Near Time-Optimal Trajectory Generation for Multirotors using Numerical Optimization and Safe Corridors
Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction...
Saved in:
Published in | Journal of intelligent & robotic systems Vol. 105; no. 1; p. 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0921-0296 1573-0409 |
DOI | 10.1007/s10846-022-01625-0 |
Cover
Loading…
Abstract | Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction with new applications in transport, delivery and search and rescue missions, as well as other applications in sports and entertainment such as drone racing. The current state-of-the-art is heavily based on polynomial methods and most methods choose a conservative approach when limiting the velocity or acceleration as a way to account for nonlinearities and guarantee feasibility, which limits time optimality and trajectory speed. We overcome this limitation by proposing a new formulation for multirotors trajectory generation that takes into account nonlinearities such as gravity and aerodynamic drag, It allows us to provide more time-optimal solutions then the state-of-the-art. We present an algorithm that uses our new formulation for near time-optimal trajectory generation for multirotors subject to obstacles/path constraints. We validate our approach using a state of the art simulator and compare it with other time-optimal trajectory generation methods. |
---|---|
AbstractList | Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction with new applications in transport, delivery and search and rescue missions, as well as other applications in sports and entertainment such as drone racing. The current state-of-the-art is heavily based on polynomial methods and most methods choose a conservative approach when limiting the velocity or acceleration as a way to account for nonlinearities and guarantee feasibility, which limits time optimality and trajectory speed. We overcome this limitation by proposing a new formulation for multirotors trajectory generation that takes into account nonlinearities such as gravity and aerodynamic drag, It allows us to provide more time-optimal solutions then the state-of-the-art. We present an algorithm that uses our new formulation for near time-optimal trajectory generation for multirotors subject to obstacles/path constraints. We validate our approach using a state of the art simulator and compare it with other time-optimal trajectory generation methods. |
ArticleNumber | 20 |
Author | Toumieh, Charbel Lambert, Alain |
Author_xml | – sequence: 1 givenname: Charbel orcidid: 0000-0002-2669-6777 surname: Toumieh fullname: Toumieh, Charbel email: charbel.toumieh@universite-paris-saclay.fr organization: CNRS, Laboratoire de recherche en informatique, Université Paris-Saclay – sequence: 2 givenname: Alain surname: Lambert fullname: Lambert, Alain organization: CNRS, Laboratoire de recherche en informatique, Université Paris-Saclay |
BookMark | eNp9kE1LAzEQQIMoWKt_wFPA8-ok2a8cpfgFVQ_Wc0izsyWl3dTJ7qH-emNXEDx4ymHemwzvjB13oUPGLgVcC4DqJgqo8zIDKTMQpSwyOGITUVQqgxz0MZuAliKNdXnKzmJcA4CuCz1hqxe0xBd-i9nrrvdbu-ELsmt0faA9f8AOyfY-dLwNxJ-HTe8ppFHkQ_Tdir8MWyTvknWw_ecI267hb7ZFPgtEvkn8OTtp7Sbixc87Ze_3d4vZYzZ_fXia3c4zp4Tus1rVLbhGg7QScZnXhSvkstAol2XdWLmE1rqmanLlirx1uoESK6WELWXVohJqyq7GvTsKHwPG3qzDQF360siylKmNqopE1SPlKMRI2Brn-8PpPVm_MQLMd1YzZjUpqzlkNZBU-UfdUcpG-_8lNUoxwd0K6feqf6wvXCCN_A |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2023_10_678 crossref_primary_10_1109_TRO_2024_3429193 |
Cites_doi | 10.1109/TCYB.2021.3091680 10.1109/TCST.2017.2709268 10.1109/LRA.2017.2663526 10.1109/IROS40897.2019.8968116 10.1007/978-3-319-27702-8_29 10.1109/IROS.2015.7353622 10.1016/j.ifacol.2018.11.062 10.1016/j.ifacol.2017.08.849 10.1007/0-387-30065-1_4 10.1109/ICRA.2016.7487281 10.3182/20110828-6-IT-1002.03178 10.1109/ICUAS.2016.7502532 10.1007/s12532-018-0139-4 10.1109/ICRA.2011.5980409 10.1109/IROS.2018.8593579 10.1109/IROS.2017.8206119 10.1007/978-3-319-28872-7_37 10.1007/978-3-319-67361-5_40 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 Copyright Springer Nature B.V. May 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: Copyright Springer Nature B.V. May 2022 |
DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10846-022-01625-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-0409 |
ExternalDocumentID | 10_1007_s10846_022_01625_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-838f0cd902a2eeb485c52b59e2b68da2b0facd7d43c54fc9d06e7331a627fe313 |
IEDL.DBID | 8FG |
ISSN | 0921-0296 |
IngestDate | Wed Aug 13 04:25:13 EDT 2025 Tue Jul 01 00:20:13 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:45:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Motion planning Modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-838f0cd902a2eeb485c52b59e2b68da2b0facd7d43c54fc9d06e7331a627fe313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2669-6777 |
PQID | 2662162375 |
PQPubID | 326251 |
ParticipantIDs | proquest_journals_2662162375 crossref_citationtrail_10_1007_s10846_022_01625_0 crossref_primary_10_1007_s10846_022_01625_0 springer_journals_10_1007_s10846_022_01625_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220500 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | with a special section on Unmanned Systems |
PublicationTitle | Journal of intelligent & robotic systems |
PublicationTitleAbbrev | J Intell Robot Syst |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Lockheed-Martin: Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot, accessed 2019-09-14 SpedicatoSNotarstefanoGMinimum-time trajectory generation for quadrotors in constrained environmentsIEEE Trans. Control Syst. Technol.20172641335134410.1109/TCST.2017.2709268 Beul, M., Behnke, S.: Analytical time-optimal trajectory generation and control for multirotors. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96. IEEE (2016) Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1872–1878. IEEE (2015) KamelMBurriMSiegwartRLinear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehiclesIFAC-PapersOnLine20175013463346910.1016/j.ifacol.2017.08.849 Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. https://arxiv.org/abs/1705.05065 (2017) Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot., pp 1–16 (2016) Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R: Receding horizon “next-best-view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (ICRA) (2016) Guerra, W., Tal, E., Murali, V., Ryou, G., Karaman, S.: Flightgoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality. arXiv preprint arXiv:1905.11377 (2019) Nocedal, J.: Knitro: an Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization, pp. 35–60. Springer (2006) Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. Field and Service Robotics, pp. 441–454 (2016) Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016) Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., Diehl, M.: Towards a modular software package for embedded optimization. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2018) Microsoft-Airsim: Game of drones competition. https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing, Accessed 2019-09-14 Tutsoy, O., Barkana, D.E., Balikci, K.: A novel exploration-exploitation-based adaptive law for intelligent model-free control approaches. IEEE Trans. Cybern., pp. 1–9. https://doi.org/10.1109/TCYB.2021.3091680 (2021) Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (In Press) (2018) HehnMD’AndreaRQuadrocopter trajectory generation and controlIFAC Proceedings201144114851491 Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2872–2879. IEEE (2017) Wächter, A., Biegler, L.: Ipopt-an interior point optimizer (2009) Foehn, P., Scaramuzza, D.: Cpc: Complementary progress constraints for time-optimal quadrotor trajectories. arXiv preprint arXiv:2007.06255 (2020) Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011) Gao, F., Wu, W., Pan, J., Zhou, B., Shen, S.: Optimal time allocation for quadrotor trajectory generation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4715–4722. IEEE (2018) LiuSWattersonMMohtaKSunKBhattacharyaSTaylorCJKumarVPlanning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environmentsIEEE Robot. Autom. Lett.2017231688169510.1109/LRA.2017.2663526 BonamiPLeeJBonmin user’s manualNumer. Math20074132 Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., Kapoor, A.: Airsim drone racing lab (2020) 1625_CR9 1625_CR8 1625_CR7 1625_CR6 1625_CR16 1625_CR15 1625_CR14 1625_CR19 M Kamel (1625_CR11) 2017; 50 1625_CR18 S Liu (1625_CR13) 2017; 2 1625_CR17 1625_CR1 M Hehn (1625_CR10) 2011; 44 1625_CR12 1625_CR4 1625_CR3 1625_CR2 P Bonami (1625_CR5) 2007; 4 1625_CR25 1625_CR24 S Spedicato (1625_CR22) 2017; 26 1625_CR23 1625_CR21 1625_CR20 |
References_xml | – reference: Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (In Press) (2018) – reference: Beul, M., Behnke, S.: Analytical time-optimal trajectory generation and control for multirotors. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96. IEEE (2016) – reference: Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., Diehl, M.: Towards a modular software package for embedded optimization. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2018) – reference: Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016) – reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot., pp 1–16 (2016) – reference: Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011) – reference: Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., Kapoor, A.: Airsim drone racing lab (2020) – reference: Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. Field and Service Robotics, pp. 441–454 (2016) – reference: Microsoft-Airsim: Game of drones competition. https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing, Accessed 2019-09-14 – reference: HehnMD’AndreaRQuadrocopter trajectory generation and controlIFAC Proceedings201144114851491 – reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R: Receding horizon “next-best-view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (ICRA) (2016) – reference: Foehn, P., Scaramuzza, D.: Cpc: Complementary progress constraints for time-optimal quadrotor trajectories. arXiv preprint arXiv:2007.06255 (2020) – reference: Nocedal, J.: Knitro: an Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization, pp. 35–60. Springer (2006) – reference: Guerra, W., Tal, E., Murali, V., Ryou, G., Karaman, S.: Flightgoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality. arXiv preprint arXiv:1905.11377 (2019) – reference: BonamiPLeeJBonmin user’s manualNumer. Math20074132 – reference: Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. https://arxiv.org/abs/1705.05065 (2017) – reference: LiuSWattersonMMohtaKSunKBhattacharyaSTaylorCJKumarVPlanning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environmentsIEEE Robot. Autom. Lett.2017231688169510.1109/LRA.2017.2663526 – reference: Gao, F., Wu, W., Pan, J., Zhou, B., Shen, S.: Optimal time allocation for quadrotor trajectory generation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4715–4722. IEEE (2018) – reference: SpedicatoSNotarstefanoGMinimum-time trajectory generation for quadrotors in constrained environmentsIEEE Trans. Control Syst. Technol.20172641335134410.1109/TCST.2017.2709268 – reference: Lockheed-Martin: Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot, accessed 2019-09-14 – reference: Tutsoy, O., Barkana, D.E., Balikci, K.: A novel exploration-exploitation-based adaptive law for intelligent model-free control approaches. IEEE Trans. Cybern., pp. 1–9. https://doi.org/10.1109/TCYB.2021.3091680 (2021) – reference: KamelMBurriMSiegwartRLinear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehiclesIFAC-PapersOnLine20175013463346910.1016/j.ifacol.2017.08.849 – reference: Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1872–1878. IEEE (2015) – reference: Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2872–2879. IEEE (2017) – reference: Wächter, A., Biegler, L.: Ipopt-an interior point optimizer (2009) – ident: 1625_CR14 – ident: 1625_CR23 doi: 10.1109/TCYB.2021.3091680 – volume: 26 start-page: 1335 issue: 4 year: 2017 ident: 1625_CR22 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2709268 – volume: 2 start-page: 1688 issue: 3 year: 2017 ident: 1625_CR13 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2663526 – ident: 1625_CR9 doi: 10.1109/IROS40897.2019.8968116 – ident: 1625_CR7 – ident: 1625_CR19 doi: 10.1007/978-3-319-27702-8_29 – volume: 4 start-page: 1 year: 2007 ident: 1625_CR5 publication-title: Numer. Math – ident: 1625_CR6 doi: 10.1109/IROS.2015.7353622 – ident: 1625_CR24 doi: 10.1016/j.ifacol.2018.11.062 – volume: 50 start-page: 3463 issue: 1 year: 2017 ident: 1625_CR11 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.849 – ident: 1625_CR18 doi: 10.1007/0-387-30065-1_4 – ident: 1625_CR3 doi: 10.1109/ICRA.2016.7487281 – volume: 44 start-page: 1485 issue: 1 year: 2011 ident: 1625_CR10 publication-title: IFAC Proceedings doi: 10.3182/20110828-6-IT-1002.03178 – ident: 1625_CR2 doi: 10.1109/ICUAS.2016.7502532 – ident: 1625_CR1 doi: 10.1007/s12532-018-0139-4 – ident: 1625_CR16 doi: 10.1109/ICRA.2011.5980409 – ident: 1625_CR8 doi: 10.1109/IROS.2018.8593579 – ident: 1625_CR12 doi: 10.1109/IROS.2017.8206119 – ident: 1625_CR25 – ident: 1625_CR17 – ident: 1625_CR15 – ident: 1625_CR20 doi: 10.1007/978-3-319-28872-7_37 – ident: 1625_CR21 doi: 10.1007/978-3-319-67361-5_40 – ident: 1625_CR4 doi: 10.1109/ICRA.2016.7487281 |
SSID | ssj0009859 |
Score | 2.3168373 |
Snippet | Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20 |
SubjectTerms | Acceleration Aerodynamic drag Algorithms Artificial Intelligence Control Electrical Engineering Engineering Evacuations & rescues Gravity Mechanical Engineering Mechatronics Nonlinearity Optimization Polynomials Racing Robotics Robots Search and rescue missions Short Paper Topical collection on Unmanned Systems Trajectory optimization Transportation corridors |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ-Q4wUfREDjIZo-8CYle9222z4SAhIMxwNegk-bfswSFe_Icfegf73T3a6HRE147kd2O53Ob9qZ3wDs61KiQ2m4jk3FpSUHxemAXJQRi1KqCjFd6F-M9dlEnl-r65wUdt9Hu_dPku1J_SDZjWwlT9HnBFOE4uSor6uRsWYA60cfPn88WZHtGtVx7AlylYXVOVnm77P8aZBWKPPRw2hrb043YdJ_aRdm8u1wufCH4ecjEsen_soLeJ4BKDvqdswWrOF0Gzb74g4s6_o2PHvAVLgDN2PSCJbyRfglHTLfaQaycl_bK_8frOOuTiJmhIFZm9Q7n6U6PizF1d-w8bJ7GLpl7eic-8ncNLIr1yA7ns3nXyL1fwmT05NPx2c812jggZR3wU1pmiJEWwgnEL00KijhlUXhtYlO-KJxIVZRlkHJJthYaExlIp0WVYPlqHwFg-lsiq-BaW-csMr6SlvpK2-DIX-m8CYiwSSHQxj1gqpDJjBPdTRu6xX1clrXmta1bte1Lobw_veYu46-47-993r511mV72tCMIKay0oN4aAX56r537PtPq37G9gQ7Y5IwZR7MFjMl_iWAM_Cv8v7-xf8qvW0 priority: 102 providerName: Springer Nature |
Title | Near Time-Optimal Trajectory Generation for Multirotors using Numerical Optimization and Safe Corridors |
URI | https://link.springer.com/article/10.1007/s10846-022-01625-0 https://www.proquest.com/docview/2662162375 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDlAJioVQ-cAOLrGM79gltq91WIBYErFROkR-Tqqjslu32wL_vOHFIQaKnSIntQ76xZzyPbwBe6VKiQ2m4jk3FpaULitMBuSgjFqVUFWJy6H-c6-OFfH-iTrLD7TKnVfZnYntQx1VIPvK3pEjEmHR1pd5d_OKpa1SKruYWGndhe0wDkpyb2dFAumtUx7Un6MosrM5FM7l0jjQvT7nsZPQIxYu_FdNgbf4TIG31zmwHHmSDkU06hB_BHVzuwsO-GQPLe3MX7t9gFnwMp3OSYJbqO_gnOhR-0gqklX60LvrfrOOaTpAwsllZW4S7XqW-OyzlwZ-y-VUXyDln7excq8ncMrKvrkF2uFqvzyKNfwKL2fTb4THPPRV4oM224aY0TRGiLYQTiF4aFZTwyqLw2kQnfNG4EKsoy6BkE2wsNKa2jk6LqsFyXD6FreVqic-AaW-csMr6SlvpK2-DoftH4U1EMmscjmDc_9A6ZMLx1PfivB6okhMINYFQtyDUxQhe_5lz0dFt3Dp6r8epzlvvsh4EZQRveuyGz_9f7fntq72Ae6IVl5TsuAdbm_UVviSDZOP3W6nbh-3J0fcPU3oeTOefv9DbhZhcA16F3-s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH_B5aAeUFHjImoPetLG2U7baQ_GAEIWgdEoJNyGfg2RwC4uSwz_lH-jrzMdR03kxnnad3jvN--j7wvgpcx5MIErKn1dUK4xQDHSBcpyH7KciyKE-KC_V8rxAf94KA4X4GfXCxPLKjud2ChqP3XxjfwtGhI2QltdiPfn32ncGhWzq90KjRYWO-HqB4ZsF--2P6B8XzG2tbm_MaZpqwB1CLc5VbmqM-d1xgwLwXIlnGBW6MCsVN4wm9XG-cLz3AleO-0zGeJiQyNZUYd8lCPdW7DIY0frABbXN8vPX_oxv0q00_0YBulMy9Smk5r10NbTWD2PbhYTNPvbFPb-7T8p2cbSbd2HpeSikrUWUw9gIUyW4V63_oEkbbAMd_-YZfgQjktkDokdJfQTqqEzpIB28KRJClyRdrp1BAFBL5k0bb-zadz0Q2Ll_TEpL9vU0SlpbqfuUGImnnw1dSAb09nsm8fzj-DgRvj9GAaT6SQ8ASKtMkwLbQupuS2sdgojnswqH9CRMmEIo46hlUsjzuOmjdOqH84chVChEKpGCFU2hNe_75y3Az6uPb3ayalKP_tF1UNzCG862fWf_09t5XpqL-D2eH9vt9rdLneewh3WQCeWWq7CYD67DM_QHZrb5wmDBI5uGva_AK1yGxI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CggFgr4ACewmnVsxz4ghFqWlsKCBJV6S_2YVKCyW7Zbof41fh3jxCGARG89x57DzJd5eF4AT3Qp0aE0XMem4tJSgOJ0QC7KiEUpVYWYHvTfT_X2nny7r_ZX4GffC5PKKnud2CrqOA_pjXyDDIkYk62u1EaTyyI-bk1eHn_naYNUyrT26zQ6iOzi2Q8K305e7GyRrJ8KMXn9eXOb5w0DPBD0ltyUpilCtIVwAtFLo4ISXlkUXpvohC8aF2IVZRmUbIKNhca05NBpUTVYjkuiewkuV2VlU-BnJm-Ggb9GdXP-BIXrwurcsJPb9sjq81RHTw6XULz42ygOnu4_ydnW5k1uwvXsrLJXHbpuwQrO1uBGvwiCZb2wBtf-mGp4Gw6nxBqWekv4B1JI34gCWcSvbXrgjHVzrhMcGPnLrG0AXszTzh-WavAP2fS0SyIdsfZ27hNlbhbZJ9cg25wvFl8inb8DexfC7buwOpvP8B4w7Y0TVllfaSt95W0wFPsU3kQkl8rhCMY9Q-uQh52nnRtH9TCmOQmhJiHUrRDqYgTPft857kZ9nHt6vZdTnX_7k3oA6Qie97IbPv-f2v3zqT2GKwT2-t3OdPcBXBUtclLN5TqsLhen-JD8oqV_1AKQwcFFI_4X6CId4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Time-Optimal+Trajectory+Generation+for+Multirotors+using+Numerical+Optimization+and+Safe+Corridors&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Toumieh%2C+Charbel&rft.au=Lambert%2C+Alain&rft.date=2022-05-01&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=105&rft.issue=1&rft_id=info:doi/10.1007%2Fs10846-022-01625-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10846_022_01625_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |