Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function
This paper presents a novel approach to deal with the imbalanced data set problem in neural networks by incorporating prior probabilities into a cost-sensitive cross-entropy error function. Several classical benchmarks were tested for performance evaluation using different metrics, namely G-Mean, ar...
Saved in:
Published in | Neural processing letters Vol. 50; no. 2; pp. 1937 - 1949 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1370-4621 1573-773X |
DOI | 10.1007/s11063-018-09977-1 |
Cover
Loading…
Abstract | This paper presents a novel approach to deal with the imbalanced data set problem in neural networks by incorporating prior probabilities into a cost-sensitive cross-entropy error function. Several classical benchmarks were tested for performance evaluation using different metrics, namely G-Mean, area under the ROC curve (AUC), adjusted G-Mean, Accuracy, True Positive Rate, True Negative Rate and F1-score. The obtained results were compared to well-known algorithms and showed the effectiveness and robustness of the proposed approach, which results in well-balanced classifiers given different imbalance scenarios. |
---|---|
AbstractList | This paper presents a novel approach to deal with the imbalanced data set problem in neural networks by incorporating prior probabilities into a cost-sensitive cross-entropy error function. Several classical benchmarks were tested for performance evaluation using different metrics, namely G-Mean, area under the ROC curve (AUC), adjusted G-Mean, Accuracy, True Positive Rate, True Negative Rate and F1-score. The obtained results were compared to well-known algorithms and showed the effectiveness and robustness of the proposed approach, which results in well-balanced classifiers given different imbalance scenarios. |
Author | Braga, Antonio Padua Aurelio, Yuri Sousa de Castro, Cristiano Leite de Almeida, Gustavo Matheus |
Author_xml | – sequence: 1 givenname: Yuri Sousa orcidid: 0000-0003-2777-1246 surname: Aurelio fullname: Aurelio, Yuri Sousa email: yurisousa@ufmg.br organization: Federal University of Minas Gerais – sequence: 2 givenname: Gustavo Matheus surname: de Almeida fullname: de Almeida, Gustavo Matheus organization: Federal University of Minas Gerais – sequence: 3 givenname: Cristiano Leite surname: de Castro fullname: de Castro, Cristiano Leite organization: Federal University of Minas Gerais – sequence: 4 givenname: Antonio Padua surname: Braga fullname: Braga, Antonio Padua organization: Federal University of Minas Gerais |
BookMark | eNp9kEFPAjEQhRujiYD-AU-beK5OW9i2R4OAJCQe1OitGUoXlkAX2xLDv7e4JiYeOM1k8r6ZN69Lzn3jHSE3DO4YgLyPjEEpKDBFQWspKTsjHTaQgkopPs5zLyTQfsnZJenGuAbIGIcOmcwcBl_7ZVGFZltMt3PcoLduUTxiwuLFpVh81WlVvLt6uUp5PgxNjHTkU2h2h2K89zbVjb8iFxVuorv-rT3yNh69Dp_o7HkyHT7MqBVMJ6oGc1UCR63RMaXA9QWiqyqQGsBqpReLilnuGEpELRBKPReCK8YHVpelED1y2-7dheZz72Iy62YffD5puGZK9EX-P6tUq7JHs8FVxtYJjz5TwHpjGJhjbKaNzeTYzE9shmWU_0N3od5iOJyGRAvFLPZLF_5cnaC-AXItgKY |
CitedBy_id | crossref_primary_10_3390_fractalfract8050267 crossref_primary_10_1109_ACCESS_2021_3051808 crossref_primary_10_1109_TNNLS_2021_3094304 crossref_primary_10_3934_math_2024998 crossref_primary_10_1016_j_compbiomed_2022_105703 crossref_primary_10_1016_j_aap_2024_107544 crossref_primary_10_1016_j_cmpb_2024_108405 crossref_primary_10_1007_s11280_022_01040_3 crossref_primary_10_1049_smt2_12205 crossref_primary_10_1109_LSP_2024_3449852 crossref_primary_10_1016_j_bspc_2025_107772 crossref_primary_10_1038_s41598_022_13550_1 crossref_primary_10_1109_TCBB_2023_3256709 crossref_primary_10_1007_s10479_024_05921_w crossref_primary_10_1016_j_bspc_2021_103296 crossref_primary_10_1287_ijoo_2022_0086 crossref_primary_10_1109_ACCESS_2023_3298304 crossref_primary_10_1088_1742_6596_2863_1_012017 crossref_primary_10_1155_2020_7307252 crossref_primary_10_1038_s41598_021_95208_y crossref_primary_10_3390_electronics11203275 crossref_primary_10_1016_j_iswa_2023_200316 crossref_primary_10_3390_s20133765 crossref_primary_10_1007_s11590_024_02112_1 crossref_primary_10_1038_s41598_025_91720_7 crossref_primary_10_2139_ssrn_4001910 crossref_primary_10_1016_j_asoc_2021_108138 crossref_primary_10_1038_s41598_024_82981_9 crossref_primary_10_1016_j_mex_2022_101622 crossref_primary_10_1109_TASE_2021_3127995 crossref_primary_10_1007_s00530_021_00827_0 crossref_primary_10_1093_bib_bbab277 crossref_primary_10_1117_1_JRS_18_044519 crossref_primary_10_1109_JBHI_2024_3363080 crossref_primary_10_1016_j_apenergy_2024_124789 crossref_primary_10_1111_jmp_12722 crossref_primary_10_1109_JBHI_2024_3360002 crossref_primary_10_3390_biomedicines10071717 crossref_primary_10_1371_journal_pdig_0000414 crossref_primary_10_1007_s11063_020_10358_w crossref_primary_10_1007_s11063_022_10756_2 crossref_primary_10_3390_jimaging9020035 crossref_primary_10_1109_TGRS_2022_3201248 crossref_primary_10_1109_TII_2021_3094186 crossref_primary_10_2197_ipsjjip_32_748 crossref_primary_10_1016_j_ijrmms_2021_104981 crossref_primary_10_3390_s23104688 crossref_primary_10_1016_j_jag_2022_102785 crossref_primary_10_1007_s10334_022_01056_w crossref_primary_10_1016_j_compbiomed_2020_103735 crossref_primary_10_1016_j_compind_2022_103753 crossref_primary_10_1016_j_compbiomed_2023_106669 crossref_primary_10_1016_j_jenvman_2021_114405 crossref_primary_10_3390_rs13173547 crossref_primary_10_3390_diagnostics13162624 crossref_primary_10_1093_jigpal_jzae027 crossref_primary_10_1371_journal_pgen_1010657 crossref_primary_10_1109_TNS_2022_3169281 crossref_primary_10_1093_jcde_qwad011 crossref_primary_10_1109_JSTSP_2024_3434498 crossref_primary_10_1007_s11063_020_10366_w crossref_primary_10_1177_1748006X20976817 crossref_primary_10_1007_s00530_021_00782_w crossref_primary_10_1109_TGRS_2022_3192974 crossref_primary_10_3390_math9243227 crossref_primary_10_3390_signals3020022 crossref_primary_10_1002_mp_15386 crossref_primary_10_1016_j_jbi_2023_104310 crossref_primary_10_1109_TNNLS_2020_3028022 crossref_primary_10_1109_TGRS_2021_3061088 crossref_primary_10_1016_j_conbuildmat_2020_120291 crossref_primary_10_5334_dsj_2021_020 crossref_primary_10_1109_TGRS_2019_2951445 crossref_primary_10_1038_s41523_022_00491_1 crossref_primary_10_7717_peerj_cs_1634 crossref_primary_10_3390_s20174946 crossref_primary_10_1587_transinf_2022EDP7200 crossref_primary_10_3233_JIFS_220937 crossref_primary_10_3390_math10050829 crossref_primary_10_1109_JBHI_2022_3226475 crossref_primary_10_3390_e22060597 crossref_primary_10_1007_s10334_023_01133_8 crossref_primary_10_1016_j_iswcr_2023_11_002 crossref_primary_10_32604_cmc_2023_033765 crossref_primary_10_1007_s10922_024_09874_0 crossref_primary_10_1016_j_eswa_2021_115974 crossref_primary_10_1007_s11042_023_16987_2 crossref_primary_10_1109_ACCESS_2023_3336289 crossref_primary_10_1109_TNNLS_2020_3047335 crossref_primary_10_3390_s21196678 crossref_primary_10_4103_jmss_jmss_52_22 crossref_primary_10_3390_s21062077 crossref_primary_10_1109_JSTARS_2023_3278862 crossref_primary_10_1016_j_future_2022_02_021 crossref_primary_10_1109_JSTARS_2024_3435372 crossref_primary_10_1051_e3sconf_202346419001 crossref_primary_10_3389_fnbot_2020_567571 crossref_primary_10_1016_j_solener_2024_113189 crossref_primary_10_1049_sfw2_12040 crossref_primary_10_1016_j_bspc_2025_107523 crossref_primary_10_1109_JBHI_2021_3102612 crossref_primary_10_1002_mp_16812 crossref_primary_10_1049_iet_gtd_2019_1562 crossref_primary_10_1007_s11548_023_03020_y crossref_primary_10_1016_j_compbiomed_2022_106215 crossref_primary_10_1016_j_gsf_2023_101769 crossref_primary_10_1016_j_neunet_2023_04_022 crossref_primary_10_1111_mice_12808 crossref_primary_10_1109_LGRS_2024_3453710 crossref_primary_10_1007_s11665_020_05345_0 crossref_primary_10_1093_bib_bbaa018 crossref_primary_10_3390_ijms232213838 crossref_primary_10_1053_j_gastro_2020_02_036 crossref_primary_10_58254_viti_4_2023_04_44 crossref_primary_10_1016_j_jhydrol_2022_127933 crossref_primary_10_3389_feart_2023_1073211 crossref_primary_10_1021_acs_est_4c11085 crossref_primary_10_1016_j_ijepes_2021_107156 crossref_primary_10_3390_app9194062 crossref_primary_10_1080_0144929X_2024_2313142 crossref_primary_10_3390_rs14040984 crossref_primary_10_1080_01431161_2023_2224101 crossref_primary_10_1016_j_bspc_2023_104962 crossref_primary_10_1016_j_compbiomed_2024_108936 crossref_primary_10_1007_s11517_023_02928_6 crossref_primary_10_1109_ACCESS_2020_3026658 crossref_primary_10_1016_j_srs_2024_100168 crossref_primary_10_1155_2021_6683942 crossref_primary_10_1016_j_anucene_2025_111337 crossref_primary_10_1109_TITS_2022_3207665 crossref_primary_10_1016_j_knosys_2023_110399 crossref_primary_10_3389_fgene_2022_1062576 crossref_primary_10_1002_aisy_202400204 crossref_primary_10_1109_ACCESS_2021_3106692 |
Cites_doi | 10.1145/1007730.1007733 10.1109/TEVC.2012.2199119 10.1109/TNNLS.2013.2246188 10.5392/IJoC.2011.7.3.001 10.1016/j.patrec.2005.10.010 10.1109/TNNLS.2016.2580570 10.1007/s00521-005-0467-y 10.1016/j.ins.2013.07.007 10.1016/j.patrec.2017.01.014 10.1016/j.neunet.2013.01.021 10.1080/01621459.1961.10482090 10.1109/TNN.2010.2066988 10.1142/S0219720012500035 10.1109/TKDE.2008.239 10.1023/A:1007614523901 10.1016/j.patcog.2007.04.009 10.1109/TNN.2010.2042730 10.1080/01621459.1937.10503522 10.1023/A:1007601015854 10.1613/jair.953 10.1007/978-3-540-73007-1_20 10.1109/ICNN.1993.298623 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. Oct 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. Oct 2019 |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
DOI | 10.1007/s11063-018-09977-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (subscription) Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-773X |
EndPage | 1949 |
ExternalDocumentID | 10_1007_s11063_018_09977_1 |
GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-85b8602a99ae1880e43aaeff07900c989ddf1c2e1a7aa93a069b3328125c96633 |
IEDL.DBID | 8FG |
ISSN | 1370-4621 |
IngestDate | Wed Aug 13 10:40:16 EDT 2025 Tue Jul 01 01:09:31 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Fri Feb 21 02:36:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Classification problem Imbalanced data Multilayer perceptron Back-propagation Cost-sensitive function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-85b8602a99ae1880e43aaeff07900c989ddf1c2e1a7aa93a069b3328125c96633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2777-1246 |
PQID | 2918343099 |
PQPubID | 2043838 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2918343099 crossref_citationtrail_10_1007_s11063_018_09977_1 crossref_primary_10_1007_s11063_018_09977_1 springer_journals_10_1007_s11063_018_09977_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Neural processing letters |
PublicationTitleAbbrev | Neural Process Lett |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Castro, Braga (CR8) 2013; 24 Khoshgoftaar, Van Hulse, Napolitano (CR14) 2010; 21 Chawla, Japkowicz, Kotcz (CR1) 2004; 6 CR19 Kline, Berardi (CR21) 2005; 14 Batuwita, Palade (CR29) 2012; 10 Demšar (CR30) 2006; 7 CR18 Chen, He, Garcia (CR15) 2010; 21 CR13 CR12 Wang, Yang, Chen, Zhang, Orchard (CR7) 2017; 28 CR11 Bhowan, Johnston, Zhang, Yao (CR5) 2013; 17 Friedman (CR31) 1937; 32 Schapire, Singer (CR17) 1999; 37 López, Fernández, García, Palade, Herrera (CR4) 2013; 250 CR2 Oh (CR9) 2011; 7 Provost, Fawcett (CR26) 2001; 42 Dunn (CR32) 1961; 56 Zhu, Wang (CR24) 2017; 88 Tomek (CR25) 1976; 6 CR27 Fawcett (CR28) 2006; 27 Frasca, Bertoni, Re, Valentini (CR6) 2013; 43 CR23 Sun, Kamel, Wong, Wang (CR16) 2007; 40 CR20 He, Garcia (CR3) 2009; 21 Duda, Hart, Stork (CR10) 2001 Berger (CR22) 2010 JO Berger (9977_CR22) 2010 M Frasca (9977_CR6) 2013; 43 RE Schapire (9977_CR17) 1999; 37 9977_CR23 9977_CR20 SH Oh (9977_CR9) 2011; 7 J Demšar (9977_CR30) 2006; 7 C Zhu (9977_CR24) 2017; 88 Y Sun (9977_CR16) 2007; 40 9977_CR2 F Provost (9977_CR26) 2001; 42 9977_CR27 CL Castro (9977_CR8) 2013; 24 OJ Dunn (9977_CR32) 1961; 56 S Chen (9977_CR15) 2010; 21 V López (9977_CR4) 2013; 250 9977_CR12 9977_CR11 H He (9977_CR3) 2009; 21 DM Kline (9977_CR21) 2005; 14 L Wang (9977_CR7) 2017; 28 T Fawcett (9977_CR28) 2006; 27 M Friedman (9977_CR31) 1937; 32 TM Khoshgoftaar (9977_CR14) 2010; 21 RO Duda (9977_CR10) 2001 NV Chawla (9977_CR1) 2004; 6 9977_CR13 I Tomek (9977_CR25) 1976; 6 9977_CR19 U Bhowan (9977_CR5) 2013; 17 9977_CR18 R Batuwita (9977_CR29) 2012; 10 |
References_xml | – volume: 6 start-page: 1 issue: 1 year: 2004 end-page: 6 ident: CR1 article-title: Special issue on learning from imbalanced data sets publication-title: SIGKDD Explor doi: 10.1145/1007730.1007733 – volume: 17 start-page: 368 issue: 3 year: 2013 end-page: 386 ident: CR5 article-title: Evolving diverse ensembles using genetic programming for classification with unbalanced data publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2199119 – ident: CR18 – volume: 24 start-page: 888 issue: 6 year: 2013 end-page: 899 ident: CR8 article-title: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2246188 – volume: 7 start-page: 1 issue: 3 year: 2011 end-page: 5 ident: CR9 article-title: A statistical perspective of neural networks for imbalanced data problems publication-title: Int J Contents doi: 10.5392/IJoC.2011.7.3.001 – volume: 6 start-page: 769 year: 1976 end-page: 772 ident: CR25 article-title: Two modifications of cnn publication-title: IEEE Trans Syst Man Cybern – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 ident: CR28 article-title: An introduction to roc analysis publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – ident: CR2 – volume: 28 start-page: 2255 issue: 10 year: 2017 end-page: 2267 ident: CR7 article-title: Improving neural-network classifiers using nearest neighbor partitioning publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2580570 – year: 2001 ident: CR10 publication-title: Pattern classification – ident: CR12 – volume: 14 start-page: 310 issue: 4 year: 2005 end-page: 318 ident: CR21 article-title: Revisiting squared-error and cross-entropy functions for training neural network classifiers publication-title: Neural Comput Appl doi: 10.1007/s00521-005-0467-y – volume: 7 start-page: 1 issue: Jan year: 2006 end-page: 30 ident: CR30 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: CR27 – volume: 250 start-page: 113 year: 2013 end-page: 141 ident: CR4 article-title: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics publication-title: Inf Sci doi: 10.1016/j.ins.2013.07.007 – volume: 88 start-page: 72 year: 2017 end-page: 80 ident: CR24 article-title: Entropy-based matrix learning machine for imbalanced data sets publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.01.014 – volume: 43 start-page: 84 year: 2013 end-page: 98 ident: CR6 article-title: A neural network algorithm for semi-supervised node label learning from unbalanced data publication-title: Neural Netw doi: 10.1016/j.neunet.2013.01.021 – ident: CR23 – ident: CR19 – volume: 56 start-page: 52 issue: 293 year: 1961 end-page: 64 ident: CR32 article-title: Multiple comparisons among means publication-title: J Am Stat Assoc doi: 10.1080/01621459.1961.10482090 – volume: 21 start-page: 1624 issue: 10 year: 2010 end-page: 1642 ident: CR15 article-title: Ramoboost: ranked minority oversampling in boosting publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2066988 – volume: 10 start-page: 1250003 issue: 04 year: 2012 ident: CR29 article-title: Adjusted geometric-mean: a novel performance measure for imbalanced bioinformatics datasets learning publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720012500035 – volume: 21 start-page: 1263 issue: 9 year: 2009 end-page: 1284 ident: CR3 article-title: Learning from imbalanced data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.239 – ident: CR13 – ident: CR11 – volume: 37 start-page: 297 issue: 3 year: 1999 end-page: 336 ident: CR17 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach Learn doi: 10.1023/A:1007614523901 – volume: 40 start-page: 3358 issue: 12 year: 2007 end-page: 3378 ident: CR16 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.04.009 – year: 2010 ident: CR22 publication-title: Statistical decision theory and Bayesian analysis – volume: 21 start-page: 813 issue: 5 year: 2010 end-page: 830 ident: CR14 article-title: Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2042730 – volume: 32 start-page: 675 issue: 200 year: 1937 end-page: 701 ident: CR31 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J Am Stat Assoc doi: 10.1080/01621459.1937.10503522 – volume: 42 start-page: 203 issue: 3 year: 2001 end-page: 231 ident: CR26 article-title: Robust classification for imprecise environments publication-title: Mach Learn doi: 10.1023/A:1007601015854 – ident: CR20 – volume: 21 start-page: 1624 issue: 10 year: 2010 ident: 9977_CR15 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2066988 – ident: 9977_CR11 doi: 10.1613/jair.953 – ident: 9977_CR13 – ident: 9977_CR2 doi: 10.1145/1007730.1007733 – volume: 43 start-page: 84 year: 2013 ident: 9977_CR6 publication-title: Neural Netw doi: 10.1016/j.neunet.2013.01.021 – volume: 37 start-page: 297 issue: 3 year: 1999 ident: 9977_CR17 publication-title: Mach Learn doi: 10.1023/A:1007614523901 – volume-title: Statistical decision theory and Bayesian analysis year: 2010 ident: 9977_CR22 – ident: 9977_CR27 – volume-title: Pattern classification year: 2001 ident: 9977_CR10 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 9977_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.239 – volume: 14 start-page: 310 issue: 4 year: 2005 ident: 9977_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-005-0467-y – ident: 9977_CR20 doi: 10.1007/978-3-540-73007-1_20 – volume: 88 start-page: 72 year: 2017 ident: 9977_CR24 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2017.01.014 – ident: 9977_CR23 doi: 10.1109/ICNN.1993.298623 – ident: 9977_CR12 – ident: 9977_CR18 – volume: 42 start-page: 203 issue: 3 year: 2001 ident: 9977_CR26 publication-title: Mach Learn doi: 10.1023/A:1007601015854 – volume: 21 start-page: 813 issue: 5 year: 2010 ident: 9977_CR14 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2042730 – volume: 6 start-page: 769 year: 1976 ident: 9977_CR25 publication-title: IEEE Trans Syst Man Cybern – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 9977_CR28 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 7 start-page: 1 issue: 3 year: 2011 ident: 9977_CR9 publication-title: Int J Contents doi: 10.5392/IJoC.2011.7.3.001 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 9977_CR31 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1937.10503522 – volume: 24 start-page: 888 issue: 6 year: 2013 ident: 9977_CR8 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2246188 – volume: 7 start-page: 1 issue: Jan year: 2006 ident: 9977_CR30 publication-title: J Mach Learn Res – volume: 17 start-page: 368 issue: 3 year: 2013 ident: 9977_CR5 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2199119 – volume: 10 start-page: 1250003 issue: 04 year: 2012 ident: 9977_CR29 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720012500035 – volume: 250 start-page: 113 year: 2013 ident: 9977_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2013.07.007 – volume: 6 start-page: 1 issue: 1 year: 2004 ident: 9977_CR1 publication-title: SIGKDD Explor doi: 10.1145/1007730.1007733 – ident: 9977_CR19 – volume: 28 start-page: 2255 issue: 10 year: 2017 ident: 9977_CR7 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2580570 – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 9977_CR32 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1961.10482090 – volume: 40 start-page: 3358 issue: 12 year: 2007 ident: 9977_CR16 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.04.009 |
SSID | ssj0010020 |
Score | 2.606027 |
Snippet | This paper presents a novel approach to deal with the imbalanced data set problem in neural networks by incorporating prior probabilities into a cost-sensitive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1937 |
SubjectTerms | Algorithms Artificial Intelligence Classification Complex Systems Computational Intelligence Computer Science Datasets Decision theory Entropy Entropy (Information theory) Error functions Neural networks Performance evaluation Probability |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWADS34ljceqtBQkWKCiW-Q4DguUioSBf89d6jQCARJrcjlFd7bvO9-LkDNjdGSKSDEruWZaSs-s17CWrStU5HLlHdY7397Fk6m-mUWzUBRWNtnuTUiyPqnbYjfwXjD3B8P1gFoY-DzrEfjuuK6ncrCKHSACqt2sPmc6liKUyvzM46s5ajHmt7BobW3G22QzwEQ6WOp1h6z5-S7ZakYw0LAj98hV6I_6RLFOhF6_ZJiq6HxOL21l6b2vSopXrfSxvgKF50P8DzbCBPXFBx2DWUPV7JPpePQwnLAwG4E52DQVS6IMp0dZY6zHlmpeK2t9UfC-4dyZxOR5IZz0wvatNcry2GRKSTDnkQMPR6kD0pm_zv0hoTzJpQSvA280AL6ZpMhVLhwwk8Lp2HaJaESUutA4HOdXPKdty2MUawpiTWuxpqJLzlffLJZtM_6k7jWST8MWKlNp4LTRCki65KLRRvv6d25H_yM_JhsAgswyQa9HOtXbuz8BoFFlp_W6-gRT7Maz priority: 102 providerName: Springer Nature |
Title | Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function |
URI | https://link.springer.com/article/10.1007/s11063-018-09977-1 https://www.proquest.com/docview/2918343099 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4Iwql8sAGFvEjbTyhUvoARIWACpgi13FYoC00DPx77lKnFUh0iuQkVnR3zn33JuRYaxXqNJTMiEAxJYRjximQZWNTGdpEOov1zrf9em-grp_DZ-9wm_q0yuKfmP-ok7FFH_mZ0CB8SgKgOZ98MJwahdFVP0JjlZQ5aBqU8KjTnUcREAvlBlcjYKouuC-amZXOgS2EmUQY_AcMxPhvxbRAm38CpLne6WySdQ8YaXPG4S2y4kbbZKMYxkD92dwhXd8p9ZVixQi9eh9i0qJ1Cb00maEPLptSdLrSp9wZCust_A7WxlT1yTftgIJDJu2SQaf92OoxPyWBWTg-GYvCIc6RMlobh83VnJLGuDQNGjoIrI50kqTcCsdNwxgtTVDXQykFKPbQgq0j5R4pjcYjt09oECVCgP2Bvg0AcjpKE5lwC5sJblXdVAgvSBRb30IcJ1m8xYvmx0jWGMga52SNeYWczN-ZzBpoLH26WlA-9odpGi9YXyGnBTcWt__f7WD5bodkDeCPnqXmVUkp-_xyRwAxsmEtl6MaKTe7LzdtuF60-3f3sDoQzR_iMM3b |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1VcIALO6KsPsAJLBLbaeMDQqg72wUQ3ILrOFygFBqE-lN8IzNZqECCG9csVjR-mXkzngVgV2sV6CSQ3AhPcSWE48YpxLKxiQxsLJ2leueLy1r3Rp3eBXcV-ChrYSitstSJmaKOny3FyA-FRvApiYTmePjCaWoUna6WIzRyWJy58Tu6bKOjXhP3d0-Iduu60eXFVAFuEW4pD4M-zV0yWhtHzcicksa4JPHq2vOsDnUcJ74Vzjd1Y7Q0Xk33pRRoCAOLvgEFQFHlTyspNaUQhu3O16kFca_Mwat7XNWEXxTp5KV66HtR5hIlGyDn4v53Qzhhtz8OZDM7116AuYKgspMcUYtQcYMlmC-HP7BCFyxDp-jM-sCoQoX1nvqUJGldzJomNezKpSNGQV52mwVf8XqDvoO3KDV-OGZtNKgEihW4-Rf5rcLU4Hng1oB5YSwE-jsUS0HiqMMklrFvcTHhW1UzVfBLEUW2aFlOkzMeo0mzZRJrhGKNMrFGfhX2v94Z5g07_nx6s5R8VPy8o2gCtSoclLsxuf37aut_r7YDM93ri_PovHd5tgGzSL10nha4CVPp65vbQnqT9rczTDG4_28QfwKPYwXL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQKyEW3ohCAQ9sYDWxnTQeq7ahLVAhlYpulus4LBAqGgb-Pec8GkCAxJrYp-jOl_vO90LoXAjuidhjRFGHE06pIcpwOMtKx8zTETPa1jvfjv3BlI9m3uxTFX-W7V6GJPOaBtulKUlbiyhuVYVv4MnYPCAbugcEQ8D_qQc-wPMaqnc6o8loFUmweChzutoO4T51i8KZn6l8NU4V4vwWJM1sT7iNNgvQiDu5lHfQmkl20VY5kAEX-rmHropuqY_YVo3g4fPcJi5qE-GeShWemHSJ7cUrfsguROF5134H6dt09cU7DsHIWUHto2nYv-8OSDEpgWhQoZQE3tzOklJCKGMbrBnOlDJx7LSF42gRiCiKXU2Nq9pKCaYcX8wZo2DcPQ3-DmMHqJa8JOYQYSeIKAUfxN5vAJgTQRyxyNVAjLqa-6qB3JJFUhdtxO00iydZNUC2bJXAVpmxVboNdLHas8ibaPy5ullyXhYKtZRUwL-HM1jSQJelNKrXv1M7-t_yM7R-1wvlzXB8fYw2AB2JPHOviWrp65s5AQSSzk-LQ_YBcNrPMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+Imbalanced+Data+Sets+with+Weighted+Cross-Entropy+Function&rft.jtitle=Neural+processing+letters&rft.au=Aurelio%2C+Yuri+Sousa&rft.au=de+Almeida%2C+Gustavo+Matheus&rft.au=de+Castro%2C+Cristiano+Leite&rft.au=Braga%2C+Antonio+Padua&rft.date=2019-10-01&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=50&rft.issue=2&rft.spage=1937&rft.epage=1949&rft_id=info:doi/10.1007%2Fs11063-018-09977-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11063_018_09977_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |