Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium
A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3 + 30PbO + 20MO + 10Bi 2 O 3 + 1Eu 2 O 3 (where M = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shie...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 23; pp. 21486 - 21501 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B
2
O
3
+ 30PbO + 20MO + 10Bi
2
O
3
+ 1Eu
2
O
3
(where
M
= K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu
3+
ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs. |
---|---|
AbstractList | A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B2O3 + 30PbO + 20MO + 10Bi2O3 + 1Eu2O3 (where M = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs. A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B 2 O 3 + 30PbO + 20MO + 10Bi 2 O 3 + 1Eu 2 O 3 (where M = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu 3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs. |
Author | Al-Buriahi, M. S. Marimuthu, K. Alajerami, Y. S. M. Divina, R. Naseer, K. A. |
Author_xml | – sequence: 1 givenname: R. surname: Divina fullname: Divina, R. organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University) – sequence: 2 givenname: K. A. surname: Naseer fullname: Naseer, K. A. organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University) – sequence: 3 givenname: K. surname: Marimuthu fullname: Marimuthu, K. organization: Department of Physics, The Gandhigram Rural Institute (Deemed to be University) – sequence: 4 givenname: Y. S. M. surname: Alajerami fullname: Alajerami, Y. S. M. organization: Physics and Astronomy, Science Faculty, Ohio University, Department of Medical Imaging, Al-Azhar University – sequence: 5 givenname: M. S. surname: Al-Buriahi fullname: Al-Buriahi, M. S. email: mohammed.al-buriahi@ogr.sakarya.edu.tr organization: Department of Physics, Sakarya University |
BookMark | eNp9kc2KFTEQhYOM4J3RF3AVcDvtVH66O72UYfyBATcK7kI6qdyboTu5Jml0Hsc3NdcrCC5mVQfqfFUHziW5iCkiIa8ZvGUA401hoHrZAYcO5DDwTjwjO9aPopOKf7sgO5j6sZM95y_IZSkPADBIoXbk1533aCtNnrrQZMZY6ZqaDphp-hkcFpoirQek5TG2UUK5pqXmzdYtm-WapmMN9iRMdHRv1tXczFgNLYeAiwtxT485HTHXcDrl6RzKutUDXdA4OqdsKtL9Ykppa9eMjv4IbY1bo8K2viTPvVkKvvo7r8jX93dfbj92958_fLp9d99ZwabaKaUmC72ZZqsGC9JNZvDY294zENKZCUY3zrOZJhzs7M1oRsl6BMlBIkcmrsib892W9vuGpeqHtOXYXmouRyG46pVsLn522ZxKyej1MYfV5EfNQJ-q0OcqdKtC_6lCiwap_yAbqqkhxZpNWJ5GxRkt7U_cY_6X6gnqN9SCo60 |
CitedBy_id | crossref_primary_10_1007_s11696_024_03430_5 crossref_primary_10_1093_rpd_ncae066 crossref_primary_10_1016_j_radphyschem_2023_110798 crossref_primary_10_1016_j_radphyschem_2022_110510 crossref_primary_10_1016_j_ijbiomac_2021_08_050 crossref_primary_10_1016_j_apradiso_2023_111080 crossref_primary_10_1007_s10854_024_13960_z crossref_primary_10_1016_j_ijleo_2021_168005 crossref_primary_10_1080_16583655_2022_2038468 crossref_primary_10_1016_j_conbuildmat_2023_130896 crossref_primary_10_1140_epjp_s13360_021_01572_z crossref_primary_10_1016_j_net_2023_03_038 crossref_primary_10_1016_j_ijleo_2022_169024 crossref_primary_10_1016_j_commatsci_2021_110566 crossref_primary_10_1007_s00339_023_07028_8 crossref_primary_10_1016_j_jmrt_2022_02_130 crossref_primary_10_1007_s10854_023_11277_x crossref_primary_10_1016_j_optmat_2021_111758 crossref_primary_10_1007_s12596_024_02008_4 crossref_primary_10_1016_j_pnucene_2021_103763 crossref_primary_10_1007_s11082_024_06809_6 crossref_primary_10_1016_j_radphyschem_2023_110988 crossref_primary_10_1016_j_radphyschem_2022_109995 crossref_primary_10_1016_j_radphyschem_2023_111118 crossref_primary_10_3390_ma15155393 crossref_primary_10_1016_j_radphyschem_2022_110127 crossref_primary_10_1007_s13538_021_00928_1 crossref_primary_10_1016_j_radphyschem_2022_110004 crossref_primary_10_1007_s00339_020_04265_z crossref_primary_10_1016_j_ijleo_2021_168436 crossref_primary_10_1016_j_radphyschem_2024_112505 crossref_primary_10_1007_s11082_024_07417_0 crossref_primary_10_1016_j_optmat_2024_116573 crossref_primary_10_1007_s12633_023_02636_8 crossref_primary_10_1016_j_optmat_2024_115567 crossref_primary_10_1016_j_radphyschem_2023_111088 crossref_primary_10_1016_j_radphyschem_2023_111284 crossref_primary_10_1007_s41779_021_00616_y crossref_primary_10_1016_j_chphi_2023_100430 crossref_primary_10_1016_j_radphyschem_2021_109741 crossref_primary_10_1016_j_ceramint_2023_06_048 crossref_primary_10_1007_s11664_024_11093_x crossref_primary_10_3390_cryst12070941 crossref_primary_10_1007_s10854_021_05500_w crossref_primary_10_1007_s11082_024_06395_7 crossref_primary_10_1016_j_ijfatigue_2025_108867 crossref_primary_10_1016_j_jmrt_2023_01_062 crossref_primary_10_1007_s10854_023_10625_1 crossref_primary_10_1016_j_radphyschem_2023_111279 crossref_primary_10_1007_s10854_023_11040_2 crossref_primary_10_1088_1402_4896_ace139 crossref_primary_10_1016_j_radphyschem_2023_111137 crossref_primary_10_1016_j_radphyschem_2024_111954 crossref_primary_10_1007_s10854_021_06022_1 crossref_primary_10_1007_s10854_021_06060_9 crossref_primary_10_1016_j_optmat_2023_114272 crossref_primary_10_1016_j_radphyschem_2023_110969 crossref_primary_10_1007_s10856_021_06626_3 crossref_primary_10_1140_epjp_s13360_022_02473_5 crossref_primary_10_1002_pat_5267 crossref_primary_10_1007_s11082_023_05753_1 crossref_primary_10_1016_j_physb_2021_412991 crossref_primary_10_1016_j_radphyschem_2024_111642 crossref_primary_10_1007_s10854_024_13344_3 crossref_primary_10_1016_j_ceramint_2021_07_192 crossref_primary_10_1016_j_radphyschem_2022_110673 crossref_primary_10_1140_epjp_s13360_021_01790_5 crossref_primary_10_1007_s12633_023_02750_7 |
Cites_doi | 10.1016/j.jallcom.2016.11.299 10.1016/j.radphyschem.2019.03.029 10.1016/S0306-4549(97)00003-0 10.1016/j.saa.2019.117309 10.1016/j.jnoncrysol.2018.07.004 10.1016/j.nimb.2010.02.091 10.1016/j.nima.2016.06.125 10.1016/j.matchemphys.2013.10.013 10.1016/j.jfluchem.2019.03.007 10.1016/j.ceramint.2020.05.047 10.1016/j.rinp.2019.02.065 10.1016/j.jnoncrysol.2020.120130 10.1016/j.jnoncrysol.2014.01.002 10.1016/j.ceramint.2020.04.240 10.1016/j.saa.2017.12.054 10.1063/1.360963 10.1016/j.ceramint.2020.03.091 10.1016/j.ceramint.2020.06.226 10.1016/j.jnoncrysol.2019.03.007 10.1016/j.jallcom.2016.07.153 10.2172/6016002 10.1016/j.ceramint.2020.09.131 10.1016/j.ceramint.2020.08.138 10.1016/j.nimb.2008.06.034 10.1016/j.ceramint.2019.09.254 10.1016/j.jnoncrysol.2019.119574 10.1016/j.jnoncrysol.2014.08.003 10.1021/ed039p333 10.1016/j.jnoncrysol.2017.09.049 10.1016/j.jnoncrysol.2018.01.027 10.1016/j.jnoncrysol.2013.07.024 10.1016/j.matchemphys.2019.122504 10.1016/j.rinp.2019.01.094 10.1016/j.matchemphys.2018.12.022 10.1016/j.jlumin.2018.11.023 10.1016/j.ceramint.2020.02.148 10.1016/j.jlumin.2014.04.022 10.1016/j.jnoncrysol.2016.04.039 10.1016/j.ceramint.2020.08.092 10.1016/j.nimb.2004.05.016 10.1016/j.matchemphys.2018.10.064 10.1007/s00339-019-3115-6 10.1016/j.jallcom.2019.151914 10.1063/1.5143116 10.1016/S0254-0584(97)80175-7 10.1016/j.ceramint.2016.05.092 10.1016/j.jnoncrysol.2018.09.038 10.1007/s10853-009-4017-3 10.1016/j.jnoncrysol.2017.03.004 10.1016/j.jnoncrysol.2018.07.025 10.1016/j.ceramint.2020.02.039 10.1016/j.ceramint.2019.05.028 10.1016/j.ceramint.2020.08.251 10.1016/j.molstruc.2018.03.095 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-04662-3 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 21501 |
ExternalDocumentID | 10_1007_s10854_020_04662_3 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-8889c05a9bc86c04d9a6fe5c5f1034da907d7bba99e6cbfa7a7415e04204e2e13 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:18:40 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 01 02:34:54 EDT 2025 Fri Feb 21 02:39:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8889c05a9bc86c04d9a6fe5c5f1034da907d7bba99e6cbfa7a7415e04204e2e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2473328584 |
PQPubID | 326250 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2473328584 crossref_primary_10_1007_s10854_020_04662_3 crossref_citationtrail_10_1007_s10854_020_04662_3 springer_journals_10_1007_s10854_020_04662_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | VijayakumarRMaheshvaranKSudarsanVMarimuthuKJ. Lumin.201410.1016/j.jlumin.2014.04.022 AnnapooraniKMarimuthuKJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.03.004 MarzoukMAElBatalFHEisaWHGhoneimNAJ. Non-Cryst Solids201410.1016/j.jnoncrysol.2014.01.002 MariyappanMMarimuthuKSayyedMIDongMGKaraUJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.025 SCHOTT: https://www.schott.com/advanced_optics/english/products/opticalmaterials/ special-materials/radiation-shielding-glasses/index.html. Accessed 03 Sept 2018 SaddeekYBIssaSAAlharbiTAlyKAhmadMTekinHOCeram. Int.202010.1016/j.ceramint.2019.09.254 BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202010.1016/j.ceramint.2020.06.226 GaikwadDKSayyedMIBotewadSNObaidSSKhattariZYGawaiUPAfanehFShirshatMDPawarPPJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2018.09.038 SwinehartDFJ. Chem. Educ.196210.1021/ed039p333 ChenYChenGLiuXXuJYangTYuanCZhouCJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.01.027 MajjaneAChahineAEt-tabirouMEchchahedBDoTOMc BreenPMater. Chem. Phys.201410.1016/j.matchemphys.2013.10.013 YaoLQChenGHYangTCuiSCLiZCYangYCeram. Int.201610.1016/j.ceramint.2016.05.092 Al-BuriahiMSBakhshEMTongucBKhanSBCeram. Int.202010.1016/j.ceramint.2020.04.240 LaariedhFSayyedMIKumarATekinHOKaurRBadecheTBJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.03.007 DongMGXueXXElmahrougYSayyedMIZaidMHMResults Phys.201910.1016/j.rinp.2019.02.065 HalimahMKHazlinMNAMuhammadFDSpectrochim. Acta A201810.1016/j.saa.2017.12.054 Al-HadeethiYSayyedMIKaewkhaoJAskinARaffahBMMkawiEMRajaramakrishnaRAppl. Phys. A.20191258521:CAS:528:DC%2BC1MXit1WktbfI10.1007/s00339-019-3115-6 JabraouiHBadawiMLebègueSVaillsYJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.004 SinghNSinghKJSinghKSinghHNucl. Instrum. Methods Phys. Res. Sect. B200410.1016/j.nimb.2004.05.016 OlarinoyeIORammahYSAlraddadiSSriwunkumCAbd El-RehimAFZahranHYAl-BuriahiMSCeram. Int.202010.1016/j.ceramint.2020.08.092 KaurPSinghKJKurudirekMThakurSSpectrochim. Acta A201910.1016/j.saa.2019.117309 SayyedMIJ. Alloys Compd.201610.1016/j.jallcom.2016.07.153 The Stopping and Range of Ions in Matter (SRIM) www.srim.org. XiaLWangLXiaoQLiZYouWZhangQJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.09.049 KebailiIBoukhrisIAl-BuriahiMSAlalawiASayyedMICeram. Int.202010.1016/j.ceramint.2020.08.251 OpersBRaduTSimonSJ. Non-Cryst. Solids201310.1016/j.jnoncrysol.2013.07.024 IssaSATekinHOElsamanRKilicogluOSaddeekYBSayyedMIMater. Chem. Phys.201910.1016/j.matchemphys.2018.10.064 AbouhaswaASMharebMHAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2020.120130 HegdeVChauhanNKumarVViswanathCDMahatoKKKamathSDJ. Lumin.201910.1016/j.jlumin.2018.11.023 HagerIZEl-MallawanyRJ. Mater. Sci.201010.1007/s10853-009-4017-3 DivinaRMarimuthuKSayyedMITekinHOAgarORadiat. Phys. Chem.201910.1016/j.radphyschem.2019.03.029 HegazyHHAl-BuriahiMSAlresheediFEl-AgawanyFISriwunkumCNeffatiRRammahYSCeram. Int.202010.1016/j.ceramint.2020.09.131 ManoharaSRHanagodimathSMThindKSGerwardLNucl. Instrum. Methods B200810.1016/j.nimb.2008.06.034 NaseerKAMarimuthuKAl-BuriahiMSAlalawiATekinHOCeram. Int.202010.1016/j.ceramint.2020.08.138 WaghARaviprakashYKamathSDJ. Alloys Compd.201710.1016/j.jallcom.2016.11.299 AlajeramiYSDraboldDMharebMHCimatuKLChenGKurudirekMCeram. Int.202010.1016/j.ceramint.2020.02.039 BergerMJHubbellJHXCOM: photon cross sections on a personal computerNBSIR198787359710.2172/6016002 BoukhrisIAlalawiAAl-BuriahiMSKebailiISayyedMICeram. Int.202010.1016/j.ceramint.2020.05.047 YaoLQChenGHCuiSCZhongHJWenCJ. Non-Cryst. Solids201610.1016/j.jnoncrysol.2016.04.039 AlajeramiYSDraboldDAMharebMHSubediKNCimatuKLChenGJ. Appl. Phys.202010.1063/1.5143116 Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202010.1016/j.ceramint.2020.03.091 JiménezJAFachiniERZhaoCJ. Mol. Struct.201810.1016/j.molstruc.2018.03.095 Berger, M.J., Hubbell, J.H.: XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research (1987) SinghVPBadigerNMKaewkhaoJJ. Non-Cryst. Solids201410.1016/j.jnoncrysol.2014.08.003 WilsonMMater. Chem. Phys.201910.1016/j.matchemphys.2018.12.022 DimitrovVSakkaSJ. Appl. Phys.199610.1063/1.360963 KavazETekinHOAgarOAltunsoyEEKilicogluOKamisliogluMAbuzaidMMSayyedMICeram. Int.201910.1016/j.ceramint.2019.05.028 Abd El-MoneimAJ. Fluorine Chem.201910.1016/j.jfluchem.2019.03.007 KakyKMSayyedMIKhammasAKumarAŞakarEAbdalsalamAHŞakarBCAlimBMharebMHMater. Chem. Phys.202010.1016/j.matchemphys.2019.122504 AlmatariMAgarOAltunsoyEEKilicogluOSayyedMITekinHOResults Phys.201910.1016/j.rinp.2019.01.094 ZieglerJFZieglerMDBiersackJPNucl. Instrum. Methods B201010.1016/j.nimb.2010.02.091 LiuHSChinTSYungSWMater. Chem. Phys.199710.1016/S0254-0584(97)80175-7 Al-BuriahiMSSayyedMIAl-HadeethiYCeram. Int.202010.1016/j.ceramint.2020.02.148 AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGBeckBRBogdanovAGBrandtDBrownJMCBurkhadtHCanalPCano-OttDChauvieSChoKNucl. Instrum. Methods Phys. Res. Sect. A201610.1016/j.nima.2016.06.125 RajaramakrishnaRNijapaiPKidkhunthodPKimHJKaewkhaoJRuangtaweepYJ. Alloys Compd.202010.1016/j.jallcom.2019.151914 BashterIIAnn. Nucl. Energy199710.1016/S0306-4549(97)00003-0 SathiyapriyaGMarimuthuKSayyedMIAskinAAgarOJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.119574 MI Sayyed (4662_CR2) 2016 KM Kaky (4662_CR6) 2020 MK Halimah (4662_CR31) 2018 4662_CR53 MS Al-Buriahi (4662_CR50) 2020 KA Naseer (4662_CR48) 2020 I Boukhris (4662_CR49) 2020 HS Liu (4662_CR20) 1997 L Xia (4662_CR36) 2017 M Wilson (4662_CR9) 2019 A Majjane (4662_CR22) 2014 F Laariedh (4662_CR5) 2019 DK Gaikwad (4662_CR28) 2019 H Jabraoui (4662_CR33) 2018 IO Olarinoye (4662_CR54) 2020 M Almatari (4662_CR3) 2019 YS Alajerami (4662_CR41) 2020 N Singh (4662_CR7) 2004 4662_CR45 JA Jiménez (4662_CR21) 2018 E Kavaz (4662_CR4) 2019 Y Al-Hadeethi (4662_CR1) 2019; 125 A Wagh (4662_CR11) 2017 R Vijayakumar (4662_CR37) 2014 M Mariyappan (4662_CR29) 2018 II Bashter (4662_CR46) 1997 LQ Yao (4662_CR10) 2016 YB Saddeek (4662_CR51) 2020 K Annapoorani (4662_CR35) 2017 SR Manohara (4662_CR47) 2008 YS Alajerami (4662_CR40) 2020 LQ Yao (4662_CR13) 2016 R Divina (4662_CR30) 2019 MG Dong (4662_CR43) 2019 V Dimitrov (4662_CR26) 1996 B Opers (4662_CR19) 2013 R Rajaramakrishna (4662_CR38) 2020 4662_CR39 G Sathiyapriya (4662_CR17) 2019 MJ Berger (4662_CR23) 1987; 87 P Kaur (4662_CR25) 2019 JF Ziegler (4662_CR52) 2010 MS Al-Buriahi (4662_CR42) 2020 AS Abouhaswa (4662_CR27) 2019 MA Marzouk (4662_CR8) 2014 MS Al-Buriahi (4662_CR56) 2020 I Kebaili (4662_CR57) 2020 V Hegde (4662_CR12) 2019 I Boukhris (4662_CR55) 2020 Y Chen (4662_CR16) 2018 J Allison (4662_CR44) 2016 HH Hegazy (4662_CR14) 2020 IZ Hager (4662_CR32) 2010 SA Issa (4662_CR18) 2019 A Abd El-Moneim (4662_CR34) 2019 DF Swinehart (4662_CR24) 1962 VP Singh (4662_CR15) 2014 |
References_xml | – reference: MarzoukMAElBatalFHEisaWHGhoneimNAJ. Non-Cryst Solids201410.1016/j.jnoncrysol.2014.01.002 – reference: HegazyHHAl-BuriahiMSAlresheediFEl-AgawanyFISriwunkumCNeffatiRRammahYSCeram. Int.202010.1016/j.ceramint.2020.09.131 – reference: AllisonJAmakoKApostolakisJArcePAsaiMAsoTBagliEBagulyaABanerjeeSBarrandGBeckBRBogdanovAGBrandtDBrownJMCBurkhadtHCanalPCano-OttDChauvieSChoKNucl. Instrum. Methods Phys. Res. Sect. A201610.1016/j.nima.2016.06.125 – reference: SathiyapriyaGMarimuthuKSayyedMIAskinAAgarOJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.119574 – reference: SCHOTT: https://www.schott.com/advanced_optics/english/products/opticalmaterials/ special-materials/radiation-shielding-glasses/index.html. Accessed 03 Sept 2018 – reference: SinghVPBadigerNMKaewkhaoJJ. Non-Cryst. Solids201410.1016/j.jnoncrysol.2014.08.003 – reference: Al-BuriahiMSBakhshEMTongucBKhanSBCeram. Int.202010.1016/j.ceramint.2020.04.240 – reference: Al-BuriahiMSSayyedMIAl-HadeethiYCeram. Int.202010.1016/j.ceramint.2020.02.148 – reference: NaseerKAMarimuthuKAl-BuriahiMSAlalawiATekinHOCeram. Int.202010.1016/j.ceramint.2020.08.138 – reference: LaariedhFSayyedMIKumarATekinHOKaurRBadecheTBJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2019.03.007 – reference: MariyappanMMarimuthuKSayyedMIDongMGKaraUJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.025 – reference: DongMGXueXXElmahrougYSayyedMIZaidMHMResults Phys.201910.1016/j.rinp.2019.02.065 – reference: The Stopping and Range of Ions in Matter (SRIM) www.srim.org. – reference: KebailiIBoukhrisIAl-BuriahiMSAlalawiASayyedMICeram. Int.202010.1016/j.ceramint.2020.08.251 – reference: AlmatariMAgarOAltunsoyEEKilicogluOSayyedMITekinHOResults Phys.201910.1016/j.rinp.2019.01.094 – reference: WaghARaviprakashYKamathSDJ. Alloys Compd.201710.1016/j.jallcom.2016.11.299 – reference: SinghNSinghKJSinghKSinghHNucl. Instrum. Methods Phys. Res. Sect. B200410.1016/j.nimb.2004.05.016 – reference: GaikwadDKSayyedMIBotewadSNObaidSSKhattariZYGawaiUPAfanehFShirshatMDPawarPPJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2018.09.038 – reference: Abd El-MoneimAJ. Fluorine Chem.201910.1016/j.jfluchem.2019.03.007 – reference: AnnapooraniKMarimuthuKJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.03.004 – reference: BergerMJHubbellJHXCOM: photon cross sections on a personal computerNBSIR198787359710.2172/6016002 – reference: KakyKMSayyedMIKhammasAKumarAŞakarEAbdalsalamAHŞakarBCAlimBMharebMHMater. Chem. Phys.202010.1016/j.matchemphys.2019.122504 – reference: HagerIZEl-MallawanyRJ. Mater. Sci.201010.1007/s10853-009-4017-3 – reference: ChenYChenGLiuXXuJYangTYuanCZhouCJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.01.027 – reference: DivinaRMarimuthuKSayyedMITekinHOAgarORadiat. Phys. Chem.201910.1016/j.radphyschem.2019.03.029 – reference: AlajeramiYSDraboldDMharebMHCimatuKLChenGKurudirekMCeram. Int.202010.1016/j.ceramint.2020.02.039 – reference: SaddeekYBIssaSAAlharbiTAlyKAhmadMTekinHOCeram. Int.202010.1016/j.ceramint.2019.09.254 – reference: Al-HadeethiYSayyedMIKaewkhaoJAskinARaffahBMMkawiEMRajaramakrishnaRAppl. Phys. A.20191258521:CAS:528:DC%2BC1MXit1WktbfI10.1007/s00339-019-3115-6 – reference: KavazETekinHOAgarOAltunsoyEEKilicogluOKamisliogluMAbuzaidMMSayyedMICeram. Int.201910.1016/j.ceramint.2019.05.028 – reference: RajaramakrishnaRNijapaiPKidkhunthodPKimHJKaewkhaoJRuangtaweepYJ. Alloys Compd.202010.1016/j.jallcom.2019.151914 – reference: IssaSATekinHOElsamanRKilicogluOSaddeekYBSayyedMIMater. Chem. Phys.201910.1016/j.matchemphys.2018.10.064 – reference: OpersBRaduTSimonSJ. Non-Cryst. Solids201310.1016/j.jnoncrysol.2013.07.024 – reference: HegdeVChauhanNKumarVViswanathCDMahatoKKKamathSDJ. Lumin.201910.1016/j.jlumin.2018.11.023 – reference: JiménezJAFachiniERZhaoCJ. Mol. Struct.201810.1016/j.molstruc.2018.03.095 – reference: ManoharaSRHanagodimathSMThindKSGerwardLNucl. Instrum. Methods B200810.1016/j.nimb.2008.06.034 – reference: HalimahMKHazlinMNAMuhammadFDSpectrochim. Acta A201810.1016/j.saa.2017.12.054 – reference: DimitrovVSakkaSJ. Appl. Phys.199610.1063/1.360963 – reference: Al-BuriahiMSSinghVPAlalawiASriwunkumCTongucBTCeram. Int.202010.1016/j.ceramint.2020.03.091 – reference: SayyedMIJ. Alloys Compd.201610.1016/j.jallcom.2016.07.153 – reference: BoukhrisIAlalawiAAl-BuriahiMSKebailiISayyedMICeram. Int.202010.1016/j.ceramint.2020.05.047 – reference: YaoLQChenGHCuiSCZhongHJWenCJ. Non-Cryst. Solids201610.1016/j.jnoncrysol.2016.04.039 – reference: XiaLWangLXiaoQLiZYouWZhangQJ. Non-Cryst. Solids201710.1016/j.jnoncrysol.2017.09.049 – reference: BashterIIAnn. Nucl. Energy199710.1016/S0306-4549(97)00003-0 – reference: AbouhaswaASMharebMHAlalawiAAl-BuriahiMSJ. Non-Cryst. Solids201910.1016/j.jnoncrysol.2020.120130 – reference: JabraouiHBadawiMLebègueSVaillsYJ. Non-Cryst. Solids201810.1016/j.jnoncrysol.2018.07.004 – reference: LiuHSChinTSYungSWMater. Chem. Phys.199710.1016/S0254-0584(97)80175-7 – reference: KaurPSinghKJKurudirekMThakurSSpectrochim. Acta A201910.1016/j.saa.2019.117309 – reference: Berger, M.J., Hubbell, J.H.: XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research (1987) – reference: MajjaneAChahineAEt-tabirouMEchchahedBDoTOMc BreenPMater. Chem. Phys.201410.1016/j.matchemphys.2013.10.013 – reference: VijayakumarRMaheshvaranKSudarsanVMarimuthuKJ. Lumin.201410.1016/j.jlumin.2014.04.022 – reference: AlajeramiYSDraboldDAMharebMHSubediKNCimatuKLChenGJ. Appl. Phys.202010.1063/1.5143116 – reference: WilsonMMater. Chem. Phys.201910.1016/j.matchemphys.2018.12.022 – reference: ZieglerJFZieglerMDBiersackJPNucl. Instrum. Methods B201010.1016/j.nimb.2010.02.091 – reference: OlarinoyeIORammahYSAlraddadiSSriwunkumCAbd El-RehimAFZahranHYAl-BuriahiMSCeram. Int.202010.1016/j.ceramint.2020.08.092 – reference: YaoLQChenGHYangTCuiSCLiZCYangYCeram. Int.201610.1016/j.ceramint.2016.05.092 – reference: SwinehartDFJ. Chem. Educ.196210.1021/ed039p333 – reference: BoukhrisIKebailiIAl-BuriahiMSAlalawiAAbouhaswaASTongucBCeram. Int.202010.1016/j.ceramint.2020.06.226 – year: 2017 ident: 4662_CR11 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.11.299 – year: 2019 ident: 4662_CR30 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.03.029 – year: 1997 ident: 4662_CR46 publication-title: Ann. Nucl. Energy doi: 10.1016/S0306-4549(97)00003-0 – year: 2019 ident: 4662_CR25 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2019.117309 – year: 2018 ident: 4662_CR33 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.07.004 – year: 2010 ident: 4662_CR52 publication-title: Nucl. Instrum. Methods B doi: 10.1016/j.nimb.2010.02.091 – year: 2016 ident: 4662_CR44 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/j.nima.2016.06.125 – year: 2014 ident: 4662_CR22 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.10.013 – year: 2019 ident: 4662_CR34 publication-title: J. Fluorine Chem. doi: 10.1016/j.jfluchem.2019.03.007 – year: 2020 ident: 4662_CR49 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.047 – year: 2019 ident: 4662_CR43 publication-title: Results Phys. doi: 10.1016/j.rinp.2019.02.065 – year: 2019 ident: 4662_CR27 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120130 – year: 2014 ident: 4662_CR8 publication-title: J. Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2014.01.002 – year: 2020 ident: 4662_CR56 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.240 – year: 2018 ident: 4662_CR31 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2017.12.054 – ident: 4662_CR45 – year: 1996 ident: 4662_CR26 publication-title: J. Appl. Phys. doi: 10.1063/1.360963 – year: 2020 ident: 4662_CR50 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.091 – year: 2020 ident: 4662_CR55 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.06.226 – year: 2019 ident: 4662_CR5 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.03.007 – year: 2016 ident: 4662_CR2 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.153 – ident: 4662_CR39 doi: 10.2172/6016002 – year: 2020 ident: 4662_CR14 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.131 – year: 2020 ident: 4662_CR48 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.138 – year: 2008 ident: 4662_CR47 publication-title: Nucl. Instrum. Methods B doi: 10.1016/j.nimb.2008.06.034 – year: 2020 ident: 4662_CR51 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.254 – year: 2019 ident: 4662_CR17 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119574 – year: 2014 ident: 4662_CR15 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.08.003 – year: 1962 ident: 4662_CR24 publication-title: J. Chem. Educ. doi: 10.1021/ed039p333 – year: 2017 ident: 4662_CR36 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.09.049 – year: 2018 ident: 4662_CR16 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.01.027 – year: 2013 ident: 4662_CR19 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.07.024 – year: 2020 ident: 4662_CR6 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122504 – year: 2019 ident: 4662_CR3 publication-title: Results Phys. doi: 10.1016/j.rinp.2019.01.094 – year: 2019 ident: 4662_CR9 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.12.022 – year: 2019 ident: 4662_CR12 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.11.023 – year: 2020 ident: 4662_CR42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.148 – year: 2014 ident: 4662_CR37 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2014.04.022 – year: 2016 ident: 4662_CR13 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.04.039 – year: 2020 ident: 4662_CR54 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.092 – year: 2004 ident: 4662_CR7 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B doi: 10.1016/j.nimb.2004.05.016 – year: 2019 ident: 4662_CR18 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.10.064 – volume: 125 start-page: 852 year: 2019 ident: 4662_CR1 publication-title: Appl. Phys. A. doi: 10.1007/s00339-019-3115-6 – year: 2020 ident: 4662_CR38 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.151914 – year: 2020 ident: 4662_CR41 publication-title: J. Appl. Phys. doi: 10.1063/1.5143116 – year: 1997 ident: 4662_CR20 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(97)80175-7 – volume: 87 start-page: 3597 year: 1987 ident: 4662_CR23 publication-title: NBSIR doi: 10.2172/6016002 – ident: 4662_CR53 – year: 2016 ident: 4662_CR10 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.092 – year: 2019 ident: 4662_CR28 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.09.038 – year: 2010 ident: 4662_CR32 publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-4017-3 – year: 2017 ident: 4662_CR35 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.03.004 – year: 2018 ident: 4662_CR29 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.07.025 – year: 2020 ident: 4662_CR40 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.039 – year: 2019 ident: 4662_CR4 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.028 – year: 2020 ident: 4662_CR57 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.251 – year: 2018 ident: 4662_CR21 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.03.095 |
SSID | ssj0006438 |
Score | 2.5409276 |
Snippet | A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B
2
O
3
+ 30PbO + 20MO + 10Bi
2
O
3
+... A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B2O3 + 30PbO + 20MO + 10Bi2O3 + 1Eu2O3... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21486 |
SubjectTerms | Absorption spectra Bismuth Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Comparative studies Energy Energy levels Energy value Europium Glass Investigations Lead oxides Materials Science Mathematical analysis Metal oxides Nuclear engineering Nuclear reactors Nuclear safety Optical and Electronic Materials Optical properties Poisson's ratio Radiation Radiation shielding X-rays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4imWFjQHbqzVxHYePiFArSokKoSo1FvkV-hKzQOSSvBz-k-ZSZwuINFTItmxpcx45pux_Q1jr20qnFEycEITXJk65zqkgRfGi7yscyMmAtNPp_nJmfp4np3HhNsQj1UuNnEy1L5zlCM_FKqQUpToL9_23zlVjaLd1VhC4y7bQxNcliu29_7o9POXG1uM_rac2faI3VuIeG0mXp4rM8UpfMIYMRdc_u2adnjzny3SyfMcP2QPImSEd7OMH7E7oX3M7v9BJPiEXc8kxNDVsFQ8GaHp8B29HnQ_tz4M0LWAaA-GXy0-hu2wgZk8log3NtD1U1Z7A6b18M00jTm0YTQwXNAZN5wFesrb_yACVprHbofmaryAS1QSmBQpwATFsdljRw-U4gXi_ui3V81TdnZ89PXDCY_FF7jDVTlyjIy1SzKjrStzlyivTV6HzGV1mkjlDQbVvrDWaB1yZ2tTGMImAW1AooIIqXzGVm3XhucMalEUAWGAl75QifVWqqATYTOdSq9Tv2bp8t8rF5nJqUDGZbXjVCZZVSirapJVJdfszc03_czLcWvvg0WcVVyjQ7XTqDXbLCLeNf9_tBe3j7bP7gnSqunMywFboSjDS0Quo30V1fM3LfXsXg priority: 102 providerName: ProQuest |
Title | Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium |
URI | https://link.springer.com/article/10.1007/s10854-020-04662-3 https://www.proquest.com/docview/2473328584 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHxKdYKKs5cGMtEtv58HFBu61AVAixUjlFduzQlZpkRVIJfg7_lLGTdAsCJE6OFMeW8saeN_b4GeCFiXmppXDMswkmdZUy5WLHMm15mlep5kHA9P1ZerqRb8-T8_FQWDdlu09bkmGmvnHYLU8k8-EOxXQpZ-IAjhKK3X0i14Yvr-df8rH5oLDnFb05H4_K_LmNX93RnmP-ti0avM36HtwdaSIuB1zvwy3XPIA7N8QDH8KPQXgY2wqnW056rFt6Jk-H7betdR22DRLDw-57Q0W37RY4CMZ6sY0Ftruwkr1A3Vj8outavzKu19hd-Lw26gV3fq3-qxdd9f2YbVdf9Rd4SYaBwXgcBvpNry1VtOiXddHrfey2V_Uj2KxXn96csvHCBVbSSOwZRcOqjBKtTJmnZSSt0mnlkjKp4khIqymQtpkxWimXlqbSmfZ8xNG4j6TjLhaP4bBpG_cEsOJZ5sj1W2EzGRlrhHQq4iZRsbAqtjOIp_9elKMaub8U47LY6yh7rArCqghYFWIGL6-_2Q1aHP-sfTzBWYzjsiu4zITgObGuGSwmiPev_97a0_-r_gxuc29lIe_lGA4JWvec2Etv5nCQr0_mcLQ8-fxuReXr1dmHj_Ngwj8B2ADr5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFUMBKgDnJhW7O72dkAIAcOELKdEys30ZjJSvIAdQT6HH-AbqfKSASRyy8mW3O6W_J5r6eUVYy9MKKxW0nOKJrjSRcwzH3qeaCfitIi16AVM9w_i5ZH6dBwdb7Bf01kY2lY52cTeULva0hz5tlCJlCJFf_mm-cqpahStrk4lNAZa7Prz75iyta933iO-L4VYfDh8t-RjVQFukW4dx5Qvs0GkM2PT2AbKZToufGSjIgykchqzRZcYo7PMx9YUOtHkdD2SO1Be-FBiv9fYdSXRk9PJ9MXHC8uP3j0dtP1IS1yI8ZDOeFQvjRSnZA0z0lhw-bcjXEe3_yzI9n5ucYfdHgNUeDsw6i7b8NU9dusP2cL77OcgeQx1AVN9lQ7KGu_Rx0L9Y-V8C3UFGFtCe17hpV21cxikaknmYw5108-hz0FXDr7ostTbxnca2hPaUYejQEOrBN9I7pXGMau2POtO4BQpCT1tPfSBPz522NABTSgDKY00q7PyATu6ElAess2qrvwjBoVIEo9Bh5MuUYFxRiqfBcJEWShdFroZC6fvnttRB53KcZzmawVnwipHrPIeq1zO2KuLd5pBBeTS1lsTnPloEdp8zd8Zm08Qrx__v7fHl_f2nN1YHu7v5Xs7B7tP2E1BDOt322yxTYTVP8WYqTPPeqIC-3zVf8ZvsKEofw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzVhQJzgBNrbWLn5QNCQLtqKawqRKXegh07dKXmAUkF_Tn8DX4dM3l0AYneekokO7aU77Nnxo9vGHtmfJHpQDpO3gQPdB5x5XzHY21FlOSRFp2A6YdltHcUvDsOjzfYr_EuDB2rHOfEbqK2VUZr5HMRxFKKBO3lPB-ORRzuLF7VXzllkKKd1jGdRk-RA3f-HcO35uX-DmL9XIjF7qe3e3zIMMAzpF7LMfxTmRdqZbIkyrzAKh3lLszC3PdkYDVGjjY2RivloszkOtZkgB0S3QuccL7Edq-xzZiiognbfLO7PPx4YQfQ1ie90h8piwsxXNkZLu4lYcApdMP4NBJc_m0W177uP9uzndVb3Ga3BncVXvf8usM2XHmX3fxDxPAe-9kLIEOVw5htpYWiwne0uFD9WFnXQFUCeprQnJf4aFbNDHrhWhL9mEFVdyvqM9ClhS-6KPTcuFZDc0Ln67AXqGnP4BuJv1I_ZtUUZ-0JnCJBoSOxgy4MwGKLFS3Q8jKQ7ki9Oivus6MrgeUBm5RV6bYY5CKOHbogVlpEyVgjA6c8YULlS6t8O2X--N_TbFBFp-Qcp-laz5mwShGrtMMqlVP24uKbutcEubT29ghnOswPTbpm85TNRojXxf9v7eHlrT1l13FUpO_3lweP2A1BBOuO3myzCaLqHqMD1ZonA1OBfb7qwfEbZSUuEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+different+modifier+oxides+on+the+synthesis%2C+structural%2C+optical%2C+and+gamma%2Fbeta+shielding+properties+of+bismuth+lead+borate+glasses+doped+with+europium&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Divina%2C+R.&rft.au=Naseer%2C+K.+A.&rft.au=Marimuthu%2C+K.&rft.au=Alajerami%2C+Y.+S.+M.&rft.date=2020-12-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=23&rft.spage=21486&rft.epage=21501&rft_id=info:doi/10.1007%2Fs10854-020-04662-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_020_04662_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |