Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium

A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3  + 30PbO + 20MO + 10Bi 2 O 3  + 1Eu 2 O 3 (where M  = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shie...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 31; no. 23; pp. 21486 - 21501
Main Authors Divina, R., Naseer, K. A., Marimuthu, K., Alajerami, Y. S. M., Al-Buriahi, M. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3  + 30PbO + 20MO + 10Bi 2 O 3  + 1Eu 2 O 3 (where M  = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu 3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs.
AbstractList A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B2O3 + 30PbO + 20MO + 10Bi2O3 + 1Eu2O3 (where M = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs.
A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3  + 30PbO + 20MO + 10Bi 2 O 3  + 1Eu 2 O 3 (where M  = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu 3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs.
Author Al-Buriahi, M. S.
Marimuthu, K.
Alajerami, Y. S. M.
Divina, R.
Naseer, K. A.
Author_xml – sequence: 1
  givenname: R.
  surname: Divina
  fullname: Divina, R.
  organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University)
– sequence: 2
  givenname: K. A.
  surname: Naseer
  fullname: Naseer, K. A.
  organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University)
– sequence: 3
  givenname: K.
  surname: Marimuthu
  fullname: Marimuthu, K.
  organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University)
– sequence: 4
  givenname: Y. S. M.
  surname: Alajerami
  fullname: Alajerami, Y. S. M.
  organization: Physics and Astronomy, Science Faculty, Ohio University, Department of Medical Imaging, Al-Azhar University
– sequence: 5
  givenname: M. S.
  surname: Al-Buriahi
  fullname: Al-Buriahi, M. S.
  email: mohammed.al-buriahi@ogr.sakarya.edu.tr
  organization: Department of Physics, Sakarya University
BookMark eNp9kc2KFTEQhYOM4J3RF3AVcDvtVH66O72UYfyBATcK7kI6qdyboTu5Jml0Hsc3NdcrCC5mVQfqfFUHziW5iCkiIa8ZvGUA401hoHrZAYcO5DDwTjwjO9aPopOKf7sgO5j6sZM95y_IZSkPADBIoXbk1533aCtNnrrQZMZY6ZqaDphp-hkcFpoirQek5TG2UUK5pqXmzdYtm-WapmMN9iRMdHRv1tXczFgNLYeAiwtxT485HTHXcDrl6RzKutUDXdA4OqdsKtL9Ykppa9eMjv4IbY1bo8K2viTPvVkKvvo7r8jX93dfbj92958_fLp9d99ZwabaKaUmC72ZZqsGC9JNZvDY294zENKZCUY3zrOZJhzs7M1oRsl6BMlBIkcmrsib892W9vuGpeqHtOXYXmouRyG46pVsLn522ZxKyej1MYfV5EfNQJ-q0OcqdKtC_6lCiwap_yAbqqkhxZpNWJ5GxRkt7U_cY_6X6gnqN9SCo60
CitedBy_id crossref_primary_10_1007_s11696_024_03430_5
crossref_primary_10_1093_rpd_ncae066
crossref_primary_10_1016_j_radphyschem_2023_110798
crossref_primary_10_1016_j_radphyschem_2022_110510
crossref_primary_10_1016_j_ijbiomac_2021_08_050
crossref_primary_10_1016_j_apradiso_2023_111080
crossref_primary_10_1007_s10854_024_13960_z
crossref_primary_10_1016_j_ijleo_2021_168005
crossref_primary_10_1080_16583655_2022_2038468
crossref_primary_10_1016_j_conbuildmat_2023_130896
crossref_primary_10_1140_epjp_s13360_021_01572_z
crossref_primary_10_1016_j_net_2023_03_038
crossref_primary_10_1016_j_ijleo_2022_169024
crossref_primary_10_1016_j_commatsci_2021_110566
crossref_primary_10_1007_s00339_023_07028_8
crossref_primary_10_1016_j_jmrt_2022_02_130
crossref_primary_10_1007_s10854_023_11277_x
crossref_primary_10_1016_j_optmat_2021_111758
crossref_primary_10_1007_s12596_024_02008_4
crossref_primary_10_1016_j_pnucene_2021_103763
crossref_primary_10_1007_s11082_024_06809_6
crossref_primary_10_1016_j_radphyschem_2023_110988
crossref_primary_10_1016_j_radphyschem_2022_109995
crossref_primary_10_1016_j_radphyschem_2023_111118
crossref_primary_10_3390_ma15155393
