2005 end-page: 789 ident: CR6 article-title: Spectral asymptotics of the harmonic oscillator perturbed by bounded potentials publication-title: Annales Henri Poincare doi: 10.1007/s00023-005-0222-z contributor: fullname: Pokrovski – ident: CR15 – volume: 7 start-page: 381 year: 2006 end-page: 396 ident: CR7 article-title: High energy asymptotics and trace formulas for the perturbed harmonic oscillator publication-title: Annales Henri Poincare doi: 10.1007/s00023-005-0253-5 contributor: fullname: Sorrell – year: 1978 ident: CR3 publication-title: Methods of Modern Mathematical Physics IV: Analysis of Operators contributor: fullname: Simon – ident: CR12 – year: 2013 ident: CR10 publication-title: Mathematical Methods of Classical Mechanics contributor: fullname: Arnol’d – ident: CR9 – volume: 7 start-page: 795 year: 1982 end-page: 882 ident: CR1 article-title: Propriétés asymptotiques du spectre d’opérateur pseudo-diff sur publication-title: J. Funct. Anal. contributor: fullname: Robert – volume: 23 start-page: 374 year: 1971 end-page: 378 ident: CR13 article-title: On the boundedness of pseudo-differential operators publication-title: J. Math. Soc. Jpn. doi: 10.2969/jmsj/02320374 contributor: fullname: Vaillancourt – volume: 156 start-page: 57 year: 1998 end-page: 74 ident: CR14 article-title: Sur le spectre de l’opérateur de Schrödinger avec un champ magnétique constant plus un potentiel radial décroissant publication-title: J. Funct. Anal. doi: 10.1006/jfan.1997.3242 contributor: fullname: Tagmouti – ident: CR8 – volume: 31 start-page: 169 year: 1981 end-page: 223 ident: CR11 article-title: Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques publication-title: Ann. Inst. Fourier doi: 10.5802/aif.844 contributor: fullname: Helffer – volume: 112 start-page: 491 year: 1987 end-page: 502 ident: CR4 article-title: Asymptotic inverse spectral problem for anharmonic oscillators publication-title: Commun. Math. Phys. doi: 10.1007/BF01218488 contributor: fullname: Gurarie – year: 1966 ident: CR2 publication-title: Perturbation theory for linear operators doi: 10.1007/978-3-642-53393-8 contributor: fullname: Kato – volume: 53 start-page: 246 year: 1983 end-page: 268 ident: CR16 article-title: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(83)90034-4 contributor: fullname: Robert – volume-title: Perturbation theory for linear operators year: 1966 ident: 284_CR2 doi: 10.1007/978-3-642-53393-8 contributor: fullname: T Kato – volume: 7 start-page: 795 year: 1982 ident: 284_CR1 publication-title: J. Funct. Anal. contributor: fullname: B Helffer – ident: 284_CR8 – volume: 5 start-page: 293 year: 1989 ident: 284_CR5 publication-title: Inverse Probl. doi: 10.1088/0266-5611/5/3/007 contributor: fullname: D Gurarie – volume: 23 start-page: 374 year: 1971 ident: 284_CR13 publication-title: J. Math. Soc. Jpn. doi: 10.2969/jmsj/02320374 contributor: fullname: AP Calderon – volume: 53 start-page: 246 year: 1983 ident: 284_CR16 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(83)90034-4 contributor: fullname: B Helffer – volume: 7 start-page: 381 year: 2006 ident: 284_CR7 publication-title: Annales Henri Poincare doi: 10.1007/s00023-005-0253-5 contributor: fullname: A Pushnitski – volume-title: Mathematical Methods of Classical Mechanics year: 2013 ident: 284_CR10 contributor: fullname: VI Arnol’d – volume: 6 start-page: 747 year: 2005 ident: 284_CR6 publication-title: Annales Henri Poincare doi: 10.1007/s00023-005-0222-z contributor: fullname: M klein – volume: 31 start-page: 169 year: 1981 ident: 284_CR11 publication-title: Ann. Inst. Fourier doi: 10.5802/aif.844 contributor: fullname: D Robert – ident: 284_CR12 – volume: 112 start-page: 491 year: 1987 ident: 284_CR4 publication-title: Commun. Math. Phys. doi: 10.1007/BF01218488 contributor: fullname: D Gurarie – ident: 284_CR9 doi: 10.5802/jedp.498 – volume-title: Methods of Modern Mathematical Physics IV: Analysis of Operators year: 1978 ident: 284_CR3 contributor: fullname: M Reed – volume: 156 start-page: 57 year: 1998 ident: 284_CR14 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1997.3242 contributor: fullname: MA Tagmouti – ident: 284_CR15 |
SSID | ssj0000393113 |
Score | 2.1933858 |
Snippet | In this paper we study the perturbation
L
=
H
+
V
, where
H
=
-
d
2
m
d
x
2
m
+
x
2
m
on
R
,
m
∈
N
∗
and
V
is a decreasing scalar potential. Let
λ
k
be the
k... In this paper we study the perturbation L=H+V, where H=-d2mdx2m+x2m on R, m∈N∗ and V is a decreasing scalar potential. Let λk be the kth eigenvalue of H. We... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 141 |
SubjectTerms | Algebra Analysis Applications of Mathematics Eigenvalues Functional Analysis Harmonic oscillators Mathematics Mathematics and Statistics Operator Theory Partial Differential Equations Perturbation Variations |
Title | Harmonic oscillator perturbed by a decreasing scalar potential |
URI | https://link.springer.com/article/10.1007/s11868-019-00284-4 https://www.proquest.com/docview/2354778477 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBN6JQqgxs4EpObKddkAqiVKB2aqUyRX5lAdqqTQf49ZzdhIjX0DmWk5zPvvvs-z4DXEYysjY0lGAwiQkzNCUdZhwLpK25Ri-SseM7D4aiP2aPEz4pedy-2L04kfQLdcl1c8LuiHw7xOEERlgFahh7Il6FWvfh-ancWnF0U-ovRqZChAQBBc3pMn939D0klXnmj6NRH3F6ezAqeDvrQpOX1ipTLf3xW8Zxk5_Zh908Aw26a5c5gC07PYSdwZd86_IIbvpy8eY0cwMndYmOgsA8mNsFhidlTaDeAxkYn2-6nYZgieMsscEsc6VH8vUYxr370V2f5BctEI0zMCNtqToSMwnEWsboKJVKc2MMVUJjFNP4mcxEnLa1orbtaFpKOeiFmSXToY5sdALV6WxqTyHw-oFofUV5zAQTCpcQLpSmoU4FT9M6XBW2TuZrPY2kVE52VknwdYm3SsLq0CiGI8nn1jIJI87iGKNqXIfrwrzl4_97O9us-Tlshw5c-4KzBlSzxcpeYAaSqSZ6XO_2dtjMPa8JlXHY_QRmUNDy |
link.rule.ids | 315,786,790,27946,27947,41105,41547,42174,42616,52135,52258 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0ShQAY2cCUnjpMuSAhRAn1MrVSmyK8sQFs16QC_nnOaEFHB0DmW45zPvu_s-74AXHvCM8bVlGAwCQjTNCFtpi0LJFS-Qi8SgeU79wc8GrGXsT8uSGFpWe1eXknmO3VFdrPK7pj6tolNFBhhm1BnFlHXoH7_9NqtzlYs35Tmf0amnLsEMwpa8GX-7uh3TKqA5srdaB5yOnswKge7rDR5ay0y2VJfKzqO637NPuwWGNS5XzrNAWyYySHs9H8EXNMjuIvE_MOq5jpW7BJdBVNzZ2bmGKCk0Y78dISjc8RpzxqcFGdaYINpZouPxPsxjDqPw4eIFL9aIArXYEZCIdsCsQRmW1orLxFS-VprKrnCOKZwmEx7Pg2VpCa0RC0pbfKF2JIpV3nGO4HaZDoxp-DkCoJofkn9gHHGJW4iPpeKuirhfpI04KY0djxbKmrElXaytUqMr4tzq8SsAc1yPuJidaWx6_ksCDCuBg24Lc1bPf6_t7P1ml_BVjTs9-Le86B7DtuuTbXz8rMm1LL5wlwgHsnkZeF-307I0mE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYeCMKBTKwgYuc2Em6IFVAKZRWDFQqU-RXFkRbtekAv55zHgQqGBBzLOdyPufus_19Bjj1hGeMqynBZBIQpmlMmkxbFkiouMIoEoHlO_f6fmfA7od8-IXFn552L7YkM06DVWkaJRcTHV-UxDer8o4wuEksaGCELUOVYSbjFai2bp-75TqL5Z7S9JZk6vsuQXRBc-7Mzx19z09l0bmwT5qmn_YGiMLw7NTJS2OeyIZ6X9B0_M-XbcJ6Xps6rSyYtmDJjLZhrfcp7DrbgcuOmL5aNV3HimBiCCFkdyZmiolLGu3IN0c4Oq1E7RqEM8MIENhgbC3ASN-FQfvm6apD8isYiMK5mZBQyKbAGgNRmNbKi4VUXGtNpa8wvyk0k2mP01BJakJL4JLSgjKsOZlylWe8PaiMxiOzD06qLIhDISkPmM98iT8X7ktFXRX7PI5rcFY4PppkShtRqalsvRLh66LUKxGrQb0YmyifdbPI9TgLAsy3QQ3OC1eXj3_v7eBvzU9g5fG6HT3c9buHsOpaBJ6eSqtDJZnOzRGWKYk8ziPxAzwf2zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+oscillator+perturbed+by+a+decreasing+scalar+potential&rft.jtitle=Journal+of+pseudo-differential+operators+and+applications&rft.au=Aarab%2C+Ilias&rft.au=Tagmouti%2C+Mohamed+Ali&rft.date=2020-03-01&rft.issn=1662-9981&rft.eissn=1662-999X&rft.volume=11&rft.issue=1&rft.spage=141&rft.epage=157&rft_id=info:doi/10.1007%2Fs11868-019-00284-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11868_019_00284_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-9981&client=summon |