A compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth
We demonstrate a compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth. The laser frequency is frequency stabilized to a vertically mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. Optical boards designed b...
Saved in:
Published in | Applied physics. B, Lasers and optics Vol. 129; no. 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth. The laser frequency is frequency stabilized to a vertically mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. Optical boards designed by topology optimization and miniaturized optical component mounts without kinematic adjustment are designed to achieve a high level of integration and stability. The self-developed electronics and automatic locking module ensure fully automatic operation of the system. The entire ultra-stable laser system is highly integrated in a 19-inch 6 U chassis with a mass of about 35 kg. The prototype performs beat frequency comparison measurement with another ultra-stable laser system in the laboratory. The fractional frequency instability of a single system is achieved
4
×
10
-
15
at 1 s averaging time preliminarily, and the linewidth is 1.3 Hz. The portable ultra-stable laser system we developed is expected to have significant implications for precision measurement and other applications. |
---|---|
AbstractList | We demonstrate a compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth. The laser frequency is frequency stabilized to a vertically mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. Optical boards designed by topology optimization and miniaturized optical component mounts without kinematic adjustment are designed to achieve a high level of integration and stability. The self-developed electronics and automatic locking module ensure fully automatic operation of the system. The entire ultra-stable laser system is highly integrated in a 19-inch 6 U chassis with a mass of about 35 kg. The prototype performs beat frequency comparison measurement with another ultra-stable laser system in the laboratory. The fractional frequency instability of a single system is achieved 4×10-15 at 1 s averaging time preliminarily, and the linewidth is 1.3 Hz. The portable ultra-stable laser system we developed is expected to have significant implications for precision measurement and other applications. We demonstrate a compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth. The laser frequency is frequency stabilized to a vertically mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. Optical boards designed by topology optimization and miniaturized optical component mounts without kinematic adjustment are designed to achieve a high level of integration and stability. The self-developed electronics and automatic locking module ensure fully automatic operation of the system. The entire ultra-stable laser system is highly integrated in a 19-inch 6 U chassis with a mass of about 35 kg. The prototype performs beat frequency comparison measurement with another ultra-stable laser system in the laboratory. The fractional frequency instability of a single system is achieved 4 × 10 - 15 at 1 s averaging time preliminarily, and the linewidth is 1.3 Hz. The portable ultra-stable laser system we developed is expected to have significant implications for precision measurement and other applications. |
ArticleNumber | 149 |
Author | Zhang, Linbo Zhang, Shougang Xu, Guanjun Wu, Mengfan Dong, Ruifang Gao, Jing Jiao, Dongdong Fan, Le Liu, Tao Liu, Jun |
Author_xml | – sequence: 1 givenname: Linbo surname: Zhang fullname: Zhang, Linbo organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 2 givenname: Mengfan surname: Wu fullname: Wu, Mengfan organization: National Time Service Center (NTSC), Chinese Academy of Sciences, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Jing surname: Gao fullname: Gao, Jing organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 4 givenname: Jun surname: Liu fullname: Liu, Jun organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 5 givenname: Le surname: Fan fullname: Fan, Le organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 6 givenname: Dongdong surname: Jiao fullname: Jiao, Dongdong organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 7 givenname: Guanjun surname: Xu fullname: Xu, Guanjun organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 8 givenname: Ruifang surname: Dong fullname: Dong, Ruifang email: dongruifang@ntsc.ac.cn organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 9 givenname: Tao surname: Liu fullname: Liu, Tao email: taoliu@ntsc.ac.cn organization: National Time Service Center (NTSC), Chinese Academy of Sciences – sequence: 10 givenname: Shougang surname: Zhang fullname: Zhang, Shougang organization: National Time Service Center (NTSC), Chinese Academy of Sciences |
BookMark | eNp9kEFLAzEQhYNUsK3-AU8Br0Ynm2w2OZaiVhB60XPI7iZ2y3a3JilL_fVGVxA8dC4Dw_vezLwZmnR9ZxG6pnBHAYr7AMA4EMgYAQmKkeEMTSlnGQHB1QRNQXFBMlrQCzQLYQuphJRTtF7gqt_tTRVvcfSmC_veR1O2FtM8B9zt8KFNcxLGYWuC9TgcQ7Q7PDRxg1fWx0_cNp0dmjpuLtG5M22wV799jt4eH16XK_KyfnpeLl5IxaiKREqpHM1Vzsuszm1JlctNVQjBKANX1FDULreOs0JRAc5AzUuWOWdKKThXhs3Rzei79_3HwYaot_3Bd2mlzqRIJiJnKqnkqKp8H4K3TldNNLHpu_RT02oK-js-PcanU3z6Jz49JDT7h-59szP-eBpiIxSSuHu3_u-qE9QXTdOEPw |
CitedBy_id | crossref_primary_10_7498_aps_74_20241348 |
Cites_doi | 10.1103/PhysRevLett.118.263202 10.1007/BF00702605 10.1364/OE.26.018699 10.1364/OL.43.001690 10.1016/j.optlastec.2021.107498 10.3788/COL202018.030201 10.1103/PhysRevA.87.023829 10.1109/LPT.2022.3164406 10.1038/srep24969 10.1364/OL.40.002112 10.1364/OL.30.000667 10.1364/OE.19.003471 10.1007/s00340-018-7000-3 10.1364/AO.23.002944 10.1364/OL.470984 10.1364/OE.27.036206 10.1080/09500340.2018.1441917 10.1088/0264-9381/25/11/114012 10.1103/PhysRevA.64.033804 10.1038/s41567-017-0042-3 10.1364/JOSAB.27.000914 10.1088/0264-9381/25/11/114040 10.1103/PhysRevLett.111.110801 10.1038/s41566-020-0619-8 10.1007/s00340-009-3735-1 10.1364/OPTICA.6.000240 10.1038/nphoton.2016.215 10.1063/1.4950862 10.1016/j.optlastec.2020.106777 10.1038/nphoton.2016.231 10.1364/OE.422182 10.1126/science.1240420 10.3390/electronics11091319 10.1364/OE.23.005134 10.1103/RevModPhys.87.637 10.1364/OE.20.025409 10.1364/OL.36.003572 10.1093/nsr/nwx116 10.1117/12.2655456 10.1117/12.273681 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00340-023-08093-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0649 |
ExternalDocumentID | 10_1007_s00340_023_08093_w |
GrantInformation_xml | – fundername: National Major Science and Technology Projects of China grantid: 61127901; 91636101 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 11403031 funderid: http://dx.doi.org/10.13039/100014717 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZE2 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-8889f15954b2d5eb19f5ac7663130f7d07df5ef4379160fa0d4b32ffab86449a3 |
IEDL.DBID | U2A |
ISSN | 0946-2171 |
IngestDate | Fri Jul 25 11:12:59 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 03:15:22 EDT 2025 Fri Feb 21 02:42:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8889f15954b2d5eb19f5ac7663130f7d07df5ef4379160fa0d4b32ffab86449a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2861306539 |
PQPubID | 2043607 |
ParticipantIDs | proquest_journals_2861306539 crossref_citationtrail_10_1007_s00340_023_08093_w crossref_primary_10_1007_s00340_023_08093_w springer_journals_10_1007_s00340_023_08093_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Lasers and Optics |
PublicationTitle | Applied physics. B, Lasers and optics |
PublicationTitleAbbrev | Appl. Phys. B |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Herbers, Häfner, Dörscher, Lücke, Sterr, Lisdat (CR29) 2022; 47 Wu, Jiang, Ma, Qi, Yu, Bi, Ma (CR38) 2016; 6 Chen, Jiang, Li, Yu, Jiang, Wang, Yao, Ma (CR24) 2020; 18 Hood, Kimble, Ye (CR33) 2001; 64 CR19 Wiens, Schiller (CR25) 2018; 124 Leibrandt, Thorpe, Notcutt, Drullinger, Rosenband, Bergquist (CR28) 2011; 19 Xie, Bouchand, Nicolodi, Giunta, Hänsel, Lezius, Joshi, Datta, Alexandre, Lours (CR6) 2017; 11 CR34 Drever, Hall, Kowalski, Hough, Ford, Munley, Ward (CR10) 1983; 31 CR11 Fan, Jiao, Liu, Chen, Xu, Zhang, Liu, Dong, Liu, Zhang (CR36) 2022; 11 Zeng, Ye, Shi, Wang, Deng, Zhang, Lu (CR41) 2018; 43 Liu, Liu, Chen, Zhang, Xu, Jiao, Zhang (CR27) 2021; 136 Webster, Gill (CR23) 2011; 36 Willke, Danzmann, Frede, King, Kracht, Kwee, Puncken, Savage, Schulz, Seifert (CR8) 2008; 25 Anderson (CR35) 1984; 23 Grotti, Koller, Vogt, Häfner, Sterr, Lisdat, Denker, Voigt, Timmen, Rolland (CR16) 2018; 14 Xu, Jiao, Chen, Zhang, Dong, Liu, Wang (CR21) 2021; 29 Bartels, Diddams, Oates, Wilpers, Bergquist, Oskay, Hollberg (CR7) 2005; 30 Leibrandt, Bergquist, Rosenband (CR26) 2013; 87 Häfner, Falke, Grebing, Vogt, Legero, Merimaa, Lisdat, Sterr (CR15) 2015; 40 Robinson, Oelker, Milner, Zhang, Legero, Matei, Riehle, Sterr, Ye (CR12) 2019; 6 Dai, Jiang, Hang, Bi, Ma (CR32) 2015; 23 Matei, Legero, Häfner, Grebing, Weyrich, Zhang, Sonderhouse, Robinson, Ye, Riehle (CR13) 2017; 118 Jiang, Fang, Bi, Xu, Ma (CR39) 2010; 98 Delehaye, Lacroûte (CR17) 2018; 65 Shaddock (CR20) 2008; 25 Argence, Prevost, Lévèque, Le Goff, Bize, Lemonde, Santarelli (CR22) 2012; 20 Ludlow, Boyd, Ye, Peik, Schmidt (CR2) 2015; 87 Sanjuan, Abich, Gohlke, Resch, Schuldt, Wegehaupt, Barwood, Gill, Braxmaier (CR31) 2019; 27 Tao, Chen (CR30) 2018; 124 Takamoto, Ushijima, Ohmae, Yahagi, Kokado, Shinkai, Katori (CR9) 2020; 14 Hinkley, Sherman, Phillips, Schioppo, Lemke, Beloy, Pizzocaro, Oates, Ludlow (CR3) 2013; 341 Guo, Zhang, Liu, Chen, Fan, Xu, Liu, Dong, Zhang (CR37) 2022; 145 Schioppo, Brown, McGrew, Hinkley, Fasano, Beloy, Yoon, Milani, Nicolodi, Sherman (CR1) 2017; 11 Droste, Ozimek, Udem, Predehl, Hänsch, Schnatz, Grosche, Holzwarth (CR4) 2013; 111 Legero, Kessler, Sterr (CR40) 2010; 27 Luo, Li, Yeh (CR18) 2016; 87 Zhang, Hu, Deng, Zang, Liu, Jiao, Gao, Dong, Liu, Wu (CR5) 2022; 34 Jin, Jiang, Yao, Yu, Bi, Ma (CR14) 2018; 26 DR Leibrandt (8093_CR26) 2013; 87 L Jin (8093_CR14) 2018; 26 M Schioppo (8093_CR1) 2017; 11 X Xie (8093_CR6) 2017; 11 DR Leibrandt (8093_CR28) 2011; 19 T Legero (8093_CR40) 2010; 27 B Argence (8093_CR22) 2012; 20 M Takamoto (8093_CR9) 2020; 14 N Hinkley (8093_CR3) 2013; 341 8093_CR34 8093_CR11 S Herbers (8093_CR29) 2022; 47 L Wu (8093_CR38) 2016; 6 AD Ludlow (8093_CR2) 2015; 87 S Webster (8093_CR23) 2011; 36 J Liu (8093_CR27) 2021; 136 L Fan (8093_CR36) 2022; 11 B-K Tao (8093_CR30) 2018; 124 X Guo (8093_CR37) 2022; 145 S Droste (8093_CR4) 2013; 111 G Xu (8093_CR21) 2021; 29 R Drever (8093_CR10) 1983; 31 X Zeng (8093_CR41) 2018; 43 X Chen (8093_CR24) 2020; 18 D Shaddock (8093_CR20) 2008; 25 Y Luo (8093_CR18) 2016; 87 J Sanjuan (8093_CR31) 2019; 27 DZ Anderson (8093_CR35) 1984; 23 JM Robinson (8093_CR12) 2019; 6 A Bartels (8093_CR7) 2005; 30 D Matei (8093_CR13) 2017; 118 S Häfner (8093_CR15) 2015; 40 M Delehaye (8093_CR17) 2018; 65 8093_CR19 CJ Hood (8093_CR33) 2001; 64 J Grotti (8093_CR16) 2018; 14 B Willke (8093_CR8) 2008; 25 E Wiens (8093_CR25) 2018; 124 X Zhang (8093_CR5) 2022; 34 Y Jiang (8093_CR39) 2010; 98 X Dai (8093_CR32) 2015; 23 |
References_xml | – volume: 118 issue: 26 year: 2017 ident: CR13 article-title: 1.5 m lasers with sub-10 mHz linewidth publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.263202 – volume: 31 start-page: 97 issue: 2 year: 1983 end-page: 105 ident: CR10 article-title: Laser phase and frequency stabilization using an optical resonator publication-title: Appll. Phys. B doi: 10.1007/BF00702605 – volume: 26 start-page: 18699 issue: 14 year: 2018 end-page: 18707 ident: CR14 article-title: Laser frequency instability of by stabilizing to 30-cm-long fabry-pérot cavities at 578 nm publication-title: Optics Express doi: 10.1364/OE.26.018699 – volume: 124 start-page: 1 year: 2018 end-page: 6 ident: CR30 article-title: A vibration-insensitive-cavity design holds impact of higher than 100 g publication-title: Appll. Phys. B – volume: 43 start-page: 1690 issue: 8 year: 2018 end-page: 1693 ident: CR41 article-title: Thermal-noise-limited higher-order mode locking of a reference cavity publication-title: Optics Lett. doi: 10.1364/OL.43.001690 – volume: 145 year: 2022 ident: CR37 article-title: An automatic frequency stabilized laser with hertz-level linewidth publication-title: Optics Laser Technol doi: 10.1016/j.optlastec.2021.107498 – volume: 18 issue: 3 year: 2020 ident: CR24 article-title: Laser frequency instability of using 10-cm-long cavities on a cubic spacer publication-title: Chin. Optics Lett. doi: 10.3788/COL202018.030201 – volume: 87 issue: 2 year: 2013 ident: CR26 article-title: Cavity-stabilized laser with acceleration sensitivity below 10–12 g- 1 publication-title: Phys. Revi. A doi: 10.1103/PhysRevA.87.023829 – volume: 34 start-page: 413 issue: 8 year: 2022 end-page: 416 ident: CR5 article-title: All-passive cascaded optical frequency transfer publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2022.3164406 – volume: 6 start-page: 24969 issue: 1 year: 2016 ident: CR38 article-title: 0.26-hz-linewidth ultrastable lasers at 1557 nm publication-title: Sci. Rep. doi: 10.1038/srep24969 – volume: 40 start-page: 2112 issue: 9 year: 2015 end-page: 2115 ident: CR15 article-title: fractional laser frequency instability with a long room-temperature cavity publication-title: Optics Lett. doi: 10.1364/OL.40.002112 – volume: 30 start-page: 667 issue: 6 year: 2005 end-page: 669 ident: CR7 article-title: Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references publication-title: Optics Lett. doi: 10.1364/OL.30.000667 – volume: 19 start-page: 3471 issue: 4 year: 2011 end-page: 3482 ident: CR28 article-title: Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments publication-title: Optics Express doi: 10.1364/OE.19.003471 – volume: 124 start-page: 140 issue: 7 year: 2018 ident: CR25 article-title: Simulation of force-insensitive optical cavities in cubic spacers publication-title: Appll. Phys. B doi: 10.1007/s00340-018-7000-3 – volume: 23 start-page: 2944 issue: 17 year: 1984 end-page: 2949 ident: CR35 article-title: Alignment of resonant optical cavities publication-title: Appl. Optics doi: 10.1364/AO.23.002944 – volume: 47 start-page: 5441 issue: 20 year: 2022 end-page: 5444 ident: CR29 article-title: Transportable clock laser system with an instability of publication-title: Optics Lett. doi: 10.1364/OL.470984 – volume: 27 start-page: 36206 issue: 25 year: 2019 end-page: 36220 ident: CR31 article-title: Long-term stable optical cavity for special relativity tests in space publication-title: Optics Express doi: 10.1364/OE.27.036206 – volume: 65 start-page: 622 issue: 5–6 year: 2018 end-page: 639 ident: CR17 article-title: Single-ion, transportable optical atomic clocks publication-title: J. Modern Optics doi: 10.1080/09500340.2018.1441917 – volume: 25 issue: 11 year: 2008 ident: CR20 article-title: Space-based gravitational wave detection with lisa publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/25/11/114012 – volume: 64 issue: 3 year: 2001 ident: CR33 article-title: Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.033804 – volume: 14 start-page: 437 issue: 5 year: 2018 end-page: 441 ident: CR16 article-title: Geodesy and metrology with a transportable optical clock publication-title: Nat. Phys. doi: 10.1038/s41567-017-0042-3 – volume: 27 start-page: 914 issue: 5 year: 2010 end-page: 919 ident: CR40 article-title: Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors publication-title: JOSA B doi: 10.1364/JOSAB.27.000914 – ident: CR19 – volume: 25 issue: 11 year: 2008 ident: CR8 article-title: Stabilized lasers for advanced gravitational wave detectors publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/25/11/114040 – volume: 111 issue: 11 year: 2013 ident: CR4 article-title: Optical-frequency transfer over a single-span 1840 km fiber link publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.110801 – volume: 14 start-page: 411 issue: 7 year: 2020 end-page: 415 ident: CR9 article-title: Test of general relativity by a pair of transportable optical lattice clocks publication-title: Nat. Photonics doi: 10.1038/s41566-020-0619-8 – volume: 98 start-page: 61 year: 2010 end-page: 67 ident: CR39 article-title: Nd: Yag lasers at 1064 nm with 1-Hz linewidth publication-title: Appl. Phys. B doi: 10.1007/s00340-009-3735-1 – ident: CR11 – volume: 6 start-page: 240 issue: 2 year: 2019 end-page: 243 ident: CR12 article-title: Crystalline optical cavity at 4 k with thermal-noise-limited instability and ultralow drift publication-title: Optica doi: 10.1364/OPTICA.6.000240 – volume: 11 start-page: 44 issue: 1 year: 2017 end-page: 47 ident: CR6 article-title: Photonic microwave signals with zeptosecond-level absolute timing noise publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.215 – ident: CR34 – volume: 87 issue: 5 year: 2016 ident: CR18 article-title: Note: digital laser frequency auto-locking for inter-satellite laser ranging publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4950862 – volume: 136 year: 2021 ident: CR27 article-title: A compact sub-hertz linewidth fabry perot cavity frequency stabilized laser for space application publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2020.106777 – volume: 11 start-page: 48 issue: 1 year: 2017 end-page: 52 ident: CR1 article-title: Ultrastable optical clock with two cold-atom ensembles publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.231 – volume: 29 start-page: 24264 issue: 15 year: 2021 end-page: 24277 ident: CR21 article-title: Vibration modes of a transportable optical cavity publication-title: Optics Express doi: 10.1364/OE.422182 – volume: 341 start-page: 1215 issue: 6151 year: 2013 end-page: 1218 ident: CR3 article-title: An atomic clock with instability publication-title: Science doi: 10.1126/science.1240420 – volume: 11 start-page: 1319 issue: 9 year: 2022 ident: CR36 article-title: Prompt frequency stabilization of ultra-stable laser via improved mean shift algorithm publication-title: Electronics doi: 10.3390/electronics11091319 – volume: 23 start-page: 5134 issue: 4 year: 2015 end-page: 5146 ident: CR32 article-title: Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations publication-title: Optics Express doi: 10.1364/OE.23.005134 – volume: 87 start-page: 637 issue: 2 year: 2015 ident: CR2 article-title: Optical atomic clocks publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.87.637 – volume: 20 start-page: 25409 issue: 23 year: 2012 end-page: 25420 ident: CR22 article-title: Prototype of an ultra-stable optical cavity for space applications publication-title: Optics express doi: 10.1364/OE.20.025409 – volume: 36 start-page: 3572 issue: 18 year: 2011 end-page: 3574 ident: CR23 article-title: Force-insensitive optical cavity publication-title: Optics Lett. doi: 10.1364/OL.36.003572 – volume: 14 start-page: 437 issue: 5 year: 2018 ident: 8093_CR16 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0042-3 – volume: 145 year: 2022 ident: 8093_CR37 publication-title: Optics Laser Technol doi: 10.1016/j.optlastec.2021.107498 – volume: 25 issue: 11 year: 2008 ident: 8093_CR8 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/25/11/114040 – ident: 8093_CR19 doi: 10.1093/nsr/nwx116 – volume: 23 start-page: 5134 issue: 4 year: 2015 ident: 8093_CR32 publication-title: Optics Express doi: 10.1364/OE.23.005134 – volume: 18 issue: 3 year: 2020 ident: 8093_CR24 publication-title: Chin. Optics Lett. doi: 10.3788/COL202018.030201 – volume: 124 start-page: 1 year: 2018 ident: 8093_CR30 publication-title: Appll. Phys. B – ident: 8093_CR11 doi: 10.1117/12.2655456 – ident: 8093_CR34 doi: 10.1117/12.273681 – volume: 31 start-page: 97 issue: 2 year: 1983 ident: 8093_CR10 publication-title: Appll. Phys. B doi: 10.1007/BF00702605 – volume: 341 start-page: 1215 issue: 6151 year: 2013 ident: 8093_CR3 publication-title: Science doi: 10.1126/science.1240420 – volume: 98 start-page: 61 year: 2010 ident: 8093_CR39 publication-title: Appl. Phys. B doi: 10.1007/s00340-009-3735-1 – volume: 11 start-page: 48 issue: 1 year: 2017 ident: 8093_CR1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.231 – volume: 11 start-page: 44 issue: 1 year: 2017 ident: 8093_CR6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.215 – volume: 124 start-page: 140 issue: 7 year: 2018 ident: 8093_CR25 publication-title: Appll. Phys. B doi: 10.1007/s00340-018-7000-3 – volume: 64 issue: 3 year: 2001 ident: 8093_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.033804 – volume: 47 start-page: 5441 issue: 20 year: 2022 ident: 8093_CR29 publication-title: Optics Lett. doi: 10.1364/OL.470984 – volume: 27 start-page: 914 issue: 5 year: 2010 ident: 8093_CR40 publication-title: JOSA B doi: 10.1364/JOSAB.27.000914 – volume: 29 start-page: 24264 issue: 15 year: 2021 ident: 8093_CR21 publication-title: Optics Express doi: 10.1364/OE.422182 – volume: 14 start-page: 411 issue: 7 year: 2020 ident: 8093_CR9 publication-title: Nat. Photonics doi: 10.1038/s41566-020-0619-8 – volume: 11 start-page: 1319 issue: 9 year: 2022 ident: 8093_CR36 publication-title: Electronics doi: 10.3390/electronics11091319 – volume: 26 start-page: 18699 issue: 14 year: 2018 ident: 8093_CR14 publication-title: Optics Express doi: 10.1364/OE.26.018699 – volume: 20 start-page: 25409 issue: 23 year: 2012 ident: 8093_CR22 publication-title: Optics express doi: 10.1364/OE.20.025409 – volume: 111 issue: 11 year: 2013 ident: 8093_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.110801 – volume: 6 start-page: 24969 issue: 1 year: 2016 ident: 8093_CR38 publication-title: Sci. Rep. doi: 10.1038/srep24969 – volume: 6 start-page: 240 issue: 2 year: 2019 ident: 8093_CR12 publication-title: Optica doi: 10.1364/OPTICA.6.000240 – volume: 65 start-page: 622 issue: 5–6 year: 2018 ident: 8093_CR17 publication-title: J. Modern Optics doi: 10.1080/09500340.2018.1441917 – volume: 87 issue: 5 year: 2016 ident: 8093_CR18 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4950862 – volume: 36 start-page: 3572 issue: 18 year: 2011 ident: 8093_CR23 publication-title: Optics Lett. doi: 10.1364/OL.36.003572 – volume: 30 start-page: 667 issue: 6 year: 2005 ident: 8093_CR7 publication-title: Optics Lett. doi: 10.1364/OL.30.000667 – volume: 40 start-page: 2112 issue: 9 year: 2015 ident: 8093_CR15 publication-title: Optics Lett. doi: 10.1364/OL.40.002112 – volume: 136 year: 2021 ident: 8093_CR27 publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2020.106777 – volume: 34 start-page: 413 issue: 8 year: 2022 ident: 8093_CR5 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2022.3164406 – volume: 19 start-page: 3471 issue: 4 year: 2011 ident: 8093_CR28 publication-title: Optics Express doi: 10.1364/OE.19.003471 – volume: 118 issue: 26 year: 2017 ident: 8093_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.263202 – volume: 25 issue: 11 year: 2008 ident: 8093_CR20 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/25/11/114012 – volume: 23 start-page: 2944 issue: 17 year: 1984 ident: 8093_CR35 publication-title: Appl. Optics doi: 10.1364/AO.23.002944 – volume: 87 start-page: 637 issue: 2 year: 2015 ident: 8093_CR2 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.87.637 – volume: 87 issue: 2 year: 2013 ident: 8093_CR26 publication-title: Phys. Revi. A doi: 10.1103/PhysRevA.87.023829 – volume: 43 start-page: 1690 issue: 8 year: 2018 ident: 8093_CR41 publication-title: Optics Lett. doi: 10.1364/OL.43.001690 – volume: 27 start-page: 36206 issue: 25 year: 2019 ident: 8093_CR31 publication-title: Optics Express doi: 10.1364/OE.27.036206 |
SSID | ssj0000688 |
Score | 2.4273322 |
Snippet | We demonstrate a compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth. The laser frequency is frequency stabilized to a vertically... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Beat frequencies Engineering Fineness Frequency stability Kinematics Lasers Optical components Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Topology optimization |
Title | A compact, transportable 1550 nm ultra-stable laser system with Hertz linewidth |
URI | https://link.springer.com/article/10.1007/s00340-023-08093-w https://www.proquest.com/docview/2861306539 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50Q9AH0ak4nSMPvrlA119pH4tuDnX6oIP5VNo0wcGssnYM_Ou9pO02RQWfCmmah7vk7rvm7juAc2EJlzNLUhn5FrXNyKa4S3zV68XzIoTYwlW1w8N7dzCyb8bOuCwKy6ps9-pKUlvqZbGbolIxKPoYiigHF15sQt3B2F0lco3MYM3-6m6TGLe4FAF3tyyV-XmNr-5ohTG_XYtqb9Pfg90SJpKg0Os-bIi0ATtr5IEN2NLJmzw7gIeA6FRynndIXpGVq5IooiIDkr6S-RTHaVYMIl4WM1JQOBP1H5YMxCz_IApwLiZJ_nIIo37v6XJAy0YJlOMJylG6ni8Rlzh2bCYOWl9fOhFnCCbQQ0mWGCyRjpCKerDrGjIyEju2TCmj2EM45EfWEdTSt1QcA2FMM9IkLPHRbxkWapDbpvC4UMyEzGpCt5JXyEsWcdXMYhou-Y-1jEOUcahlHC6acLH85r3g0PhzdqtSQ1iepyw0PRXnKBrdJnQq1axe_77ayf-mn8K26idfZOu1oJbP5uIMUUcet6EeXA3vHtXz-vm219ab7hPdoM5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50IuqD6FScTs2Dby7Q9VfaxyGOqdt82WBvoU0TFGaVtWPgX-8lbbcpKviaJvdwl-S-a-6-A7iWjvQFcxRVUehQ145cirsk1L1egiBCiC19XTs8GPq9sfsw8SZlUVhWZbtXT5Lmpl4Wu2kqFYuij6GIclDwYhO2EAwEei-P7c7a_Wu6TWLc4lME3O2yVOZnGV_d0QpjfnsWNd6mewD7JUwkncKuh7Ah0zrsrZEH1mHbJG-K7AieOsSkkou8RfKKrFyXRBEdGZD0lcynOE6zYhDxspyRgsKZ6P-wpCdn-QfRgHPxkuTPxzDu3o1ue7RslEAFnqActRuECnGJ58Z24uHtGyovEgzBBHooxRKLJcqTSlMPtn1LRVbixo6tVBQHCIfCyDmBWvqWylMgjBlGmoQlIfoty0ELCteWgZCamZA5DWhX-uKiZBHXzSymfMl_bHTMUcfc6JgvGnCzXPNecGj8ObtZmYGX5ynjdqDjHE2j24BWZZrV59-lnf1v-hXs9EaDPu_fDx_PYVf3li8y95pQy2dzeYEIJI8vzYb7BM0fzjs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60ouhBtCpWq-7Bm12a5rXJsailvqoHC72FZB8o1FjalIK_3tlN0lZRwetms4GZ3Z1vs_N9A3AuHelz5iiq4tChrh27FGdJqGu9BEGMEFv6mjv80PO7ffd24A2WWPwm2728ksw5DVqlKc2aI6Gac-KbllWxKMYbiogHPzJbhTVXs4FxRvft9tJebCpP4hnGpwi-WwVt5ucxvoamBd78dkVqIk9nB7YLyEjauY93YUWmVdhaEhKswrpJ5OSTPXhsE5NWzrMGyUrhck2PIvqUQNI3Mh1iO53kjYid5Zjkcs5E_5MlXTnOPogGn7NXkb3sQ79z_XzZpUXRBMpxNWVo6SBUiFE8N7GFhztxqLyYMwQWGK0UExYTypNKyxC2fEvFlnATx1YqTgKERmHsHEAlfU_lIRDGjDqNYCLEGGY56E3u2jLgUqsUMqcGrdJeES8UxXVhi2E010I2No7QxpGxcTSrwcX8nVGup_Fn73rphqhYW5PIDvSZR0vq1qBRumbx-PfRjv7X_Qw2nq460f1N7-4YNnWZ-TyJrw6VbDyVJwhGsuTUzLdP-vrSbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compact%2C+transportable+1550+nm+ultra-stable+laser+system+with+Hertz+linewidth&rft.jtitle=Applied+physics.+B%2C+Lasers+and+optics&rft.au=Zhang+Linbo&rft.au=Wu+Mengfan&rft.au=Gao%2C+Jing&rft.au=Liu%2C+Jun&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0946-2171&rft.eissn=1432-0649&rft.volume=129&rft.issue=10&rft_id=info:doi/10.1007%2Fs00340-023-08093-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-2171&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-2171&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-2171&client=summon |