crossref_primary_10_1016_j_radphyschem_2022_110127
crossref_primary_10_1007_s13538_021_00928_1
crossref_primary_10_1016_j_radphyschem_2022_110004
crossref_primary_10_1007_s00339_020_04265_z
crossref_primary_10_1016_j_ijleo_2021_168436
crossref_primary_10_1016_j_radphyschem_2024_112505
crossref_primary_10_1007_s11082_024_07417_0
crossref_primary_10_1016_j_optmat_2024_116573
crossref_primary_10_1007_s12633_023_02636_8
crossref_primary_10_1016_j_optmat_2024_115567
crossref_primary_10_1016_j_radphyschem_2023_111088
crossref_primary_10_1016_j_radphyschem_2023_111284
crossref_primary_10_1007_s41779_021_00616_y
crossref_primary_10_1016_j_chphi_2023_100430
crossref_primary_10_1016_j_radphyschem_2021_109741
crossref_primary_10_1016_j_ceramint_2023_06_048
crossref_primary_10_1007_s11664_024_11093_x
crossref_primary_10_3390_cryst12070941
crossref_primary_10_1007_s10854_021_05500_w
crossref_primary_10_1007_s11082_024_06395_7
crossref_primary_10_1016_j_ijfatigue_2025_108867
crossref_primary_10_1016_j_jmrt_2023_01_062
crossref_primary_10_1007_s10854_023_10625_1
crossref_primary_10_1016_j_radphyschem_2023_111279
crossref_primary_10_1007_s10854_023_11040_2
crossref_primary_10_1088_1402_4896_ace139
crossref_primary_10_1016_j_radphyschem_2023_111137
crossref_primary_10_1016_j_radphyschem_2024_111954
crossref_primary_10_1007_s10854_021_06022_1
crossref_primary_10_1007_s10854_021_06060_9
crossref_primary_10_1016_j_optmat_2023_114272
crossref_primary_10_1016_j_radphyschem_2023_110969
crossref_primary_10_1007_s10856_021_06626_3
crossref_primary_10_1140_epjp_s13360_022_02473_5
crossref_primary_10_1002_pat_5267
crossref_primary_10_1007_s11082_023_05753_1
crossref_primary_10_1016_j_physb_2021_412991
crossref_primary_10_1016_j_radphyschem_2024_111642
crossref_primary_10_1007_s10854_024_13344_3
crossref_primary_10_1016_j_ceramint_2021_07_192
crossref_primary_10_1016_j_radphyschem_2022_110673
crossref_primary_10_1140_epjp_s13360_021_01790_5
crossref_primary_10_1007_s12633_023_02750_7
Cites_doi 10.1016/j.jallcom.2016.11.299
10.1016/j.radphyschem.2019.03.029
10.1016/S0306-4549(97)00003-0
10.1016/j.saa.2019.117309
10.1016/j.jnoncrysol.2018.07.004
10.1016/j.nimb.2010.02.091
10.1016/j.nima.2016.06.125
10.1016/j.matchemphys.2013.10.013
10.1016/j.jfluchem.2019.03.007
10.1016/j.ceramint.2020.05.047
10.1016/j.rinp.2019.02.065
10.1016/j.jnoncrysol.2020.120130
10.1016/j.jnoncrysol.2014.01.002
10.1016/j.ceramint.2020.04.240
10.1016/j.saa.2017.12.054
10.1063/1.360963
10.1016/j.ceramint.2020.03.091
10.1016/j.ceramint.2020.06.226
10.1016/j.jnoncrysol.2019.03.007
10.1016/j.jallcom.2016.07.153
10.2172/6016002
10.1016/j.ceramint.2020.09.131
10.1016/j.ceramint.2020.08.138
10.1016/j.nimb.2008.06.034
10.1016/j.ceramint.2019.09.254
10.1016/j.jnoncrysol.2019.119574
10.1016/j.jnoncrysol.2014.08.003
10.1021/ed039p333
10.1016/j.jnoncrysol.2017.09.049
10.1016/j.jnoncrysol.2018.01.027
10.1016/j.jnoncrysol.2013.07.024
10.1016/j.matchemphys.2019.122504
10.1016/j.rinp.2019.01.094
10.1016/j.matchemphys.2018.12.022
10.1016/j.jlumin.2018.11.023
10.1016/j.ceramint.2020.02.148
10.1016/j.jlumin.2014.04.022
10.1016/j.jnoncrysol.2016.04.039
10.1016/j.ceramint.2020.08.092
10.1016/j.nimb.2004.05.016
10.1016/j.matchemphys.2018.10.064
10.1007/s00339-019-3115-6
10.1016/j.jallcom.2019.151914
10.1063/1.5143116
10.1016/S0254-0584(97)80175-7
10.1016/j.ceramint.2016.05.092
10.1016/j.jnoncrysol.2018.09.038
10.1007/s10853-009-4017-3
10.1016/j.jnoncrysol.2017.03.004
10.1016/j.jnoncrysol.2018.07.025
10.1016/j.ceramint.2020.02.039
10.1016/j.ceramint.2019.05.028
10.1016/j.ceramint.2020.08.251
10.1016/j.molstruc.2018.03.095
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-04662-3
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 21501
ExternalDocumentID 10_1007_s10854_020_04662_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-8889c05a9bc86c04d9a6fe5c5f1034da907d7bba99e6cbfa7a7415e04204e2e13
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 11:18:40 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 02:34:54 EDT 2025
Fri Feb 21 02:39:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8889c05a9bc86c04d9a6fe5c5f1034da907d7bba99e6cbfa7a7415e04204e2e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2473328584
PQPubID 326250
PageCount 16
ParticipantIDs proquest_journals_2473328584
crossref_primary_10_1007_s10854_020_04662_3
crossref_citationtrail_10_1007_s10854_020_04662_3
springer_journals_10_1007_s10854_020_04662_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VijayakumarRMaheshvaranKSudarsanVMarimuthuKJ. Lumin.201410.1016/j.jlumin.2014.04.022
AnnapooraniKMarimuthuKJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.03.004
MarzoukMAElBatalFHEisaWHGhoneimNAJ. Non-Cryst Solids201410.1016/j.jnoncrysol.2014.01.002
MariyappanMMarimuthuKSayyedMIDongMGKaraUJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.025
SCHOTT: https://www.schott.com/advanced_optics/english/products/opticalmaterials/ special-materials/radiation-shielding-glasses/index.html. Accessed 03 Sept 2018
SaddeekYBIssaSAAlharbiTAlyKAhmadMTekinHOCeram. Int.202010.1016/j.ceramint.2019.09.254
BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202010.1016/j.ceramint.2020.06.226
GaikwadDKSayyedMIBotewadSNObaidSSKhattariZYGawaiUPAfanehFShirshatMDPawarPPJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2018.09.038
SwinehartDFJ. Chem. Educ.196210.1021/ed039p333
ChenYChenGLiuXXuJYangTYuanCZhouCJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.01.027
MajjaneAChahineAEt-tabirouMEchchahedBDoTOMc BreenPMater. Chem. Phys.201410.1016/j.matchemphys.2013.10.013
YaoLQChenGHYangTCuiSCLiZCYangYCeram. Int.201610.1016/j.ceramint.2016.05.092
Al-BuriahiMSBakhshEMTongucBKhanSBCeram. Int.202010.1016/j.ceramint.2020.04.240
LaariedhFSayyedMIKumarATekinHOKaurRBadecheTBJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.03.007
DongMGXueXXElmahrougYSayyedMIZaidMHMResults Phys.201910.1016/j.rinp.2019.02.065
HalimahMKHazlinMNAMuhammadFDSpectrochim. Acta A201810.1016/j.saa.2017.12.054
Al-HadeethiYSayyedMIKaewkhaoJAskinARaffahBMMkawiEMRajaramakrishnaRAppl. Phys. A.20191258521:CAS:528:DC%2BC1MXit1WktbfI10.1007/s00339-019-3115-6
JabraouiHBadawiMLebègueSVaillsYJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.004
SinghNSinghKJSinghKSinghHNucl. Instrum. Methods Phys. Res. Sect. B200410.1016/j.nimb.2004.05.016
OlarinoyeIORammahYSAlraddadiSSriwunkumCAbd El-RehimAFZahranHYAl-BuriahiMSCeram. Int.202010.1016/j.ceramint.2020.08.092
KaurPSinghKJKurudirekMThakurSSpectrochim. Acta A201910.1016/j.saa.2019.117309
SayyedMIJ. Alloys Compd.201610.1016/j.jallcom.2016.07.153
The Stopping and Range of Ions in Matter (SRIM) www.srim.org.
XiaLWangLXiaoQLiZYouWZhangQJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.09.049
KebailiIBoukhrisIAl-BuriahiMSAlalawiASayyedMICeram. Int.202010.1016/j.ceramint.2020.08.251
OpersBRaduTSimonSJ. Non-Cryst. Solids201310.1016/j.jnoncrysol.2013.07.024
IssaSATekinHOElsamanRKilicogluOSaddeekYBSayyedMIMater. Chem. Phys.201910.1016/j.matchemphys.2018.10.064
AbouhaswaASMharebMHAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2020.120130
HegdeVChauhanNKumarVViswanathCDMahatoKKKamathSDJ. Lumin.201910.1016/j.jlumin.2018.11.023
HagerIZEl-MallawanyRJ. Mater. Sci.201010.1007/s10853-009-4017-3
DivinaRMarimuthuKSayyedMITekinHOAgarORadiat. Phys. Chem.201910.1016/j.radphyschem.2019.03.029
HegazyHHAl-BuriahiMSAlresheediFEl-AgawanyFISriwunkumCNeffatiRRammahYSCeram. Int.202010.1016/j.ceramint.2020.09.131
ManoharaSRHanagodimathSMThindKSGerwardLNucl. Instrum. Methods B200810.1016/j.nimb.2008.06.034
NaseerKAMarimuthuKAl-BuriahiMSAlalawiATekinHOCeram. Int.202010.1016/j.ceramint.2020.08.138
WaghARaviprakashYKamathSDJ. Alloys Compd.201710.1016/j.jallcom.2016.11.299
AlajeramiYSDraboldDMharebMHCimatuKLChenGKurudirekMCeram. Int.202010.1016/j.ceramint.2020.02.039
BergerMJHubbellJHXCOM: photon cross sections on a personal computerNBSIR198787359710.2172/6016002
BoukhrisIAlalawiAAl-BuriahiMSKebailiISayyedMICeram. Int.202010.1016/j.ceramint.2020.05.047
YaoLQChenGHCuiSCZhongHJWenCJ. Non-Cryst. Solids201610.1016/j.jnoncrysol.2016.04.039
AlajeramiYSDraboldDAMharebMHSubediKNCimatuKLChenGJ. Appl. Phys.202010.1063/1.5143116
Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202010.1016/j.ceramint.2020.03.091
JiménezJAFachiniERZhaoCJ. Mol. Struct.201810.1016/j.molstruc.2018.03.095
Berger, M.J., Hubbell, J.H.: XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research (1987)
SinghVPBadigerNMKaewkhaoJJ. Non-Cryst. Solids201410.1016/j.jnoncrysol.2014.08.003
WilsonMMater. Chem. Phys.201910.1016/j.matchemphys.2018.12.022
DimitrovVSakkaSJ. Appl. Phys.199610.1063/1.360963
KavazETekinHOAgarOAltunsoyEEKilicogluOKamisliogluMAbuzaidMMSayyedMICeram. Int.201910.1016/j.ceramint.2019.05.028
Abd El-MoneimAJ. Fluorine Chem.201910.1016/j.jfluchem.2019.03.007
KakyKMSayyedMIKhammasAKumarAŞakarEAbdalsalamAHŞakarBCAlimBMharebMHMater. Chem. Phys.202010.1016/j.matchemphys.2019.122504
AlmatariMAgarOAltunsoyEEKilicogluOSayyedMITekinHOResults Phys.201910.1016/j.rinp.2019.01.094
ZieglerJFZieglerMDBiersackJPNucl. Instrum. Methods B201010.1016/j.nimb.2010.02.091
LiuHSChinTSYungSWMater. Chem. Phys.199710.1016/S0254-0584(97)80175-7
Al-BuriahiMSSayyedMIAl-HadeethiYCeram. Int.202010.1016/j.ceramint.2020.02.148
AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGBeckBRBogdanovAGBrandtDBrownJMCBurkhadtHCanalPCano-OttDChauvieSChoKNucl. Instrum. Methods Phys. Res. Sect. A201610.1016/j.nima.2016.06.125
RajaramakrishnaRNijapaiPKidkhunthodPKimHJKaewkhaoJRuangtaweepYJ. Alloys Compd.202010.1016/j.jallcom.2019.151914
BashterIIAnn. Nucl. Energy199710.1016/S0306-4549(97)00003-0
SathiyapriyaGMarimuthuKSayyedMIAskinAAgarOJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.119574
MI Sayyed (4662_CR2) 2016
KM Kaky (4662_CR6) 2020
MK Halimah (4662_CR31) 2018
4662_CR53
MS Al-Buriahi (4662_CR50) 2020
KA Naseer (4662_CR48) 2020
I Boukhris (4662_CR49) 2020
HS Liu (4662_CR20) 1997
L Xia (4662_CR36) 2017
M Wilson (4662_CR9) 2019
A Majjane (4662_CR22) 2014
F Laariedh (4662_CR5) 2019
DK Gaikwad (4662_CR28) 2019
H Jabraoui (4662_CR33) 2018
IO Olarinoye (4662_CR54) 2020
M Almatari (4662_CR3) 2019
YS Alajerami (4662_CR41) 2020
N Singh (4662_CR7) 2004
4662_CR45
JA Jiménez (4662_CR21) 2018
E Kavaz (4662_CR4) 2019
Y Al-Hadeethi (4662_CR1) 2019; 125
A Wagh (4662_CR11) 2017
R Vijayakumar (4662_CR37) 2014
M Mariyappan (4662_CR29) 2018
II Bashter (4662_CR46) 1997
LQ Yao (4662_CR10) 2016
YB Saddeek (4662_CR51) 2020
K Annapoorani (4662_CR35) 2017
SR Manohara (4662_CR47) 2008
YS Alajerami (4662_CR40) 2020
LQ Yao (4662_CR13) 2016
R Divina (4662_CR30) 2019
MG Dong (4662_CR43) 2019
V Dimitrov (4662_CR26) 1996
B Opers (4662_CR19) 2013
R Rajaramakrishna (4662_CR38) 2020
4662_CR39
G Sathiyapriya (4662_CR17) 2019
MJ Berger (4662_CR23) 1987; 87
P Kaur (4662_CR25) 2019
JF Ziegler (4662_CR52) 2010
MS Al-Buriahi (4662_CR42) 2020
AS Abouhaswa (4662_CR27) 2019
MA Marzouk (4662_CR8) 2014
MS Al-Buriahi (4662_CR56) 2020
I Kebaili (4662_CR57) 2020
V Hegde (4662_CR12) 2019
I Boukhris (4662_CR55) 2020
Y Chen (4662_CR16) 2018
J Allison (4662_CR44) 2016
HH Hegazy (4662_CR14) 2020
IZ Hager (4662_CR32) 2010
SA Issa (4662_CR18) 2019
A Abd El-Moneim (4662_CR34) 2019
DF Swinehart (4662_CR24) 1962
VP Singh (4662_CR15) 2014
References_xml – reference: MarzoukMAElBatalFHEisaWHGhoneimNAJ. Non-Cryst Solids201410.1016/j.jnoncrysol.2014.01.002
– reference: HegazyHHAl-BuriahiMSAlresheediFEl-AgawanyFISriwunkumCNeffatiRRammahYSCeram. Int.202010.1016/j.ceramint.2020.09.131
– reference: AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGBeckBRBogdanovAGBrandtDBrownJMCBurkhadtHCanalPCano-OttDChauvieSChoKNucl. Instrum. Methods Phys. Res. Sect. A201610.1016/j.nima.2016.06.125
– reference: SathiyapriyaGMarimuthuKSayyedMIAskinAAgarOJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.119574
– reference: SCHOTT: https://www.schott.com/advanced_optics/english/products/opticalmaterials/ special-materials/radiation-shielding-glasses/index.html. Accessed 03 Sept 2018
– reference: SinghVPBadigerNMKaewkhaoJJ. Non-Cryst. Solids201410.1016/j.jnoncrysol.2014.08.003
– reference: Al-BuriahiMSBakhshEMTongucBKhanSBCeram. Int.202010.1016/j.ceramint.2020.04.240
– reference: Al-BuriahiMSSayyedMIAl-HadeethiYCeram. Int.202010.1016/j.ceramint.2020.02.148
– reference: NaseerKAMarimuthuKAl-BuriahiMSAlalawiATekinHOCeram. Int.202010.1016/j.ceramint.2020.08.138
– reference: LaariedhFSayyedMIKumarATekinHOKaurRBadecheTBJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.03.007
– reference: MariyappanMMarimuthuKSayyedMIDongMGKaraUJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.025
– reference: DongMGXueXXElmahrougYSayyedMIZaidMHMResults Phys.201910.1016/j.rinp.2019.02.065
– reference: The Stopping and Range of Ions in Matter (SRIM) www.srim.org.
– reference: KebailiIBoukhrisIAl-BuriahiMSAlalawiASayyedMICeram. Int.202010.1016/j.ceramint.2020.08.251
– reference: AlmatariMAgarOAltunsoyEEKilicogluOSayyedMITekinHOResults Phys.201910.1016/j.rinp.2019.01.094
– reference: WaghARaviprakashYKamathSDJ. Alloys Compd.201710.1016/j.jallcom.2016.11.299
– reference: SinghNSinghKJSinghKSinghHNucl. Instrum. Methods Phys. Res. Sect. B200410.1016/j.nimb.2004.05.016
– reference: GaikwadDKSayyedMIBotewadSNObaidSSKhattariZYGawaiUPAfanehFShirshatMDPawarPPJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2018.09.038
– reference: Abd El-MoneimAJ. Fluorine Chem.201910.1016/j.jfluchem.2019.03.007
– reference: AnnapooraniKMarimuthuKJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.03.004
– reference: BergerMJHubbellJHXCOM: photon cross sections on a personal computerNBSIR198787359710.2172/6016002
– reference: KakyKMSayyedMIKhammasAKumarAŞakarEAbdalsalamAHŞakarBCAlimBMharebMHMater. Chem. Phys.202010.1016/j.matchemphys.2019.122504
– reference: HagerIZEl-MallawanyRJ. Mater. Sci.201010.1007/s10853-009-4017-3
– reference: ChenYChenGLiuXXuJYangTYuanCZhouCJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.01.027
– reference: DivinaRMarimuthuKSayyedMITekinHOAgarORadiat. Phys. Chem.201910.1016/j.radphyschem.2019.03.029
– reference: AlajeramiYSDraboldDMharebMHCimatuKLChenGKurudirekMCeram. Int.202010.1016/j.ceramint.2020.02.039
– reference: SaddeekYBIssaSAAlharbiTAlyKAhmadMTekinHOCeram. Int.202010.1016/j.ceramint.2019.09.254
– reference: Al-HadeethiYSayyedMIKaewkhaoJAskinARaffahBMMkawiEMRajaramakrishnaRAppl. Phys. A.20191258521:CAS:528:DC%2BC1MXit1WktbfI10.1007/s00339-019-3115-6
– reference: KavazETekinHOAgarOAltunsoyEEKilicogluOKamisliogluMAbuzaidMMSayyedMICeram. Int.201910.1016/j.ceramint.2019.05.028
– reference: RajaramakrishnaRNijapaiPKidkhunthodPKimHJKaewkhaoJRuangtaweepYJ. Alloys Compd.202010.1016/j.jallcom.2019.151914
– reference: IssaSATekinHOElsamanRKilicogluOSaddeekYBSayyedMIMater. Chem. Phys.201910.1016/j.matchemphys.2018.10.064
– reference: OpersBRaduTSimonSJ. Non-Cryst. Solids201310.1016/j.jnoncrysol.2013.07.024
– reference: HegdeVChauhanNKumarVViswanathCDMahatoKKKamathSDJ. Lumin.201910.1016/j.jlumin.2018.11.023
– reference: JiménezJAFachiniERZhaoCJ. Mol. Struct.201810.1016/j.molstruc.2018.03.095
– reference: ManoharaSRHanagodimathSMThindKSGerwardLNucl. Instrum. Methods B200810.1016/j.nimb.2008.06.034
– reference: HalimahMKHazlinMNAMuhammadFDSpectrochim. Acta A201810.1016/j.saa.2017.12.054
– reference: DimitrovVSakkaSJ. Appl. Phys.199610.1063/1.360963
– reference: Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202010.1016/j.ceramint.2020.03.091
– reference: SayyedMIJ. Alloys Compd.201610.1016/j.jallcom.2016.07.153
– reference: BoukhrisIAlalawiAAl-BuriahiMSKebailiISayyedMICeram. Int.202010.1016/j.ceramint.2020.05.047
– reference: YaoLQChenGHCuiSCZhongHJWenCJ. Non-Cryst. Solids201610.1016/j.jnoncrysol.2016.04.039
– reference: XiaLWangLXiaoQLiZYouWZhangQJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.09.049
– reference: BashterIIAnn. Nucl. Energy199710.1016/S0306-4549(97)00003-0
– reference: AbouhaswaASMharebMHAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2020.120130
– reference: JabraouiHBadawiMLebègueSVaillsYJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.004
– reference: LiuHSChinTSYungSWMater. Chem. Phys.199710.1016/S0254-0584(97)80175-7
– reference: KaurPSinghKJKurudirekMThakurSSpectrochim. Acta A201910.1016/j.saa.2019.117309
– reference: Berger, M.J., Hubbell, J.H.: XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research (1987)
– reference: MajjaneAChahineAEt-tabirouMEchchahedBDoTOMc BreenPMater. Chem. Phys.201410.1016/j.matchemphys.2013.10.013
– reference: VijayakumarRMaheshvaranKSudarsanVMarimuthuKJ. Lumin.201410.1016/j.jlumin.2014.04.022
– reference: AlajeramiYSDraboldDAMharebMHSubediKNCimatuKLChenGJ. Appl. Phys.202010.1063/1.5143116
– reference: WilsonMMater. Chem. Phys.201910.1016/j.matchemphys.2018.12.022
– reference: ZieglerJFZieglerMDBiersackJPNucl. Instrum. Methods B201010.1016/j.nimb.2010.02.091
– reference: OlarinoyeIORammahYSAlraddadiSSriwunkumCAbd El-RehimAFZahranHYAl-BuriahiMSCeram. Int.202010.1016/j.ceramint.2020.08.092
– reference: YaoLQChenGHYangTCuiSCLiZCYangYCeram. Int.201610.1016/j.ceramint.2016.05.092
– reference: SwinehartDFJ. Chem. Educ.196210.1021/ed039p333
– reference: BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202010.1016/j.ceramint.2020.06.226
– year: 2017
  ident: 4662_CR11
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.11.299
– year: 2019
  ident: 4662_CR30
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2019.03.029
– year: 1997
  ident: 4662_CR46
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/S0306-4549(97)00003-0
– year: 2019
  ident: 4662_CR25
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2019.117309
– year: 2018
  ident: 4662_CR33
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.07.004
– year: 2010
  ident: 4662_CR52
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/j.nimb.2010.02.091
– year: 2016
  ident: 4662_CR44
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2016.06.125
– year: 2014
  ident: 4662_CR22
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.10.013
– year: 2019
  ident: 4662_CR34
  publication-title: J. Fluorine Chem.
  doi: 10.1016/j.jfluchem.2019.03.007
– year: 2020
  ident: 4662_CR49
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.047
– year: 2019
  ident: 4662_CR43
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.02.065
– year: 2019
  ident: 4662_CR27
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2020.120130
– year: 2014
  ident: 4662_CR8
  publication-title: J. Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2014.01.002
– year: 2020
  ident: 4662_CR56
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.240
– year: 2018
  ident: 4662_CR31
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2017.12.054
– ident: 4662_CR45
– year: 1996
  ident: 4662_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360963
– year: 2020
  ident: 4662_CR50
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.091
– year: 2020
  ident: 4662_CR55
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.06.226
– year: 2019
  ident: 4662_CR5
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.03.007
– year: 2016
  ident: 4662_CR2
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.153
– ident: 4662_CR39
  doi: 10.2172/6016002
– year: 2020
  ident: 4662_CR14
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.131
– year: 2020
  ident: 4662_CR48
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.138
– year: 2008
  ident: 4662_CR47
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/j.nimb.2008.06.034
– year: 2020
  ident: 4662_CR51
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.254
– year: 2019
  ident: 4662_CR17
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.119574
– year: 2014
  ident: 4662_CR15
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2014.08.003
– year: 1962
  ident: 4662_CR24
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed039p333
– year: 2017
  ident: 4662_CR36
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.09.049
– year: 2018
  ident: 4662_CR16
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.01.027
– year: 2013
  ident: 4662_CR19
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.07.024
– year: 2020
  ident: 4662_CR6
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.122504
– year: 2019
  ident: 4662_CR3
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.01.094
– year: 2019
  ident: 4662_CR9
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.12.022
– year: 2019
  ident: 4662_CR12
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.11.023
– year: 2020
  ident: 4662_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.148
– year: 2014
  ident: 4662_CR37
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2014.04.022
– year: 2016
  ident: 4662_CR13
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.04.039
– year: 2020
  ident: 4662_CR54
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.092
– year: 2004
  ident: 4662_CR7
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
  doi: 10.1016/j.nimb.2004.05.016
– year: 2019
  ident: 4662_CR18
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.10.064
– volume: 125
  start-page: 852
  year: 2019
  ident: 4662_CR1
  publication-title: Appl. Phys. A.
  doi: 10.1007/s00339-019-3115-6
– year: 2020
  ident: 4662_CR38
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.151914
– year: 2020
  ident: 4662_CR41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5143116
– year: 1997
  ident: 4662_CR20
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(97)80175-7
– volume: 87
  start-page: 3597
  year: 1987
  ident: 4662_CR23
  publication-title: NBSIR
  doi: 10.2172/6016002
– ident: 4662_CR53
– year: 2016
  ident: 4662_CR10
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.092
– year: 2019
  ident: 4662_CR28
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.09.038
– year: 2010
  ident: 4662_CR32
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-4017-3
– year: 2017
  ident: 4662_CR35
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.03.004
– year: 2018
  ident: 4662_CR29
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.07.025
– year: 2020
  ident: 4662_CR40
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.039
– year: 2019
  ident: 4662_CR4
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.028
– year: 2020
  ident: 4662_CR57
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.251
– year: 2018
  ident: 4662_CR21
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2018.03.095
SSID ssj0006438
Score 2.5409276
Snippet A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3  + 30PbO + 20MO + 10Bi 2 O 3  +...
A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B2O3 + 30PbO + 20MO + 10Bi2O3 + 1Eu2O3...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21486
SubjectTerms Absorption spectra
Bismuth
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Comparative studies
Energy
Energy levels
Energy value
Europium
Glass
Investigations
Lead oxides
Materials Science
Mathematical analysis
Metal oxides
Nuclear engineering
Nuclear reactors
Nuclear safety
Optical and Electronic Materials
Optical properties
Poisson's ratio
Radiation
Radiation shielding
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4imWFjQHbqzVxHYePiFArSokKoSo1FvkV-hKzQOSSvBz-k-ZSZwuINFTItmxpcx45pux_Q1jr20qnFEycEITXJk65zqkgRfGi7yscyMmAtNPp_nJmfp4np3HhNsQj1UuNnEy1L5zlCM_FKqQUpToL9_23zlVjaLd1VhC4y7bQxNcliu29_7o9POXG1uM_rac2faI3VuIeG0mXp4rM8UpfMIYMRdc_u2adnjzny3SyfMcP2QPImSEd7OMH7E7oX3M7v9BJPiEXc8kxNDVsFQ8GaHp8B29HnQ_tz4M0LWAaA-GXy0-hu2wgZk8log3NtD1U1Z7A6b18M00jTm0YTQwXNAZN5wFesrb_yACVprHbofmaryAS1QSmBQpwATFsdljRw-U4gXi_ui3V81TdnZ89PXDCY_FF7jDVTlyjIy1SzKjrStzlyivTV6HzGV1mkjlDQbVvrDWaB1yZ2tTGMImAW1AooIIqXzGVm3XhucMalEUAWGAl75QifVWqqATYTOdSq9Tv2bp8t8rF5nJqUDGZbXjVCZZVSirapJVJdfszc03_czLcWvvg0WcVVyjQ7XTqDXbLCLeNf9_tBe3j7bP7gnSqunMywFboSjDS0Quo30V1fM3LfXsXg
  priority: 102
  providerName: ProQuest
Title Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium
URI https://link.springer.com/article/10.1007/s10854-020-04662-3
https://www.proquest.com/docview/2473328584
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHxKdYKKs5cGMtEtv58HFBu61AVAixUjlFduzQlZpkRVIJfg7_lLGTdAsCJE6OFMeW8saeN_b4GeCFiXmppXDMswkmdZUy5WLHMm15mlep5kHA9P1ZerqRb8-T8_FQWDdlu09bkmGmvnHYLU8k8-EOxXQpZ-IAjhKK3X0i14Yvr-df8rH5oLDnFb05H4_K_LmNX93RnmP-ti0avM36HtwdaSIuB1zvwy3XPIA7N8QDH8KPQXgY2wqnW056rFt6Jk-H7betdR22DRLDw-57Q0W37RY4CMZ6sY0Ftruwkr1A3Vj8outavzKu19hd-Lw26gV3fq3-qxdd9f2YbVdf9Rd4SYaBwXgcBvpNry1VtOiXddHrfey2V_Uj2KxXn96csvHCBVbSSOwZRcOqjBKtTJmnZSSt0mnlkjKp4khIqymQtpkxWimXlqbSmfZ8xNG4j6TjLhaP4bBpG_cEsOJZ5sj1W2EzGRlrhHQq4iZRsbAqtjOIp_9elKMaub8U47LY6yh7rArCqghYFWIGL6-_2Q1aHP-sfTzBWYzjsiu4zITgObGuGSwmiPev_97a0_-r_gxuc29lIe_lGA4JWvec2Etv5nCQr0_mcLQ8-fxuReXr1dmHj_Ngwj8B2ADr5w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFUMBKgDnJhW7O72dkAIAcOELKdEys30ZjJSvIAdQT6HH-AbqfKSASRyy8mW3O6W_J5r6eUVYy9MKKxW0nOKJrjSRcwzH3qeaCfitIi16AVM9w_i5ZH6dBwdb7Bf01kY2lY52cTeULva0hz5tlCJlCJFf_mm-cqpahStrk4lNAZa7Prz75iyta933iO-L4VYfDh8t-RjVQFukW4dx5Qvs0GkM2PT2AbKZToufGSjIgykchqzRZcYo7PMx9YUOtHkdD2SO1Be-FBiv9fYdSXRk9PJ9MXHC8uP3j0dtP1IS1yI8ZDOeFQvjRSnZA0z0lhw-bcjXEe3_yzI9n5ucYfdHgNUeDsw6i7b8NU9dusP2cL77OcgeQx1AVN9lQ7KGu_Rx0L9Y-V8C3UFGFtCe17hpV21cxikaknmYw5108-hz0FXDr7ostTbxnca2hPaUYejQEOrBN9I7pXGMau2POtO4BQpCT1tPfSBPz522NABTSgDKY00q7PyATu6ElAess2qrvwjBoVIEo9Bh5MuUYFxRiqfBcJEWShdFroZC6fvnttRB53KcZzmawVnwipHrPIeq1zO2KuLd5pBBeTS1lsTnPloEdp8zd8Zm08Qrx__v7fHl_f2nN1YHu7v5Xs7B7tP2E1BDOt322yxTYTVP8WYqTPPeqIC-3zVf8ZvsKEofw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVhQJzgBNrbWLn5QNCQLtqKawqRKXegh07dKXmAUkF_Tn8DX4dM3l0AYneekokO7aU77Nnxo9vGHtmfJHpQDpO3gQPdB5x5XzHY21FlOSRFp2A6YdltHcUvDsOjzfYr_EuDB2rHOfEbqK2VUZr5HMRxFKKBO3lPB-ORRzuLF7VXzllkKKd1jGdRk-RA3f-HcO35uX-DmL9XIjF7qe3e3zIMMAzpF7LMfxTmRdqZbIkyrzAKh3lLszC3PdkYDVGjjY2RivloszkOtZkgB0S3QuccL7Edq-xzZiiognbfLO7PPx4YQfQ1ie90h8piwsxXNkZLu4lYcApdMP4NBJc_m0W177uP9uzndVb3Ga3BncVXvf8usM2XHmX3fxDxPAe-9kLIEOVw5htpYWiwne0uFD9WFnXQFUCeprQnJf4aFbNDHrhWhL9mEFVdyvqM9ClhS-6KPTcuFZDc0Ln67AXqGnP4BuJv1I_ZtUUZ-0JnCJBoSOxgy4MwGKLFS3Q8jKQ7ki9Oivus6MrgeUBm5RV6bYY5CKOHbogVlpEyVgjA6c8YULlS6t8O2X--N_TbFBFp-Qcp-laz5mwShGrtMMqlVP24uKbutcEubT29ghnOswPTbpm85TNRojXxf9v7eHlrT1l13FUpO_3lweP2A1BBOuO3myzCaLqHqMD1ZonA1OBfb7qwfEbZSUuEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+different+modifier+oxides+on+the+synthesis%2C+structural%2C+optical%2C+and+gamma%2Fbeta+shielding+properties+of+bismuth+lead+borate+glasses+doped+with+europium&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Divina%2C+R.&rft.au=Naseer%2C+K.+A.&rft.au=Marimuthu%2C+K.&rft.au=Alajerami%2C+Y.+S.+M.&rft.date=2020-12-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=23&rft.spage=21486&rft.epage=21501&rft_id=info:doi/10.1007%2Fs10854-020-04662-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_020_04662_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon