Near Time-Optimal Trajectory Generation for Multirotors using Numerical Optimization and Safe Corridors

Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 105; no. 1; p. 20
Main Authors Toumieh, Charbel, Lambert, Alain
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-0296
1573-0409
DOI10.1007/s10846-022-01625-0

Cover

Loading…
Abstract Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction with new applications in transport, delivery and search and rescue missions, as well as other applications in sports and entertainment such as drone racing. The current state-of-the-art is heavily based on polynomial methods and most methods choose a conservative approach when limiting the velocity or acceleration as a way to account for nonlinearities and guarantee feasibility, which limits time optimality and trajectory speed. We overcome this limitation by proposing a new formulation for multirotors trajectory generation that takes into account nonlinearities such as gravity and aerodynamic drag, It allows us to provide more time-optimal solutions then the state-of-the-art. We present an algorithm that uses our new formulation for near time-optimal trajectory generation for multirotors subject to obstacles/path constraints. We validate our approach using a state of the art simulator and compare it with other time-optimal trajectory generation methods.
AbstractList Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction with new applications in transport, delivery and search and rescue missions, as well as other applications in sports and entertainment such as drone racing. The current state-of-the-art is heavily based on polynomial methods and most methods choose a conservative approach when limiting the velocity or acceleration as a way to account for nonlinearities and guarantee feasibility, which limits time optimality and trajectory speed. We overcome this limitation by proposing a new formulation for multirotors trajectory generation that takes into account nonlinearities such as gravity and aerodynamic drag, It allows us to provide more time-optimal solutions then the state-of-the-art. We present an algorithm that uses our new formulation for near time-optimal trajectory generation for multirotors subject to obstacles/path constraints. We validate our approach using a state of the art simulator and compare it with other time-optimal trajectory generation methods.
ArticleNumber 20
Author Toumieh, Charbel
Lambert, Alain
Author_xml – sequence: 1
  givenname: Charbel
  orcidid: 0000-0002-2669-6777
  surname: Toumieh
  fullname: Toumieh, Charbel
  email: charbel.toumieh@universite-paris-saclay.fr
  organization: CNRS, Laboratoire de recherche en informatique, Université Paris-Saclay
– sequence: 2
  givenname: Alain
  surname: Lambert
  fullname: Lambert, Alain
  organization: CNRS, Laboratoire de recherche en informatique, Université Paris-Saclay
BookMark eNp9kE1LAzEQQIMoWKt_wFPA8-ok2a8cpfgFVQ_Wc0izsyWl3dTJ7qH-emNXEDx4ymHemwzvjB13oUPGLgVcC4DqJgqo8zIDKTMQpSwyOGITUVQqgxz0MZuAliKNdXnKzmJcA4CuCz1hqxe0xBd-i9nrrvdbu-ELsmt0faA9f8AOyfY-dLwNxJ-HTe8ppFHkQ_Tdir8MWyTvknWw_ecI267hb7ZFPgtEvkn8OTtp7Sbixc87Ze_3d4vZYzZ_fXia3c4zp4Tus1rVLbhGg7QScZnXhSvkstAol2XdWLmE1rqmanLlirx1uoESK6WELWXVohJqyq7GvTsKHwPG3qzDQF360siylKmNqopE1SPlKMRI2Brn-8PpPVm_MQLMd1YzZjUpqzlkNZBU-UfdUcpG-_8lNUoxwd0K6feqf6wvXCCN_A
CitedBy_id crossref_primary_10_1016_j_ifacol_2023_10_678
crossref_primary_10_1109_TRO_2024_3429193
Cites_doi 10.1109/TCYB.2021.3091680
10.1109/TCST.2017.2709268
10.1109/LRA.2017.2663526
10.1109/IROS40897.2019.8968116
10.1007/978-3-319-27702-8_29
10.1109/IROS.2015.7353622
10.1016/j.ifacol.2018.11.062
10.1016/j.ifacol.2017.08.849
10.1007/0-387-30065-1_4
10.1109/ICRA.2016.7487281
10.3182/20110828-6-IT-1002.03178
10.1109/ICUAS.2016.7502532
10.1007/s12532-018-0139-4
10.1109/ICRA.2011.5980409
10.1109/IROS.2018.8593579
10.1109/IROS.2017.8206119
10.1007/978-3-319-28872-7_37
10.1007/978-3-319-67361-5_40
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
Copyright Springer Nature B.V. May 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: Copyright Springer Nature B.V. May 2022
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-022-01625-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID 10_1007_s10846_022_01625_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-838f0cd902a2eeb485c52b59e2b68da2b0facd7d43c54fc9d06e7331a627fe313
IEDL.DBID 8FG
ISSN 0921-0296
IngestDate Wed Aug 13 04:25:13 EDT 2025
Tue Jul 01 00:20:13 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:45:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Motion planning
Modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-838f0cd902a2eeb485c52b59e2b68da2b0facd7d43c54fc9d06e7331a627fe313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2669-6777
PQID 2662162375
PQPubID 326251
ParticipantIDs proquest_journals_2662162375
crossref_citationtrail_10_1007_s10846_022_01625_0
crossref_primary_10_1007_s10846_022_01625_0
springer_journals_10_1007_s10846_022_01625_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Lockheed-Martin: Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot, accessed 2019-09-14
SpedicatoSNotarstefanoGMinimum-time trajectory generation for quadrotors in constrained environmentsIEEE Trans. Control Syst. Technol.20172641335134410.1109/TCST.2017.2709268
Beul, M., Behnke, S.: Analytical time-optimal trajectory generation and control for multirotors. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96. IEEE (2016)
Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1872–1878. IEEE (2015)
KamelMBurriMSiegwartRLinear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehiclesIFAC-PapersOnLine20175013463346910.1016/j.ifacol.2017.08.849
Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. https://arxiv.org/abs/1705.05065 (2017)
Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot., pp 1–16 (2016)
Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R: Receding horizon “next-best-view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (ICRA) (2016)
Guerra, W., Tal, E., Murali, V., Ryou, G., Karaman, S.: Flightgoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality. arXiv preprint arXiv:1905.11377 (2019)
Nocedal, J.: Knitro: an Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization, pp. 35–60. Springer (2006)
Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. Field and Service Robotics, pp. 441–454 (2016)
Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016)
Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., Diehl, M.: Towards a modular software package for embedded optimization. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2018)
Microsoft-Airsim: Game of drones competition. https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing, Accessed 2019-09-14
Tutsoy, O., Barkana, D.E., Balikci, K.: A novel exploration-exploitation-based adaptive law for intelligent model-free control approaches. IEEE Trans. Cybern., pp. 1–9. https://doi.org/10.1109/TCYB.2021.3091680 (2021)
Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (In Press) (2018)
HehnMD’AndreaRQuadrocopter trajectory generation and controlIFAC Proceedings201144114851491
Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2872–2879. IEEE (2017)
Wächter, A., Biegler, L.: Ipopt-an interior point optimizer (2009)
Foehn, P., Scaramuzza, D.: Cpc: Complementary progress constraints for time-optimal quadrotor trajectories. arXiv preprint arXiv:2007.06255 (2020)
Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)
Gao, F., Wu, W., Pan, J., Zhou, B., Shen, S.: Optimal time allocation for quadrotor trajectory generation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4715–4722. IEEE (2018)
LiuSWattersonMMohtaKSunKBhattacharyaSTaylorCJKumarVPlanning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environmentsIEEE Robot. Autom. Lett.2017231688169510.1109/LRA.2017.2663526
BonamiPLeeJBonmin user’s manualNumer. Math20074132
Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., Kapoor, A.: Airsim drone racing lab (2020)
1625_CR9
1625_CR8
1625_CR7
1625_CR6
1625_CR16
1625_CR15
1625_CR14
1625_CR19
M Kamel (1625_CR11) 2017; 50
1625_CR18
S Liu (1625_CR13) 2017; 2
1625_CR17
1625_CR1
M Hehn (1625_CR10) 2011; 44
1625_CR12
1625_CR4
1625_CR3
1625_CR2
P Bonami (1625_CR5) 2007; 4
1625_CR25
1625_CR24
S Spedicato (1625_CR22) 2017; 26
1625_CR23
1625_CR21
1625_CR20
References_xml – reference: Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (In Press) (2018)
– reference: Beul, M., Behnke, S.: Analytical time-optimal trajectory generation and control for multirotors. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96. IEEE (2016)
– reference: Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., Diehl, M.: Towards a modular software package for embedded optimization. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2018)
– reference: Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016)
– reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot., pp 1–16 (2016)
– reference: Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)
– reference: Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., Kapoor, A.: Airsim drone racing lab (2020)
– reference: Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. Field and Service Robotics, pp. 441–454 (2016)
– reference: Microsoft-Airsim: Game of drones competition. https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing, Accessed 2019-09-14
– reference: HehnMD’AndreaRQuadrocopter trajectory generation and controlIFAC Proceedings201144114851491
– reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R: Receding horizon “next-best-view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (ICRA) (2016)
– reference: Foehn, P., Scaramuzza, D.: Cpc: Complementary progress constraints for time-optimal quadrotor trajectories. arXiv preprint arXiv:2007.06255 (2020)
– reference: Nocedal, J.: Knitro: an Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization, pp. 35–60. Springer (2006)
– reference: Guerra, W., Tal, E., Murali, V., Ryou, G., Karaman, S.: Flightgoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality. arXiv preprint arXiv:1905.11377 (2019)
– reference: BonamiPLeeJBonmin user’s manualNumer. Math20074132
– reference: Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. https://arxiv.org/abs/1705.05065 (2017)
– reference: LiuSWattersonMMohtaKSunKBhattacharyaSTaylorCJKumarVPlanning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environmentsIEEE Robot. Autom. Lett.2017231688169510.1109/LRA.2017.2663526
– reference: Gao, F., Wu, W., Pan, J., Zhou, B., Shen, S.: Optimal time allocation for quadrotor trajectory generation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4715–4722. IEEE (2018)
– reference: SpedicatoSNotarstefanoGMinimum-time trajectory generation for quadrotors in constrained environmentsIEEE Trans. Control Syst. Technol.20172641335134410.1109/TCST.2017.2709268
– reference: Lockheed-Martin: Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot, accessed 2019-09-14
– reference: Tutsoy, O., Barkana, D.E., Balikci, K.: A novel exploration-exploitation-based adaptive law for intelligent model-free control approaches. IEEE Trans. Cybern., pp. 1–9. https://doi.org/10.1109/TCYB.2021.3091680 (2021)
– reference: KamelMBurriMSiegwartRLinear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehiclesIFAC-PapersOnLine20175013463346910.1016/j.ifacol.2017.08.849
– reference: Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1872–1878. IEEE (2015)
– reference: Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2872–2879. IEEE (2017)
– reference: Wächter, A., Biegler, L.: Ipopt-an interior point optimizer (2009)
– ident: 1625_CR14
– ident: 1625_CR23
  doi: 10.1109/TCYB.2021.3091680
– volume: 26
  start-page: 1335
  issue: 4
  year: 2017
  ident: 1625_CR22
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2709268
– volume: 2
  start-page: 1688
  issue: 3
  year: 2017
  ident: 1625_CR13
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2663526
– ident: 1625_CR9
  doi: 10.1109/IROS40897.2019.8968116
– ident: 1625_CR7
– ident: 1625_CR19
  doi: 10.1007/978-3-319-27702-8_29
– volume: 4
  start-page: 1
  year: 2007
  ident: 1625_CR5
  publication-title: Numer. Math
– ident: 1625_CR6
  doi: 10.1109/IROS.2015.7353622
– ident: 1625_CR24
  doi: 10.1016/j.ifacol.2018.11.062
– volume: 50
  start-page: 3463
  issue: 1
  year: 2017
  ident: 1625_CR11
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.849
– ident: 1625_CR18
  doi: 10.1007/0-387-30065-1_4
– ident: 1625_CR3
  doi: 10.1109/ICRA.2016.7487281
– volume: 44
  start-page: 1485
  issue: 1
  year: 2011
  ident: 1625_CR10
  publication-title: IFAC Proceedings
  doi: 10.3182/20110828-6-IT-1002.03178
– ident: 1625_CR2
  doi: 10.1109/ICUAS.2016.7502532
– ident: 1625_CR1
  doi: 10.1007/s12532-018-0139-4
– ident: 1625_CR16
  doi: 10.1109/ICRA.2011.5980409
– ident: 1625_CR8
  doi: 10.1109/IROS.2018.8593579
– ident: 1625_CR12
  doi: 10.1109/IROS.2017.8206119
– ident: 1625_CR25
– ident: 1625_CR17
– ident: 1625_CR15
– ident: 1625_CR20
  doi: 10.1007/978-3-319-28872-7_37
– ident: 1625_CR21
  doi: 10.1007/978-3-319-67361-5_40
– ident: 1625_CR4
  doi: 10.1109/ICRA.2016.7487281
SSID ssj0009859
Score 2.3168373
Snippet Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Acceleration
Aerodynamic drag
Algorithms
Artificial Intelligence
Control
Electrical Engineering
Engineering
Evacuations & rescues
Gravity
Mechanical Engineering
Mechatronics
Nonlinearity
Optimization
Polynomials
Racing
Robotics
Robots
Search and rescue missions
Short Paper
Topical collection on Unmanned Systems
Trajectory optimization
Transportation corridors
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ-Q4wUfREDjIZo-8CYle9222z4SAhIMxwNegk-bfswSFe_Icfegf73T3a6HRE147kd2O53Ob9qZ3wDs61KiQ2m4jk3FpSUHxemAXJQRi1KqCjFd6F-M9dlEnl-r65wUdt9Hu_dPku1J_SDZjWwlT9HnBFOE4uSor6uRsWYA60cfPn88WZHtGtVx7AlylYXVOVnm77P8aZBWKPPRw2hrb043YdJ_aRdm8u1wufCH4ecjEsen_soLeJ4BKDvqdswWrOF0Gzb74g4s6_o2PHvAVLgDN2PSCJbyRfglHTLfaQaycl_bK_8frOOuTiJmhIFZm9Q7n6U6PizF1d-w8bJ7GLpl7eic-8ncNLIr1yA7ns3nXyL1fwmT05NPx2c812jggZR3wU1pmiJEWwgnEL00KijhlUXhtYlO-KJxIVZRlkHJJthYaExlIp0WVYPlqHwFg-lsiq-BaW-csMr6SlvpK2-DIX-m8CYiwSSHQxj1gqpDJjBPdTRu6xX1clrXmta1bte1Lobw_veYu46-47-993r511mV72tCMIKay0oN4aAX56r537PtPq37G9gQ7Y5IwZR7MFjMl_iWAM_Cv8v7-xf8qvW0
  priority: 102
  providerName: Springer Nature
Title Near Time-Optimal Trajectory Generation for Multirotors using Numerical Optimization and Safe Corridors
URI https://link.springer.com/article/10.1007/s10846-022-01625-0
https://www.proquest.com/docview/2662162375
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDlAJioVQ-cAOLrGM79gltq91WIBYErFROkR-Tqqjslu32wL_vOHFIQaKnSIntQ76xZzyPbwBe6VKiQ2m4jk3FpaULitMBuSgjFqVUFWJy6H-c6-OFfH-iTrLD7TKnVfZnYntQx1VIPvK3pEjEmHR1pd5d_OKpa1SKruYWGndhe0wDkpyb2dFAumtUx7Un6MosrM5FM7l0jjQvT7nsZPQIxYu_FdNgbf4TIG31zmwHHmSDkU06hB_BHVzuwsO-GQPLe3MX7t9gFnwMp3OSYJbqO_gnOhR-0gqklX60LvrfrOOaTpAwsllZW4S7XqW-OyzlwZ-y-VUXyDln7excq8ncMrKvrkF2uFqvzyKNfwKL2fTb4THPPRV4oM224aY0TRGiLYQTiF4aFZTwyqLw2kQnfNG4EKsoy6BkE2wsNKa2jk6LqsFyXD6FreVqic-AaW-csMr6SlvpK2-DoftH4U1EMmscjmDc_9A6ZMLx1PfivB6okhMINYFQtyDUxQhe_5lz0dFt3Dp6r8epzlvvsh4EZQRveuyGz_9f7fntq72Ae6IVl5TsuAdbm_UVviSDZOP3W6nbh-3J0fcPU3oeTOefv9DbhZhcA16F3-s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH_B5aAeUFHjImoPetLG2U7baQ_GAEIWgdEoJNyGfg2RwC4uSwz_lH-jrzMdR03kxnnad3jvN--j7wvgpcx5MIErKn1dUK4xQDHSBcpyH7KciyKE-KC_V8rxAf94KA4X4GfXCxPLKjud2ChqP3XxjfwtGhI2QltdiPfn32ncGhWzq90KjRYWO-HqB4ZsF--2P6B8XzG2tbm_MaZpqwB1CLc5VbmqM-d1xgwLwXIlnGBW6MCsVN4wm9XG-cLz3AleO-0zGeJiQyNZUYd8lCPdW7DIY0frABbXN8vPX_oxv0q00_0YBulMy9Smk5r10NbTWD2PbhYTNPvbFPb-7T8p2cbSbd2HpeSikrUWUw9gIUyW4V63_oEkbbAMd_-YZfgQjktkDokdJfQTqqEzpIB28KRJClyRdrp1BAFBL5k0bb-zadz0Q2Ll_TEpL9vU0SlpbqfuUGImnnw1dSAb09nsm8fzj-DgRvj9GAaT6SQ8ASKtMkwLbQupuS2sdgojnswqH9CRMmEIo46hlUsjzuOmjdOqH84chVChEKpGCFU2hNe_75y3Az6uPb3ayalKP_tF1UNzCG862fWf_09t5XpqL-D2eH9vt9rdLneewh3WQCeWWq7CYD67DM_QHZrb5wmDBI5uGva_AK1yGxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48CggFgr4ACewmnVsxz4ghFqWlsKCBJV6S_2YVKCyW7Zbof41fh3jxCGARG89x57DzJd5eF4AT3Qp0aE0XMem4tJSgOJ0QC7KiEUpVYWYHvTfT_X2nny7r_ZX4GffC5PKKnud2CrqOA_pjXyDDIkYk62u1EaTyyI-bk1eHn_naYNUyrT26zQ6iOzi2Q8K305e7GyRrJ8KMXn9eXOb5w0DPBD0ltyUpilCtIVwAtFLo4ISXlkUXpvohC8aF2IVZRmUbIKNhca05NBpUTVYjkuiewkuV2VlU-BnJm-Ggb9GdXP-BIXrwurcsJPb9sjq81RHTw6XULz42ygOnu4_ydnW5k1uwvXsrLJXHbpuwQrO1uBGvwiCZb2wBtf-mGp4Gw6nxBqWekv4B1JI34gCWcSvbXrgjHVzrhMcGPnLrG0AXszTzh-WavAP2fS0SyIdsfZ27hNlbhbZJ9cg25wvFl8inb8DexfC7buwOpvP8B4w7Y0TVllfaSt95W0wFPsU3kQkl8rhCMY9Q-uQh52nnRtH9TCmOQmhJiHUrRDqYgTPft857kZ9nHt6vZdTnX_7k3oA6Qie97IbPv-f2v3zqT2GKwT2-t3OdPcBXBUtclLN5TqsLhen-JD8oqV_1AKQwcFFI_4X6CId4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Time-Optimal+Trajectory+Generation+for+Multirotors+using+Numerical+Optimization+and+Safe+Corridors&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Toumieh%2C+Charbel&rft.au=Lambert%2C+Alain&rft.date=2022-05-01&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=105&rft.issue=1&rft_id=info:doi/10.1007%2Fs10846-022-01625-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10846_022_01625_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon