A Novel Method for Prediction and Analysis of COVID 19 Transmission Using Machine Learning Based Time Series Models
Coronavirus has been avowed world epidemic by the Organisation Mondiale de la Santé on March 11th 2020. Formerly, numerous investigators have endeavoured to envisage divergent periods of covid-19 malady and their possessions. Several have contemplate the temporal order of the events as primary facto...
Saved in:
Published in | Wireless personal communications Vol. 133; no. 3; pp. 1935 - 1961 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronavirus has been avowed world epidemic by the Organisation Mondiale de la Santé on March 11th 2020. Formerly, numerous investigators have endeavoured to envisage divergent periods of covid-19 malady and their possessions. Several have contemplate the temporal order of the events as primary factor which will contribute to the onset of infectious ailment including flu, influenza, etc. During this research analysis, total daily corroborated infested cases basedprognostication models for the time-series database of India for 30 days are estimated by applying extremely boosted neural network (XBNet). The main objective to introduce this XBNet model is to build an efficient and accurate time series deep learning model. Further, the performance of this model with previously developed time series models including logistic regression, facebook prophet, and sarimax is contrasted. To compare performance, numerous performance parameters like MAPE, RMSE, MAE, and MSE are employed to examine the consequence of model-fitting. This research also shows analysis of coronavirus cases based on three factors namely mortality rate, discharge rate, and the growth factor during different phases of lockdown. Also, projected the prediction of the cumulative number of confirmed COVID-19 cases for various time periods. This work presented the forecasts by applying the dataset that was attainable upto August 11th, 2021. The XBNet model showed a 99.27 percent precision accuracy and relatively less MSE, MAPE, RMSE, and MAE than other models. The results confirm superiority of the proposed approach over prevailing approaches. |
---|---|
AbstractList | Coronavirus has been avowed world epidemic by the Organisation Mondiale de la Santé on March 11th 2020. Formerly, numerous investigators have endeavoured to envisage divergent periods of covid-19 malady and their possessions. Several have contemplate the temporal order of the events as primary factor which will contribute to the onset of infectious ailment including flu, influenza, etc. During this research analysis, total daily corroborated infested cases basedprognostication models for the time-series database of India for 30 days are estimated by applying extremely boosted neural network (XBNet). The main objective to introduce this XBNet model is to build an efficient and accurate time series deep learning model. Further, the performance of this model with previously developed time series models including logistic regression, facebook prophet, and sarimax is contrasted. To compare performance, numerous performance parameters like MAPE, RMSE, MAE, and MSE are employed to examine the consequence of model-fitting. This research also shows analysis of coronavirus cases based on three factors namely mortality rate, discharge rate, and the growth factor during different phases of lockdown. Also, projected the prediction of the cumulative number of confirmed COVID-19 cases for various time periods. This work presented the forecasts by applying the dataset that was attainable upto August 11th, 2021. The XBNet model showed a 99.27 percent precision accuracy and relatively less MSE, MAPE, RMSE, and MAE than other models. The results confirm superiority of the proposed approach over prevailing approaches. Coronavirus has been avowed world epidemic by the Organisation Mondiale de la Santé on March 11th 2020. Formerly, numerous investigators have endeavoured to envisage divergent periods of covid-19 malady and their possessions. Several have contemplate the temporal order of the events as primary factor which will contribute to the onset of infectious ailment including flu, influenza, etc. During this research analysis, total daily corroborated infested cases basedprognostication models for the time-series database of India for 30 days are estimated by applying extremely boosted neural network (XBNet). The main objective to introduce this XBNet model is to build an efficient and accurate time series deep learning model. Further, the performance of this model with previously developed time series models including logistic regression, facebook prophet, and sarimax is contrasted. To compare performance, numerous performance parameters like MAPE, RMSE, MAE, and MSE are employed to examine the consequence of model-fitting. This research also shows analysis of coronavirus cases based on three factors namely mortality rate, discharge rate, and the growth factor during different phases of lockdown. Also, projected the prediction of the cumulative number of confirmed COVID-19 cases for various time periods. This work presented the forecasts by applying the dataset that was attainable upto August 11th, 2021. The XBNet model showed a 99.27 percent precision accuracy and relatively less MSE, MAPE, RMSE, and MAE than other models. The results confirm superiority of the proposed approach over prevailing approaches. |
Author | Yadav, Deepshikha Muthusamy, Suresh Rathee, Dhruv Mishra, Om Prava Mann, Suman |
Author_xml | – sequence: 1 givenname: Suman orcidid: 0000-0002-1067-2586 surname: Mann fullname: Mann, Suman email: suman.mann@galgotiasuniversity.edu.in organization: School of Computing Science and Engineering, Galgotias University – sequence: 2 givenname: Deepshikha orcidid: 0000-0001-6715-0511 surname: Yadav fullname: Yadav, Deepshikha organization: Department of Information Technology, Maharaja Surajmal Institute of Technology – sequence: 3 givenname: Suresh orcidid: 0000-0002-9156-2054 surname: Muthusamy fullname: Muthusamy, Suresh email: infostosuresh@gmail.com organization: Department of Electrical and Electronics Engineering, Kongu Engineering College (Autonomous) – sequence: 4 givenname: Dhruv orcidid: 0000-0003-4843-3967 surname: Rathee fullname: Rathee, Dhruv organization: Department of Information Technology, Maharaja Surajmal Institute of Technology – sequence: 5 givenname: Om Prava orcidid: 0000-0002-5158-4857 surname: Mishra fullname: Mishra, Om Prava organization: Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology |
BookMark | eNp9kE1LAzEQhoMoWD_-gKeA59VM9is51voJrRWs4i1kdycaaRPNVMH-erdW8OZpmJnnGZh3j22HGJCxIxAnIER9SgCyrjMh8wyEyqtstcUGUNYyU3nxtM0GQkudVRLkLtsjehWi17QcMBry2_iJcz7B5UvsuIuJ3yXsfLv0MXAbOj4Mdv5Fnnh0fDR9vDnnoPks2UALT7SmHsiHZz6x7YsPyMdoU1gPzixhx2d-gfwek0fik9jhnA7YjrNzwsPfus8eLi9mo-tsPL26GQ3HWZuDXmaqVFWulFaFdSU4JbqiLttKt4AOQEHfuQZcI60tiqLRHWC_yBvtWt2Uhc332fHm7luK7x9IS_MaP1L_DRmppaoAdCF6Sm6oNkWihM68Jb-w6cuAMOtwzSZc04drfsI1q17KNxL1cHjG9Hf6H-sbFtx-Uw |
CitedBy_id | crossref_primary_10_1007_s11277_024_11006_5 crossref_primary_10_1007_s11277_024_11466_9 |
Cites_doi | 10.1007/978-0-85729-115-8 10.1080/00031305.2017.1380080 10.1007/s11071-020-05862-6 10.1080/01430750.2021.1934117 10.1016/j.rinp.2021.104462 10.1111/odi.13431 10.3390/app10186580 10.1016/j.chaos.2020.110511 10.1038/s41598-021-90265-9 10.1016/j.advengsoft.2022.103317 10.1016/j.neucom.2021.10.035 10.1016/j.scitotenv.2020.138762 10.1007/s00500-023-08874-7 10.1038/s41598-022-06218-3 10.1080/01430750.2021.1953591 10.4018/IJORIS.2016040101 10.1016/j.chaos.2020.109864 10.1016/j.chaos.2020.110227 10.1007/s11277-023-10450-z 10.1016/j.jsr.2021.04.007 10.1016/j.imu.2020.100449 10.1080/01430750.2021.1953590 10.2214/AJR.20.22969 10.1002/for.3980090203 10.32604/cmc.2021.014387 10.1080/01430750.2020.1737837 10.1007/s11277-022-10024-5 10.1016/j.chaos.2020.110212 10.1016/j.compbiomed.2021.104296 10.21203/rs.3.rs-1845394/v1 10.1007/s00500-023-08390-8 10.21203/rs.3.rs-1903846/v1 10.1007/s00500-023-08561-7 10.1007/s11277-023-10532-y 10.1155/2021/6686745 10.1109/ICSCDS56580.2023.10104630 10.1111/tbed.14102 10.1155/2021/8785636 10.1109/ICAIS50930.2021.9395877 10.1007/s11277-023-10446-9 10.1016/j.iswa.2022.200097 10.7287/peerj.preprints.3190v2 10.1155/2021/6927985 10.1007/s11277-023-10452-x 10.1109/IJCNN52387.2021.9534469 10.1007/978-981-15-5679-1_29 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11277-023-10836-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Journalism & Communications Engineering |
EISSN | 1572-834X |
EndPage | 1961 |
ExternalDocumentID | 10_1007_s11277_023_10836_z |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR _50 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACDTI AEFQL AEMSY AFBBN AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c319t-8586388984af51f80d475c69c1ef1181475fb1fb2aa444b9d1eef13b9fc9b54a3 |
IEDL.DBID | U2A |
ISSN | 0929-6212 |
IngestDate | Sat Nov 16 18:19:13 EST 2024 Thu Sep 12 18:36:28 EDT 2024 Tue Feb 20 01:14:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Coronavirus Time-Series XBNet Sarimax Analysis Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8586388984af51f80d475c69c1ef1181475fb1fb2aa444b9d1eef13b9fc9b54a3 |
ORCID | 0000-0002-1067-2586 0000-0001-6715-0511 0000-0002-9156-2054 0000-0003-4843-3967 0000-0002-5158-4857 |
PQID | 2928611940 |
PQPubID | 2043826 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2928611940 crossref_primary_10_1007_s11277_023_10836_z springer_journals_10_1007_s11277_023_10836_z |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Wireless personal communications |
PublicationTitleAbbrev | Wireless Pers Commun |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dastider, Sadik, Fattah (CR20) 2021; 132 Senthil Kumar, Gerald Raj, Suresh, Leninpugalhanthi, Suresh, Panchal, Meenakumari, Sadasivuni (CR40) 2022; 43 Arunraj, Ahrens, Fernandes (CR7) 2016; 7 CR39 Alali, Harrou, Sun (CR3) 2022; 12 CR35 Kathamuthu, Subramaniam, Le, Muthusamy, Panchal, Sundararajan, Alrubaie, Zahra (CR28) 2023; 175 CR34 Abbasimehr, Paki (CR1) 2021; 142 CR30 CR2 Shastri, Singh, Kumar, Kour, Mansotra (CR42) 2020; 140 Hooda, Mann (CR23) 2020; 24 CR9 CR49 CR47 Manojkumar, Suresh, Ahmed, Panchal, Rajan, Dheepanchakkravarthy, Geetha, Gunapriya, Mann, Sadasivuni (CR33) 2022; 43 Bacaër (CR8) 2011 Jude, Diniesh, Shivaranjani, Muthusamy, Panchal, Sundararajan, Sadasivuni (CR26) 2023; 128 Cecaj, Lippi, Mamei, Zambonelli (CR15) 2020; 10 CR44 CR43 Raghavendran, Ragul, Asokan, Loganathan, Muthusamy, Mishra, Ramamoorthi, Sundararajan (CR36) 2023; 27 Banyal, Dwivedi, Datta Gupta, Kumar Sharma, Al-Turjman (CR10) 2021; 67 Suji Prasad, Thangatamilan, Suresh, Panchal, Rajan, Sagana, Gunapriya, Sharma, Panchal, Sadasivuni (CR45) 2022; 43 Alazab, Awajan, Mesleh, Abraham, Jatana, Alhyari (CR5) 2020; 12 Rakkiannan, Ekambaram, Palanisamy, Ramasamy, Muthusamy, Loganathan, Panchal, Thangaraj, Ravindaran (CR37) 2023; 131 Suresh, Meenakumari, Panchal, Priya, Agouz, Israr (CR46) 2022; 43 Katrakazas, Michelaraki, Sekadakis, Ziakopoulos, Kontaxi, Yannis (CR29) 2021; 78 Tomar, Gupta (CR50) 2020; 728 AlJame, Ahmad, Imtiaz, Mohammed (CR6) 2020; 21 Jamal, Shah, Almarzooqi, Aber, Khawaja, El Abed, Samaranayake (CR25) 2021; 27 Zhou, Yan (CR53) 2003; 9 CR19 CR18 Wu, Darcet, Wang, Sornette (CR51) 2020; 101 CR14 CR13 CR12 CR11 Chatfield (CR16) 1978; 27 Rathee, Mann (CR38) 2022; 975 CR52 Shahid, Zameer, Muneeb (CR41) 2020; 140 Chimmula, Zhang (CR17) 2020; 135 Kukar, Gunčar, Vovko, Podnar, Černelč, Brvar, Notar (CR31) 2021; 11 Harvey, Peters (CR22) 1990; 9 Luo, Zhang, Fu, Rao (CR32) 2021; 27 Hosseiny, Kooraki, Gholamrezanezhad, Reddy, Myers (CR24) 2020; 214 Alassafi, Jarrah, Alotaibi (CR4) 2022; 468 CR27 CR21 Taylor, Letham (CR48) 2018; 72 AC Harvey (10836_CR22) 1990; 9 ND Kathamuthu (10836_CR28) 2023; 175 M Kukar (10836_CR31) 2021; 11 K Wu (10836_CR51) 2020; 101 10836_CR52 A Cecaj (10836_CR15) 2020; 10 10836_CR12 10836_CR11 10836_CR14 10836_CR13 10836_CR19 NS Arunraj (10836_CR7) 2016; 7 10836_CR18 G Zhou (10836_CR53) 2003; 9 R Senthil Kumar (10836_CR40) 2022; 43 MJA Jude (10836_CR26) 2023; 128 S Shastri (10836_CR42) 2020; 140 10836_CR21 10836_CR27 C Katrakazas (10836_CR29) 2021; 78 M Suresh (10836_CR46) 2022; 43 A Tomar (10836_CR50) 2020; 728 VKR Chimmula (10836_CR17) 2020; 135 Y Alali (10836_CR3) 2022; 12 M AlJame (10836_CR6) 2020; 21 AG Dastider (10836_CR20) 2021; 132 P Manojkumar (10836_CR33) 2022; 43 J Luo (10836_CR32) 2021; 27 D Rathee (10836_CR38) 2022; 975 10836_CR30 H Abbasimehr (10836_CR1) 2021; 142 M Jamal (10836_CR25) 2021; 27 10836_CR34 SJ Suji Prasad (10836_CR45) 2022; 43 10836_CR35 10836_CR2 M Hosseiny (10836_CR24) 2020; 214 10836_CR39 PS Raghavendran (10836_CR36) 2023; 27 10836_CR9 S Hooda (10836_CR23) 2020; 24 C Chatfield (10836_CR16) 1978; 27 N Bacaër (10836_CR8) 2011 M Alazab (10836_CR5) 2020; 12 F Shahid (10836_CR41) 2020; 140 SJ Taylor (10836_CR48) 2018; 72 MO Alassafi (10836_CR4) 2022; 468 10836_CR44 10836_CR43 S Banyal (10836_CR10) 2021; 67 10836_CR49 10836_CR47 T Rakkiannan (10836_CR37) 2023; 131 |
References_xml | – year: 2011 ident: CR8 publication-title: A short history of mathematical population dynamics doi: 10.1007/978-0-85729-115-8 contributor: fullname: Bacaër – ident: CR49 – ident: CR39 – volume: 72 start-page: 37 issue: 1 year: 2018 end-page: 45 ident: CR48 article-title: Forecasting at scale publication-title: The American Statistician doi: 10.1080/00031305.2017.1380080 contributor: fullname: Letham – ident: CR12 – volume: 101 start-page: 1561 issue: 3 year: 2020 end-page: 1581 ident: CR51 article-title: Generalized logistic growth modeling of the COVID-19 outbreak: Comparing the dynamics in the 29 provinces in China and in the rest of the world publication-title: Nonlinear dynamics doi: 10.1007/s11071-020-05862-6 contributor: fullname: Sornette – ident: CR35 – volume: 43 start-page: 5138 issue: 1 year: 2022 end-page: 5144 ident: CR40 article-title: A method for broken bar fault diagnosis in three phase induction motor drive system using Artificial Neural Networks publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1934117 contributor: fullname: Sadasivuni – volume: 27 year: 2021 ident: CR32 article-title: Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms publication-title: Results in Physics doi: 10.1016/j.rinp.2021.104462 contributor: fullname: Rao – volume: 27 start-page: 655 year: 2021 end-page: 664 ident: CR25 article-title: Overview of transnational recommendations for COVID-19 transmission control in dental care settings publication-title: Oral Diseases doi: 10.1111/odi.13431 contributor: fullname: Samaranayake – ident: CR21 – ident: CR19 – volume: 10 start-page: 6580 issue: 18 year: 2020 ident: CR15 article-title: Comparing deep learning and statistical methods in forecasting crowd distribution from aggregated mobile phone data publication-title: Applied Sciences doi: 10.3390/app10186580 contributor: fullname: Zambonelli – volume: 142 year: 2021 ident: CR1 article-title: Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110511 contributor: fullname: Paki – volume: 11 start-page: 10738 issue: 1 year: 2021 ident: CR31 article-title: COVID-19 diagnosis by routine blood tests using machine learning publication-title: Scientific Reports doi: 10.1038/s41598-021-90265-9 contributor: fullname: Notar – volume: 175 start-page: 103317 year: 2023 ident: CR28 article-title: A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2022.103317 contributor: fullname: Zahra – volume: 468 start-page: 335 year: 2022 end-page: 344 ident: CR4 article-title: Time series predicting of COVID-19 based on deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.035 contributor: fullname: Alotaibi – ident: CR11 – volume: 728 year: 2020 ident: CR50 article-title: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138762 contributor: fullname: Gupta – volume: 12 start-page: 168 issue: June year: 2020 end-page: 181 ident: CR5 article-title: COVID-19 prediction and detection using deep learning publication-title: International Journal of Computer Information Systems and Industrial Management Applications contributor: fullname: Alhyari – ident: CR9 – volume: 27 start-page: 14241 issue: 19 year: 2023 end-page: 14251 ident: CR36 article-title: A new method for chest X-ray images categorization using transfer learning and CovidNet_2020 employing convolution neural network publication-title: Soft Computing doi: 10.1007/s00500-023-08874-7 contributor: fullname: Sundararajan – volume: 12 start-page: 2467 issue: 1 year: 2022 ident: CR3 article-title: A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models publication-title: Scientific Reports doi: 10.1038/s41598-022-06218-3 contributor: fullname: Sun – volume: 43 start-page: 5447 issue: 1 year: 2022 end-page: 5450 ident: CR45 article-title: An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1953591 contributor: fullname: Sadasivuni – volume: 975 start-page: 8887 year: 2022 ident: CR38 article-title: Detection of E-mail phishing attacks–using machine learning and deep learning publication-title: International Journal of Computer Applications contributor: fullname: Mann – ident: CR18 – ident: CR43 – ident: CR47 – ident: CR14 – ident: CR2 – volume: 9 start-page: 1608 issue: 12 year: 2003 end-page: 1610 ident: CR53 article-title: Severe acute respiratory syndrome epidemic in Asia publication-title: Emerging Infectious Diseases contributor: fullname: Yan – ident: CR30 – volume: 7 start-page: 1 issue: 2 year: 2016 end-page: 21 ident: CR7 article-title: Application of SARIMAX model to forecast daily sales in food retail industry publication-title: International Journal of Operations Research and Information Systems (IJORIS) doi: 10.4018/IJORIS.2016040101 contributor: fullname: Fernandes – volume: 135 year: 2020 ident: CR17 article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109864 contributor: fullname: Zhang – volume: 140 year: 2020 ident: CR42 article-title: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110227 contributor: fullname: Mansotra – volume: 27 start-page: 264 issue: 3 year: 1978 end-page: 279 ident: CR16 article-title: The Holt-winters forecasting procedure publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) contributor: fullname: Chatfield – volume: 131 start-page: 639 issue: 1 year: 2023 end-page: 658 ident: CR37 article-title: An automated network slicing at edge with software defined networking and network function virtualization: a federated learning approach publication-title: Wireless Personal Communications doi: 10.1007/s11277-023-10450-z contributor: fullname: Ravindaran – volume: 78 start-page: 189 year: 2021 end-page: 202 ident: CR29 article-title: Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting publication-title: Journal of Safety Research doi: 10.1016/j.jsr.2021.04.007 contributor: fullname: Yannis – volume: 21 year: 2020 ident: CR6 article-title: Ensemble learning model for diagnosing COVID-19 from routine blood tests publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100449 contributor: fullname: Mohammed – volume: 43 start-page: 5478 issue: 1 year: 2022 end-page: 5483 ident: CR33 article-title: A novel home automation distributed server management system using Internet of Things publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1953590 contributor: fullname: Sadasivuni – volume: 214 start-page: 1078 issue: 5 year: 2020 end-page: 1082 ident: CR24 article-title: Radiology perspective of coronavirus disease 2019 (COVID-19): Lessons from severe acute respiratory syndrome and Middle East respiratory syndrome publication-title: AJR. American Journal of Roentgenology doi: 10.2214/AJR.20.22969 contributor: fullname: Myers – ident: CR27 – ident: CR44 – ident: CR52 – ident: CR13 – volume: 9 start-page: 89 issue: 2 year: 1990 end-page: 108 ident: CR22 article-title: Estimation procedures for structural time series models publication-title: Journal of Forecasting doi: 10.1002/for.3980090203 contributor: fullname: Peters – volume: 24 start-page: 8045 issue: 6 year: 2020 end-page: 8050 ident: CR23 article-title: A focus on the ICU’s mortality prediction using a CNN-LSTM model publication-title: International Journal of Psychosocial Rehabilitation contributor: fullname: Mann – volume: 67 start-page: 1679 issue: 2 year: 2021 end-page: 1696 ident: CR10 article-title: Technology landscape for epidemiological prediction and diagnosis of covid-19 publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.014387 contributor: fullname: Al-Turjman – ident: CR34 – volume: 43 start-page: 2540 issue: 1 year: 2022 end-page: 2548 ident: CR46 article-title: An enhanced multiobjective particle swarm optimisation algorithm for optimum utilisation of hybrid renewable energy systems publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2020.1737837 contributor: fullname: Israr – volume: 128 start-page: 1873 issue: 3 year: 2023 end-page: 1893 ident: CR26 article-title: On minimizing TCP traffic congestion in vehicular internet of things (VIoT) publication-title: Wireless Personal Communications doi: 10.1007/s11277-022-10024-5 contributor: fullname: Sadasivuni – volume: 140 year: 2020 ident: CR41 article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110212 contributor: fullname: Muneeb – volume: 132 year: 2021 ident: CR20 article-title: An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104296 contributor: fullname: Fattah – volume: 468 start-page: 335 year: 2022 ident: 10836_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.035 contributor: fullname: MO Alassafi – ident: 10836_CR49 doi: 10.21203/rs.3.rs-1845394/v1 – ident: 10836_CR21 doi: 10.1007/s00500-023-08390-8 – volume: 128 start-page: 1873 issue: 3 year: 2023 ident: 10836_CR26 publication-title: Wireless Personal Communications doi: 10.1007/s11277-022-10024-5 contributor: fullname: MJA Jude – volume: 78 start-page: 189 year: 2021 ident: 10836_CR29 publication-title: Journal of Safety Research doi: 10.1016/j.jsr.2021.04.007 contributor: fullname: C Katrakazas – ident: 10836_CR30 doi: 10.21203/rs.3.rs-1903846/v1 – ident: 10836_CR44 doi: 10.1007/s00500-023-08561-7 – ident: 10836_CR43 doi: 10.1007/s11277-023-10532-y – volume: 131 start-page: 639 issue: 1 year: 2023 ident: 10836_CR37 publication-title: Wireless Personal Communications doi: 10.1007/s11277-023-10450-z contributor: fullname: T Rakkiannan – ident: 10836_CR34 doi: 10.1155/2021/6686745 – volume: 21 year: 2020 ident: 10836_CR6 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100449 contributor: fullname: M AlJame – volume: 12 start-page: 168 issue: June year: 2020 ident: 10836_CR5 publication-title: International Journal of Computer Information Systems and Industrial Management Applications contributor: fullname: M Alazab – ident: 10836_CR13 doi: 10.1109/ICSCDS56580.2023.10104630 – volume: 72 start-page: 37 issue: 1 year: 2018 ident: 10836_CR48 publication-title: The American Statistician doi: 10.1080/00031305.2017.1380080 contributor: fullname: SJ Taylor – ident: 10836_CR14 doi: 10.1111/tbed.14102 – volume: 24 start-page: 8045 issue: 6 year: 2020 ident: 10836_CR23 publication-title: International Journal of Psychosocial Rehabilitation contributor: fullname: S Hooda – ident: 10836_CR52 doi: 10.1155/2021/8785636 – volume: 67 start-page: 1679 issue: 2 year: 2021 ident: 10836_CR10 publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.014387 contributor: fullname: S Banyal – ident: 10836_CR2 doi: 10.1109/ICAIS50930.2021.9395877 – ident: 10836_CR12 doi: 10.1007/s11277-023-10446-9 – ident: 10836_CR39 doi: 10.1016/j.iswa.2022.200097 – volume: 43 start-page: 5478 issue: 1 year: 2022 ident: 10836_CR33 publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1953590 contributor: fullname: P Manojkumar – volume: 175 start-page: 103317 year: 2023 ident: 10836_CR28 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2022.103317 contributor: fullname: ND Kathamuthu – ident: 10836_CR47 doi: 10.7287/peerj.preprints.3190v2 – volume: 43 start-page: 5447 issue: 1 year: 2022 ident: 10836_CR45 publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1953591 contributor: fullname: SJ Suji Prasad – volume: 7 start-page: 1 issue: 2 year: 2016 ident: 10836_CR7 publication-title: International Journal of Operations Research and Information Systems (IJORIS) doi: 10.4018/IJORIS.2016040101 contributor: fullname: NS Arunraj – volume: 135 year: 2020 ident: 10836_CR17 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109864 contributor: fullname: VKR Chimmula – volume: 43 start-page: 5138 issue: 1 year: 2022 ident: 10836_CR40 publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2021.1934117 contributor: fullname: R Senthil Kumar – volume: 101 start-page: 1561 issue: 3 year: 2020 ident: 10836_CR51 publication-title: Nonlinear dynamics doi: 10.1007/s11071-020-05862-6 contributor: fullname: K Wu – volume: 975 start-page: 8887 year: 2022 ident: 10836_CR38 publication-title: International Journal of Computer Applications contributor: fullname: D Rathee – volume-title: A short history of mathematical population dynamics year: 2011 ident: 10836_CR8 doi: 10.1007/978-0-85729-115-8 contributor: fullname: N Bacaër – volume: 140 year: 2020 ident: 10836_CR41 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110212 contributor: fullname: F Shahid – volume: 214 start-page: 1078 issue: 5 year: 2020 ident: 10836_CR24 publication-title: AJR. American Journal of Roentgenology doi: 10.2214/AJR.20.22969 contributor: fullname: M Hosseiny – volume: 27 year: 2021 ident: 10836_CR32 publication-title: Results in Physics doi: 10.1016/j.rinp.2021.104462 contributor: fullname: J Luo – ident: 10836_CR18 – volume: 132 year: 2021 ident: 10836_CR20 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104296 contributor: fullname: AG Dastider – ident: 10836_CR27 doi: 10.1155/2021/6927985 – volume: 11 start-page: 10738 issue: 1 year: 2021 ident: 10836_CR31 publication-title: Scientific Reports doi: 10.1038/s41598-021-90265-9 contributor: fullname: M Kukar – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 10836_CR16 publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) contributor: fullname: C Chatfield – ident: 10836_CR35 doi: 10.1007/s11277-023-10452-x – volume: 43 start-page: 2540 issue: 1 year: 2022 ident: 10836_CR46 publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2020.1737837 contributor: fullname: M Suresh – volume: 728 year: 2020 ident: 10836_CR50 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138762 contributor: fullname: A Tomar – volume: 10 start-page: 6580 issue: 18 year: 2020 ident: 10836_CR15 publication-title: Applied Sciences doi: 10.3390/app10186580 contributor: fullname: A Cecaj – volume: 27 start-page: 655 year: 2021 ident: 10836_CR25 publication-title: Oral Diseases doi: 10.1111/odi.13431 contributor: fullname: M Jamal – volume: 140 year: 2020 ident: 10836_CR42 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110227 contributor: fullname: S Shastri – ident: 10836_CR9 doi: 10.1109/IJCNN52387.2021.9534469 – volume: 142 year: 2021 ident: 10836_CR1 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110511 contributor: fullname: H Abbasimehr – volume: 9 start-page: 1608 issue: 12 year: 2003 ident: 10836_CR53 publication-title: Emerging Infectious Diseases contributor: fullname: G Zhou – volume: 12 start-page: 2467 issue: 1 year: 2022 ident: 10836_CR3 publication-title: Scientific Reports doi: 10.1038/s41598-022-06218-3 contributor: fullname: Y Alali – ident: 10836_CR19 doi: 10.1007/978-981-15-5679-1_29 – ident: 10836_CR11 – volume: 27 start-page: 14241 issue: 19 year: 2023 ident: 10836_CR36 publication-title: Soft Computing doi: 10.1007/s00500-023-08874-7 contributor: fullname: PS Raghavendran – volume: 9 start-page: 89 issue: 2 year: 1990 ident: 10836_CR22 publication-title: Journal of Forecasting doi: 10.1002/for.3980090203 contributor: fullname: AC Harvey |
SSID | ssj0010092 |
Score | 2.3967278 |
Snippet | Coronavirus has been avowed world epidemic by the Organisation Mondiale de la Santé on March 11th 2020. Formerly, numerous investigators have endeavoured to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1935 |
SubjectTerms | Communications Engineering Computer Communication Networks Coronaviruses COVID-19 Deep learning Disease transmission Engineering Growth factors Influenza Machine learning Networks Neural networks Signal,Image and Speech Processing Time series |
Title | A Novel Method for Prediction and Analysis of COVID 19 Transmission Using Machine Learning Based Time Series Models |
URI | https://link.springer.com/article/10.1007/s11277-023-10836-z https://www.proquest.com/docview/2928611940 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T-QwEB7xaI4C8TjE8tIU6BqItE7sxC53geUl9ihYxFWRn6eTYBeRhYJfj20SAicoqKLIIxf55hXPzGeAXZ8UGCmZTLrapAnVhUxkztLEGkY0c1zlJrJ9DvOTET27YTftHHdsdm8qktFRt7NuJFQbfYjxnoNnefI8C_Ms0KF5JR6lvbfSQWARigR7oa_DO-Z6UubzPT5GozbF_K8qGoPNYAkW6ywRe6-wLsOMHa_AwjvuwBXYrIX-VXf4Cz_MeVSrUPVwOHmyt3gRb4hGn5ri5UMoygQBlGODDR0JThwe_L4-PUQiMIYuD304Q8PYToAXsd3SYs3E-hf7PvAZDLMjGM7WbIXhQrXb6ieMBkdXBydJfb9Cor3hTRPOuLc-LjiVjhHHu4YWTOdCE-vCPKp_c4o4lUpJKVXCEOsXMiWcFopRma3B3HgytuuAueXUFsb_bBWOalYoZ5UyimW6yBzPRQf2mu9c3r_SaJQtYXJApfSolBGV8rkDWw0UZW1SVZmKlOeECNrtwH4DT7v89W4b3xPfhB9p1JDQsrIFc9OHR7vtE4-p2oH53qDfH4bn8Z_zo52oeC9lONMz |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BOAAHBKGooYXOAfVCV4p37V37GApRAknoIalyW_mJkNoEZUMP_fW1nV2WVHDoceWRD_48j_XMfAPwwQcFRkomk742aUJ1IROZszSxhhHNHFe5iWyfs3y0oF-XbFk3hVVNtXuTkoyWum12IyHd6H2MNx08y5Pbx_Ak8KsHxvxFOviTOwg0QpFhLxR2eMtct8r8e499d9TGmPfSotHbDF_CizpMxMEO11fwyK668Pwv8sAuHNVCP6trPMW9Ro_qNVQDnK1v7BVO44ho9LEpXmxCViYIoFwZbPhIcO3w_Pvl-DMSgdF3eezDIxrGegKcxnpLizUV6w_85D2fwdA8guFxzVYYJqpdVQewGH6Zn4-SesBCor3mbRPOuFc_LjiVjhHH-4YWTOdCE-tCQ6r_coo4lUpJKVXCEOsXMiWcFopRmb2Bzmq9soeAueXUFsb_bRWOalYoZ5UyimW6yBzPRQ8-Nudc_trxaJQtY3JApfSolBGV8rYHxw0UZa1TVZmKlOeECNrvwVkDT7v8_93ePkz8BJ6O5tNJORnPvh3BszTellC_cgyd7ea3feejkK16Hy_dHW0j034 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJwoLSA2LbAHCoukHad2Il9XNoufS49UFROkZ-oaputmpTD_vra3oRtKzggjpFHVjIz9kw8830GWPdJgZGSyWSgTZpQXchE5ixNrGFEM8dVbiLb5zjfPaH7p-z0Doo_drt3JckZpiGwNFXN5pVxm3PgGwmlRx9v_DbCszyZPoYFGpiRerAw_PLjYOd3JSGQCkW-vdDm4ffpFjjz51nuB6d5xvmgSBpjz2gRZPfWs5aT842bRm3o6QNCx__5rBfwvE1McTjzpCV4ZKtleHaHrnAZVluhs_oSP-A9aEn9Euohjie_7AUexUup0WfDeHwd6kBBAGVlsGNAwYnDra_f97aRCIzR0ntbOLbD2MGAR7HD02JL_voTP_tYazDAVTAc59kawx1uF_UrOBntfNvaTdorHRLt13qTcMb9gueCU-kYcXxgaMF0LjSxLkBg_ZNTxKlUSkqpEoZYP5Ap4bRQjMrsNfSqSWXfAOaWU1sY_39XOKpZoZxVyiiW6SJzPBd9-NjZsryaMXeUc47moOjSK7qMii6nfVjrzF22q7guU5HynBBBB3341FlvPvz32Vb-Tfw9PDneHpWHe-ODVXiaRvuHhpk16DXXN_atT3sa9a717Fsss_md |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+for+Prediction+and+Analysis+of+COVID+19+Transmission+Using+Machine+Learning+Based+Time+Series+Models&rft.jtitle=Wireless+personal+communications&rft.au=Mann%2C+Suman&rft.au=Yadav+Deepshikha&rft.au=Muthusamy+Suresh&rft.au=Rathee+Dhruv&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=133&rft.issue=3&rft.spage=1935&rft.epage=1961&rft_id=info:doi/10.1007%2Fs11277-023-10836-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon |