Stochastic discontinuous Galerkin methods for robust deterministic control of convection-diffusion equations with uncertain coefficients
We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs. Stochastic Galerkin approach, turning the original optimization problem containing uncertainties into a large system of deterministic problems,...
Saved in:
Published in | Advances in computational mathematics Vol. 49; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1019-7168 1572-9044 |
DOI | 10.1007/s10444-023-10015-5 |
Cover
Loading…
Abstract | We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs. Stochastic Galerkin approach, turning the original optimization problem containing uncertainties into a large system of deterministic problems, is applied to discretize the stochastic domain, while a discontinuous Galerkin method is preferred for the spatial discretization due to its better convergence behavior for optimization problems governed by convection dominated PDEs. Error analysis is done for the state and adjoint variables in the energy norm, while the estimate of deterministic control is obtained in the
L
2
-norm. Large matrix system emerging from the stochastic Galerkin method is addressed by the low-rank version of GMRES method, which reduces both the computational complexity and the memory requirements by employing Kronecker-product structure of the obtained linear system. Benchmark examples with and without control constraints are presented to illustrate the efficiency of the proposed methodology. |
---|---|
AbstractList | We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs. Stochastic Galerkin approach, turning the original optimization problem containing uncertainties into a large system of deterministic problems, is applied to discretize the stochastic domain, while a discontinuous Galerkin method is preferred for the spatial discretization due to its better convergence behavior for optimization problems governed by convection dominated PDEs. Error analysis is done for the state and adjoint variables in the energy norm, while the estimate of deterministic control is obtained in the
L
2
-norm. Large matrix system emerging from the stochastic Galerkin method is addressed by the low-rank version of GMRES method, which reduces both the computational complexity and the memory requirements by employing Kronecker-product structure of the obtained linear system. Benchmark examples with and without control constraints are presented to illustrate the efficiency of the proposed methodology. We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs. Stochastic Galerkin approach, turning the original optimization problem containing uncertainties into a large system of deterministic problems, is applied to discretize the stochastic domain, while a discontinuous Galerkin method is preferred for the spatial discretization due to its better convergence behavior for optimization problems governed by convection dominated PDEs. Error analysis is done for the state and adjoint variables in the energy norm, while the estimate of deterministic control is obtained in the L2-norm. Large matrix system emerging from the stochastic Galerkin method is addressed by the low-rank version of GMRES method, which reduces both the computational complexity and the memory requirements by employing Kronecker-product structure of the obtained linear system. Benchmark examples with and without control constraints are presented to illustrate the efficiency of the proposed methodology. |
ArticleNumber | 16 |
Author | Çi̇loğlu, Pelin Yücel, Hamdullah |
Author_xml | – sequence: 1 givenname: Pelin surname: Çi̇loğlu fullname: Çi̇loğlu, Pelin organization: Institute of Applied Mathematics, Middle East Technical University – sequence: 2 givenname: Hamdullah orcidid: 0000-0002-0313-9767 surname: Yücel fullname: Yücel, Hamdullah email: yucelh@metu.edu.tr organization: Institute of Applied Mathematics, Middle East Technical University |
BookMark | eNp9kMtuHCEQRVHkSLGd_EBWSF6TFK-mexlZfkmWsrCzRgxdZHBmwAbaVv4gnx1mJlIkL7ziUtxTVdwTcpRyQkI-c_jCAczXykEpxUBI1u9cM_2OHHNtBJv6w1HXwCdm-DB-ICe1PgDANBh9TP7ctezXrrbo6Ryrz6nFtOSl0iu3wfIrJrrFts5zpSEXWvJqqY3O2LBsY4p7bgeVvKE57OQz-hZzYnMMYaldUXxa3K5U6Utsa7okj6W53tlnDCH6iKnVj-R9cJuKn_6dp-TH5cX9-TW7_X51c_7tlnnJp8ZGOQgNMIMS0hjkKxOkH0CZmatBoTA6cO81INcg3OBBjKuAbuZBGhQI8pScHfo-lvy0YG32IS8l9ZFWmBGUNGpS3TUeXL7kWgsG62Pbf6IVFzeWg93lbg-525673edudUfFK_SxxK0rv9-G5AGq3Zx-Yvm_1RvUX5aBmxE |
CitedBy_id | crossref_primary_10_1088_1361_6668_ad9a0d |
Cites_doi | 10.1016/j.camwa.2014.12.010 10.1016/j.jcp.2008.12.018 10.1137/S0036142901384162 10.1137/070711311 10.1137/100801731 10.1016/j.cma.2011.11.026 10.1007/978-3-642-14394-6 10.1137/120884158 10.1137/100799010 10.1016/j.cam.2019.112602 10.1137/15M1041390 10.1016/j.jmaa.2010.07.036 10.1137/130926365 10.1137/15M1018502 10.1016/j.cma.2016.02.004 10.1007/s10589-013-9601-4 10.2307/2371268 10.1016/j.jcp.2017.12.039 10.1137/16M1075582 10.1137/100817279 10.1016/j.crma.2014.04.007 10.1002/gamm.201010017 10.1007/978-3-642-33134-3_42 10.1137/S1064827501387826 10.1007/978-1-4757-2553-7 10.1137/130937251 10.1016/j.apnum.2021.10.007 10.1016/j.automatica.2014.10.054 10.1137/120892362 10.1137/130940517 10.1137/S0363012901389342 10.1017/CBO9781139017329 10.1137/070694016 10.1137/S0363012997328609 10.1137/110826953 10.1090/gsm/112 10.1080/01630563.2018.1508034 10.1007/978-3-642-65024-6 10.1137/16M1057607 10.1007/s10589-014-9691-7 10.1093/imanum/drn014 10.1016/S0045-7825(02)00354-7 10.1137/110835438 10.1007/s00211-013-0521-0 10.1137/17M1155892 10.1002/nla.1818 10.1137/080742282 10.2307/1969178 10.1051/m2an/2022054 10.1007/s00791-010-0134-4 10.1051/m2an/2018072 10.1137/1.9780898717440 10.1007/s10915-015-0091-7 10.1137/19M1294952 10.1137/16M109870X 10.1137/0907058 10.1137/S0036142902418680 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-023-10015-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_023_10015_5 |
GrantInformation_xml | – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu grantid: 119F022 funderid: https://doi.org/10.13039/501100004410 |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-8362500d042377e1b7f3c6047d1464e275f1cc50e1502a6c028bfead1f37e2e03 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Tue Aug 12 16:41:19 EDT 2025 Tue Jul 01 02:55:35 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Fri Feb 21 02:43:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Stochastic discontinuous Galerkin Error estimates 35R60 Low-rank approximation 49J20 PDE-constrained optimization Uncertainty quantification 60H15 60H35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-8362500d042377e1b7f3c6047d1464e275f1cc50e1502a6c028bfead1f37e2e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0313-9767 |
PQID | 2780437494 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_2780437494 crossref_citationtrail_10_1007_s10444_023_10015_5 crossref_primary_10_1007_s10444_023_10015_5 springer_journals_10_1007_s10444_023_10015_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | GarreisSUlbrichMConstrained optimization with low-rank tensors and applications to parametric problems with PDEs.SIAM J. Sci. Comput.201739255435906551381.4902710.1137/16M1057607 BennerPOnwuntaAStollMBlock-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputsSIAM J. Matrix Anal. Appl.20163749151834831601382.6507410.1137/15M1018502 ChenPQuarteroniARozzaGStochastic optimal Robin boundary control problems of advection-dominated elliptic equationsSIAM J. Numer. Anal.2013512700272231154611281.4901510.1137/120884158 XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.200224261964419510581014.6500410.1137/S1064827501387826 FreitagMAGreenDLHA low–rank approach to the solution of weak constraint variational data assimilation problemsJ. Comput. Phys.201835726328137594211381.9310010.1016/j.jcp.2017.12.039 KarhunenKÜBer lineare Methoden in der WahrscheinlichkeitsrechnungAnn. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys.194719473779230130030.16502 Yücel, H., Heinkenschloss, M., Karasözen, B.: Distributed Optimal Control of Diffusion-Convection-Reaction Equations Using Discontinuous Galerkin Methods. In: Numer. Math. Adv. Appl. 2011, pp 389–397. Springer, Berlin (2013) SaadYSchultzMHGMRES A generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comp.198678568698485680599.6501810.1137/0907058 DürrwächterJKuhnTMeyerFSchlachterLSchneiderFA hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equationsJ. Comput. Appl. Math.202037011260240531171450.6511810.1016/j.cam.2019.112602 LazarMZuazuaEAveraged control and observation of parameter-depending wave equationsC. R. Math. Acad. Sci. Paris201435249750232101311302.3504310.1016/j.crma.2014.04.007 GunzburgerMMingJOptimal control of stochastic flow over a backward-facing step using reduced-order modelingSIAM J. Sci. Comput.20113352641266328616411232.9309710.1137/100817279 SunTShenWGongBLiuWA priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained controlJ. Sci. Comput.20166740543134865191342.6515010.1007/s10915-015-0091-7 PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.200922872443246725016931161.6530910.1016/j.jcp.2008.12.018 ArnoldDNBrezziFCockburnBMariniLDUnified analysis of discontinuous Galerkin methods for elliptic problemsSIAM J. Numer. Anal.20023951749177918857151008.6508010.1137/S0036142901384162 BorzìASchulzVSchillingsCvon WinckelGOn the treatment of distributed uncertainties in PDE constrained optimizationGAMM Mitteilungen201033223024628439611207.4903310.1002/gamm.201010017 ZuazuaEAveraged controlAutomatica201450123077308732841421309.9302910.1016/j.automatica.2014.10.054 LoèveMFonctions aléatoires de second ordreRevue Sci.194684195206183750063.03612 BallaniJGrasedyckLA projection method to solve linear systems in tensor productNumer. Linear Algebra Appl.201320274330072371289.6504910.1002/nla.1818 RosseelEWellsGNOptimal control with stochastic PDE constraints and uncertain controlsComput. Methods Appl. Mech. Engrg.2012213/21615216728805111243.4903410.1016/j.cma.2011.11.026 AkmanTYücelHKarasözenBA priori error analysis of the upwind symmetric interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection diffusion equationsComput. Optim. Appl.20145770372931795951301.4907210.1007/s10589-013-9601-4 ØksendalBStochastic Differential Equations2003BerlinSpringer1025.6002610.1007/978-3-642-14394-6 LiRLiuWMaHTangTAdaptive finite element approximation for distributed elliptic optimal control problemsSIAM J. Control Optim.20024151321134919719521034.4903110.1137/S0363012901389342 BorzìAvon WinckelGMultigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficientsSIAM J. Sci. Comput.20093132172219225161481196.3502910.1137/070711311 HouLSLeeJManouziHFinite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEsJ. Math. Anal. Appl.20113848710328228521227.6501110.1016/j.jmaa.2010.07.036 LeeKElmanHCA preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equationsSIAM J. Sci. Comput.201739582885037165851373.6012610.1137/16M1075582 BennerPDolgovSOnwuntaAStollMLow–rank solvers for unsteady Stokes–Brinkman optimal control problem with random dataComput. Methods Appl. Mech. Engrg.2016304265434863081423.7632910.1016/j.cma.2016.02.004 BarelAVVandewalleSRobust optimization of PDEs with random coefficients using a multilevel Monte Carlo methodSIAM/ASA J. Uncertain. Quantif.20197117420239044371421.3539610.1137/17M1155892 LionsJ-LOptimal Control of Systems Governed by Partial Differential Equations1971BerlinSpringer0203.0900110.1007/978-3-642-65024-6 GuthPAKaarniojaVKuoFYSchillingsCSloanIHA quasi-Monte Carlo method for optimal control under uncertaintySIAM/ASA J. Uncertain. Quantif.20219235438342415211475.4900410.1137/19M1294952 FishmanGSMonte Carlo: Concepts, Algorithms, and Applications1996New YorkSpringer0859.6500110.1007/978-1-4757-2553-7 LiuJSMonte Carlo Strategies in Scientific Computing. Springer Series in Statistics2008New YorkSpringer BergouniouxMItoKKunischKPrimal-dual strategy for constrained optimal control problemsSIAM J. Control Optim.19993741176119416919370937.4901710.1137/S0363012997328609 Rivière, B.: Discontinuous galerkin methods for solving elliptic and parabolic equations. Theory and implementation. Frontiers Appl. Math SIAM (2008) GunzburgerMDLeeH-CLeeJError estimates of stochastic optimal Neumann boundary control problemsSIAM J. Numer. Anal.20114941532155228310601243.6500810.1137/100801731 YücelHBennerPAdaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equationsComput. Optim. Appl.20156229132133856541333.4904710.1007/s10589-014-9691-7 LordGJPowellCEShardlowTAn Introduction to Computational Stochastic PDEs2014New YorkCambridge University Press1327.6001110.1017/CBO9781139017329 LeeH-CLeeJA stochastic Galerkin method for stochastic control problemsCommun. Comput. Phys.201314771063002360 RoachePJVerification & Validation in Computational Science and Engineering1998AlbuquerqueHermosa Publishers Tröltzsch, F.: Optimal Control of Partial Differential Equations: theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112 American Mathematical Society (2010) BarthASteinANumerical analysis for time-dependent advection diffusion problems with random discontinuous coefficientsESAIM: M2AN20225651545157844541631501.6506510.1051/m2an/2022054 WienerNThe homogeneous chaosAmer. J. Math.19386089793815073560019.3540610.2307/2371268 BorzìAMultigrid and sparse-grid schemes for elliptic control problems with random coefficientsComput. Vis. Sci.20101315316026450161213.6509210.1007/s00791-010-0134-4 ChenPQuarteroniAWeighted reduced basis method for stochastic optimal control problems with elliptic PDE constraintSIAM/ASA J. Uncertain. Quantif.2014236439632839131309.3518210.1137/130940517 AliAAUllmannEHinzeMMultilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficientsSIAM/ASA J. Uncertain. Quantif.2017546649236406301371.3537110.1137/16M109870X StollMBreitenTA low-rank in time approach to PDE-constrained optimizationSIAM J. Sci. Comput.201537112932966281330.6515310.1137/130926365 GeLSunTA sparse grid stochastic collocation discontinuous Galerkin method for constrained optimal control problem governed by random convection dominated diffusion equationsNumer. Func. Anal. Optim.20194076379739370621501.6511810.1080/01630563.2018.1508034 BabuškaIChatzipantelidisPOn solving elliptic stochastic partial differential equationsComput. Methods Appl. Mech. Engrg.200219137-384093412219197901019.6501010.1016/S0045-7825(02)00354-7 GarreisSUlbrichMConstrained optimization with low-rank tensors and applications to parametric problems with PDEsSIAM J. Sci. Comput.201739255435906551381.4902710.1137/16M1057607 ErnstOGUllmannEStochastic Galerkin matricesSIAM J. Matrix Anal. Appl.2010311848187226447401205.6502110.1137/080742282 BennerPDolgovSOnwuntaAStollMLow-rank solution of an optimal control problem constrained by random Navier–Stokes equationsSIAM J. Sci. Comput.20209111165316784166849 PowellCEElmanHCBlock–diagonal preconditioning for spectral stochastic finite–element systemsIMA J. Numer. Anal.200929235037524914311169.6500710.1093/imanum/drn014 Çi̇loğluPYücelHStochastic discontinuous Galerkin methods with low–rank solvers for convection diffusion equationsAppl. Numer. Math202217215718543279151478.6511810.1016/j.apnum.2021.10.007 BabuškaITemponeRZourarisGEGalerkin finite element approximations of stochastic elliptic partial differential equationsSIAM J. Numer. Anal.200442280082520842361080.6500310.1137/S0036142902418680 TieslerHKirbyRMXiuDPreusserTStochastic collocation for optimal control problems with stochastic PDE constraintsSIAM J. Control Optim.20125052659268230220821260.6012510.1137/110835438 KressnerDToblerCLow-rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.20113241288131628546141237.6503410.1137/100799010 KouriDPHeinkenschlossMRidzalDvan Bloemen WaandersBGA trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertaintySIAM J. Sci. Comput.2013351847187930733581275.4904710.1137/120892362 BennerPBreitenTLow rank methods for a class of generalized Lyapunov equations and related issuesNumer. Math.2013124344147030660361266.6506810.1007/s00211-013-0521-0 LeykekhmanDHeinkenschlossMLocal error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problemsSIAM J. Numer. Anal.20125042012203830222081253.4901810.1137/110826953 BennerPOnwuntaAStollMLow-rank solution of unsteady diffusion equations with stochastic coefficientsSIAM/ASA J. Un T Sun (10015_CR22) 2016; 67 CE Powell (10015_CR49) 2009; 29 LS Hou (10015_CR10) 2011; 384 GJ Lord (10015_CR44) 2014 Z Zhou (10015_CR58) 2010; 7 K Karhunen (10015_CR46) 1947; 1947 E Zuazua (10015_CR7) 2014; 50 GS Fishman (10015_CR24) 1996 A Barth (10015_CR53) 2022; 56 MA Freitag (10015_CR62) 2018; 357 L Ge (10015_CR21) 2019; 40 PJ Roache (10015_CR1) 1998 I Babuška (10015_CR43) 2004; 42 S Garreis (10015_CR8) 2017; 39 E Rosseel (10015_CR13) 2012; 213/216 AV Barel (10015_CR19) 2019; 7 OG Ernst (10015_CR52) 2010; 31 M Bergounioux (10015_CR60) 1999; 37 J Ballani (10015_CR35) 2013; 20 M Loève (10015_CR47) 1946; 84 P Benner (10015_CR38) 2016; 304 A Borzì (10015_CR3) 2010; 33 N Wiener (10015_CR45) 1938; 60 DP Kouri (10015_CR11) 2013; 35 10015_CR42 J Dürrwächter (10015_CR23) 2020; 370 M Gunzburger (10015_CR65) 2011; 33 F Negri (10015_CR4) 2015; 69 H-C Lee (10015_CR12) 2013; 14 D Meidner (10015_CR57) 2008; 47 M Stoll (10015_CR37) 2015; 37 10015_CR33 A Kunoth (10015_CR16) 2016; 4 M Lazar (10015_CR6) 2014; 352 JS Liu (10015_CR25) 2008 P Öffner (10015_CR28) 2018; 52 A Borzì (10015_CR2) 2010; 13 10015_CR31 D Leykekhman (10015_CR29) 2012; 50 P Benner (10015_CR14) 2016; 37 I Babuška (10015_CR48) 2002; 191 A Borzì (10015_CR20) 2009; 31 J-L Lions (10015_CR41) 1971 P Benner (10015_CR39) 2020; 91 RH Cameron (10015_CR51) 1947; 48 AA Ali (10015_CR5) 2017; 5 R Li (10015_CR55) 2002; 41 P Benner (10015_CR61) 2013; 124 P Benner (10015_CR64) 2015; 3 P Chen (10015_CR15) 2013; 51 H Yücel (10015_CR30) 2015; 62 B Øksendal (10015_CR50) 2003 RA Adams (10015_CR59) 1975 K Lee (10015_CR63) 2017; 39 DN Arnold (10015_CR32) 2002; 39 D Kressner (10015_CR36) 2011; 32 PA Guth (10015_CR18) 2021; 9 P Çi̇loğlu (10015_CR54) 2022; 172 T Akman (10015_CR56) 2014; 57 MD Gunzburger (10015_CR9) 2011; 49 H Tiesler (10015_CR17) 2012; 50 S Garreis (10015_CR40) 2017; 39 P Chen (10015_CR66) 2014; 2 Y Saad (10015_CR34) 1986; 7 D Xiu (10015_CR26) 2002; 24 G Poëtte (10015_CR27) 2009; 228 |
References_xml | – reference: LazarMZuazuaEAveraged control and observation of parameter-depending wave equationsC. R. Math. Acad. Sci. Paris201435249750232101311302.3504310.1016/j.crma.2014.04.007 – reference: GunzburgerMDLeeH-CLeeJError estimates of stochastic optimal Neumann boundary control problemsSIAM J. Numer. Anal.20114941532155228310601243.6500810.1137/100801731 – reference: BennerPOnwuntaAStollMBlock-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputsSIAM J. Matrix Anal. Appl.20163749151834831601382.6507410.1137/15M1018502 – reference: LeeH-CLeeJA stochastic Galerkin method for stochastic control problemsCommun. Comput. Phys.201314771063002360 – reference: PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.200922872443246725016931161.6530910.1016/j.jcp.2008.12.018 – reference: BennerPDolgovSOnwuntaAStollMLow–rank solvers for unsteady Stokes–Brinkman optimal control problem with random dataComput. Methods Appl. Mech. Engrg.2016304265434863081423.7632910.1016/j.cma.2016.02.004 – reference: HouLSLeeJManouziHFinite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEsJ. Math. Anal. Appl.20113848710328228521227.6501110.1016/j.jmaa.2010.07.036 – reference: KouriDPHeinkenschlossMRidzalDvan Bloemen WaandersBGA trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertaintySIAM J. Sci. Comput.2013351847187930733581275.4904710.1137/120892362 – reference: LiuJSMonte Carlo Strategies in Scientific Computing. Springer Series in Statistics2008New YorkSpringer – reference: BennerPBreitenTLow rank methods for a class of generalized Lyapunov equations and related issuesNumer. Math.2013124344147030660361266.6506810.1007/s00211-013-0521-0 – reference: Çi̇loğluPYücelHStochastic discontinuous Galerkin methods with low–rank solvers for convection diffusion equationsAppl. Numer. Math202217215718543279151478.6511810.1016/j.apnum.2021.10.007 – reference: LiRLiuWMaHTangTAdaptive finite element approximation for distributed elliptic optimal control problemsSIAM J. Control Optim.20024151321134919719521034.4903110.1137/S0363012901389342 – reference: BorzìASchulzVSchillingsCvon WinckelGOn the treatment of distributed uncertainties in PDE constrained optimizationGAMM Mitteilungen201033223024628439611207.4903310.1002/gamm.201010017 – reference: AdamsRASobolev Spaces1975OrlandoAcademic Press0314.46030 – reference: ZhouZYanNThe local discontinuous Galerkin method for optimal control problem governed by convection diffusion equationsInt. J. Numer. Anal. Model.20107468169926442991195.65086 – reference: PowellCEElmanHCBlock–diagonal preconditioning for spectral stochastic finite–element systemsIMA J. Numer. Anal.200929235037524914311169.6500710.1093/imanum/drn014 – reference: LionsJ-LOptimal Control of Systems Governed by Partial Differential Equations1971BerlinSpringer0203.0900110.1007/978-3-642-65024-6 – reference: LoèveMFonctions aléatoires de second ordreRevue Sci.194684195206183750063.03612 – reference: KressnerDToblerCLow-rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.20113241288131628546141237.6503410.1137/100799010 – reference: YücelHBennerPAdaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equationsComput. Optim. Appl.20156229132133856541333.4904710.1007/s10589-014-9691-7 – reference: GarreisSUlbrichMConstrained optimization with low-rank tensors and applications to parametric problems with PDEs.SIAM J. Sci. Comput.201739255435906551381.4902710.1137/16M1057607 – reference: CameronRHMartinWTThe orthogonal development of non-linear functionals in series of Fourier-Hermite functionalsAnn. of Math. (2)194748385392202300029.1430210.2307/1969178 – reference: MeidnerDVexlerBA priori error estimates for space-time finite element discretization of parabolic optimal control problems. I. Problems without control constraintsSIAM J. Control Optim.20084731150117724070121161.4902610.1137/070694016 – reference: BergouniouxMItoKKunischKPrimal-dual strategy for constrained optimal control problemsSIAM J. Control Optim.19993741176119416919370937.4901710.1137/S0363012997328609 – reference: RoachePJVerification & Validation in Computational Science and Engineering1998AlbuquerqueHermosa Publishers – reference: WienerNThe homogeneous chaosAmer. J. Math.19386089793815073560019.3540610.2307/2371268 – reference: ErnstOGUllmannEStochastic Galerkin matricesSIAM J. Matrix Anal. Appl.2010311848187226447401205.6502110.1137/080742282 – reference: KarhunenKÜBer lineare Methoden in der WahrscheinlichkeitsrechnungAnn. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys.194719473779230130030.16502 – reference: RosseelEWellsGNOptimal control with stochastic PDE constraints and uncertain controlsComput. Methods Appl. Mech. Engrg.2012213/21615216728805111243.4903410.1016/j.cma.2011.11.026 – reference: SaadYSchultzMHGMRES A generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comp.198678568698485680599.6501810.1137/0907058 – reference: Tröltzsch, F.: Optimal Control of Partial Differential Equations: theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112 American Mathematical Society (2010) – reference: ChenPQuarteroniARozzaGStochastic optimal Robin boundary control problems of advection-dominated elliptic equationsSIAM J. Numer. Anal.2013512700272231154611281.4901510.1137/120884158 – reference: TieslerHKirbyRMXiuDPreusserTStochastic collocation for optimal control problems with stochastic PDE constraintsSIAM J. Control Optim.20125052659268230220821260.6012510.1137/110835438 – reference: SunTShenWGongBLiuWA priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained controlJ. Sci. Comput.20166740543134865191342.6515010.1007/s10915-015-0091-7 – reference: NegriFManzoniARozzaGReduced basis approximation of parametrized optimal flow control problems for the Stokes equationsComput. Math. Appl.201569431933633039961421.4902610.1016/j.camwa.2014.12.010 – reference: BarelAVVandewalleSRobust optimization of PDEs with random coefficients using a multilevel Monte Carlo methodSIAM/ASA J. Uncertain. Quantif.20197117420239044371421.3539610.1137/17M1155892 – reference: ÖffnerPGlaubitzJRanochaHStability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approachESAIM: M2AN20185262215224539051881420.6509410.1051/m2an/2018072 – reference: ZuazuaEAveraged controlAutomatica201450123077308732841421309.9302910.1016/j.automatica.2014.10.054 – reference: GuthPAKaarniojaVKuoFYSchillingsCSloanIHA quasi-Monte Carlo method for optimal control under uncertaintySIAM/ASA J. Uncertain. Quantif.20219235438342415211475.4900410.1137/19M1294952 – reference: BallaniJGrasedyckLA projection method to solve linear systems in tensor productNumer. Linear Algebra Appl.201320274330072371289.6504910.1002/nla.1818 – reference: ArnoldDNBrezziFCockburnBMariniLDUnified analysis of discontinuous Galerkin methods for elliptic problemsSIAM J. Numer. Anal.20023951749177918857151008.6508010.1137/S0036142901384162 – reference: DürrwächterJKuhnTMeyerFSchlachterLSchneiderFA hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equationsJ. Comput. Appl. Math.202037011260240531171450.6511810.1016/j.cam.2019.112602 – reference: Yücel, H., Heinkenschloss, M., Karasözen, B.: Distributed Optimal Control of Diffusion-Convection-Reaction Equations Using Discontinuous Galerkin Methods. In: Numer. Math. Adv. Appl. 2011, pp 389–397. Springer, Berlin (2013) – reference: ChenPQuarteroniAWeighted reduced basis method for stochastic optimal control problems with elliptic PDE constraintSIAM/ASA J. Uncertain. Quantif.2014236439632839131309.3518210.1137/130940517 – reference: ØksendalBStochastic Differential Equations2003BerlinSpringer1025.6002610.1007/978-3-642-14394-6 – reference: KunothASchwabCSparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problemsSIAM/ASA J. Uncertain. Quantif.201641034105935431741398.6525210.1137/15M1041390 – reference: Rivière, B.: Discontinuous galerkin methods for solving elliptic and parabolic equations. Theory and implementation. Frontiers Appl. Math SIAM (2008) – reference: BabuškaITemponeRZourarisGEGalerkin finite element approximations of stochastic elliptic partial differential equationsSIAM J. Numer. Anal.200442280082520842361080.6500310.1137/S0036142902418680 – reference: GarreisSUlbrichMConstrained optimization with low-rank tensors and applications to parametric problems with PDEsSIAM J. Sci. Comput.201739255435906551381.4902710.1137/16M1057607 – reference: FreitagMAGreenDLHA low–rank approach to the solution of weak constraint variational data assimilation problemsJ. Comput. Phys.201835726328137594211381.9310010.1016/j.jcp.2017.12.039 – reference: GeLSunTA sparse grid stochastic collocation discontinuous Galerkin method for constrained optimal control problem governed by random convection dominated diffusion equationsNumer. Func. Anal. Optim.20194076379739370621501.6511810.1080/01630563.2018.1508034 – reference: AliAAUllmannEHinzeMMultilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficientsSIAM/ASA J. Uncertain. Quantif.2017546649236406301371.3537110.1137/16M109870X – reference: BennerPDolgovSOnwuntaAStollMLow-rank solution of an optimal control problem constrained by random Navier–Stokes equationsSIAM J. Sci. Comput.20209111165316784166849 – reference: BarthASteinANumerical analysis for time-dependent advection diffusion problems with random discontinuous coefficientsESAIM: M2AN20225651545157844541631501.6506510.1051/m2an/2022054 – reference: GunzburgerMMingJOptimal control of stochastic flow over a backward-facing step using reduced-order modelingSIAM J. Sci. Comput.20113352641266328616411232.9309710.1137/100817279 – reference: LeeKElmanHCA preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equationsSIAM J. Sci. Comput.201739582885037165851373.6012610.1137/16M1075582 – reference: StollMBreitenTA low-rank in time approach to PDE-constrained optimizationSIAM J. Sci. Comput.201537112932966281330.6515310.1137/130926365 – reference: LeykekhmanDHeinkenschlossMLocal error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problemsSIAM J. Numer. Anal.20125042012203830222081253.4901810.1137/110826953 – reference: BorzìAvon WinckelGMultigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficientsSIAM J. Sci. Comput.20093132172219225161481196.3502910.1137/070711311 – reference: BennerPOnwuntaAStollMLow-rank solution of unsteady diffusion equations with stochastic coefficientsSIAM/ASA J. Uncertain. Quantif.2015362264933767911325.6501610.1137/130937251 – reference: LordGJPowellCEShardlowTAn Introduction to Computational Stochastic PDEs2014New YorkCambridge University Press1327.6001110.1017/CBO9781139017329 – reference: BorzìAMultigrid and sparse-grid schemes for elliptic control problems with random coefficientsComput. Vis. Sci.20101315316026450161213.6509210.1007/s00791-010-0134-4 – reference: BabuškaIChatzipantelidisPOn solving elliptic stochastic partial differential equationsComput. Methods Appl. Mech. Engrg.200219137-384093412219197901019.6501010.1016/S0045-7825(02)00354-7 – reference: AkmanTYücelHKarasözenBA priori error analysis of the upwind symmetric interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection diffusion equationsComput. Optim. Appl.20145770372931795951301.4907210.1007/s10589-013-9601-4 – reference: FishmanGSMonte Carlo: Concepts, Algorithms, and Applications1996New YorkSpringer0859.6500110.1007/978-1-4757-2553-7 – reference: XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.200224261964419510581014.6500410.1137/S1064827501387826 – volume: 69 start-page: 319 issue: 4 year: 2015 ident: 10015_CR4 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.12.010 – volume: 228 start-page: 2443 issue: 7 year: 2009 ident: 10015_CR27 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.12.018 – volume: 39 start-page: 1749 issue: 5 year: 2002 ident: 10015_CR32 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901384162 – volume: 31 start-page: 2172 issue: 3 year: 2009 ident: 10015_CR20 publication-title: SIAM J. Sci. Comput. doi: 10.1137/070711311 – volume: 49 start-page: 1532 issue: 4 year: 2011 ident: 10015_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/100801731 – volume-title: Verification & Validation in Computational Science and Engineering year: 1998 ident: 10015_CR1 – volume: 213/216 start-page: 152 year: 2012 ident: 10015_CR13 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2011.11.026 – volume: 1947 start-page: 79 issue: 37 year: 1947 ident: 10015_CR46 publication-title: Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. – volume-title: Stochastic Differential Equations year: 2003 ident: 10015_CR50 doi: 10.1007/978-3-642-14394-6 – volume: 51 start-page: 2700 year: 2013 ident: 10015_CR15 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120884158 – volume: 32 start-page: 1288 issue: 4 year: 2011 ident: 10015_CR36 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/100799010 – volume: 7 start-page: 681 issue: 4 year: 2010 ident: 10015_CR58 publication-title: Int. J. Numer. Anal. Model. – volume: 370 start-page: 112602 year: 2020 ident: 10015_CR23 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112602 – volume: 4 start-page: 1034 year: 2016 ident: 10015_CR16 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/15M1041390 – volume: 384 start-page: 87 year: 2011 ident: 10015_CR10 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.07.036 – volume: 37 start-page: 1 issue: 1 year: 2015 ident: 10015_CR37 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130926365 – volume: 37 start-page: 491 year: 2016 ident: 10015_CR14 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/15M1018502 – volume: 304 start-page: 26 year: 2016 ident: 10015_CR38 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.02.004 – volume: 57 start-page: 703 year: 2014 ident: 10015_CR56 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-013-9601-4 – volume: 60 start-page: 897 year: 1938 ident: 10015_CR45 publication-title: Amer. J. Math. doi: 10.2307/2371268 – volume: 357 start-page: 263 year: 2018 ident: 10015_CR62 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.12.039 – volume: 39 start-page: 828 issue: 5 year: 2017 ident: 10015_CR63 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1075582 – volume: 33 start-page: 2641 issue: 5 year: 2011 ident: 10015_CR65 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100817279 – volume: 352 start-page: 497 year: 2014 ident: 10015_CR6 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2014.04.007 – volume: 33 start-page: 230 issue: 2 year: 2010 ident: 10015_CR3 publication-title: GAMM Mitteilungen doi: 10.1002/gamm.201010017 – ident: 10015_CR31 doi: 10.1007/978-3-642-33134-3_42 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10015_CR26 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume-title: Monte Carlo: Concepts, Algorithms, and Applications year: 1996 ident: 10015_CR24 doi: 10.1007/978-1-4757-2553-7 – volume: 14 start-page: 77 year: 2013 ident: 10015_CR12 publication-title: Commun. Comput. Phys. – volume: 3 start-page: 622 year: 2015 ident: 10015_CR64 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/130937251 – volume: 172 start-page: 157 year: 2022 ident: 10015_CR54 publication-title: Appl. Numer. Math doi: 10.1016/j.apnum.2021.10.007 – volume: 50 start-page: 3077 issue: 12 year: 2014 ident: 10015_CR7 publication-title: Automatica doi: 10.1016/j.automatica.2014.10.054 – volume: 84 start-page: 195 year: 1946 ident: 10015_CR47 publication-title: Revue Sci. – volume: 35 start-page: 1847 year: 2013 ident: 10015_CR11 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120892362 – volume: 2 start-page: 364 year: 2014 ident: 10015_CR66 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/130940517 – volume: 41 start-page: 1321 issue: 5 year: 2002 ident: 10015_CR55 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012901389342 – volume-title: An Introduction to Computational Stochastic PDEs year: 2014 ident: 10015_CR44 doi: 10.1017/CBO9781139017329 – volume: 47 start-page: 1150 issue: 3 year: 2008 ident: 10015_CR57 publication-title: SIAM J. Control Optim. doi: 10.1137/070694016 – volume: 37 start-page: 1176 issue: 4 year: 1999 ident: 10015_CR60 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012997328609 – volume: 50 start-page: 2012 issue: 4 year: 2012 ident: 10015_CR29 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110826953 – ident: 10015_CR42 doi: 10.1090/gsm/112 – volume: 40 start-page: 763 year: 2019 ident: 10015_CR21 publication-title: Numer. Func. Anal. Optim. doi: 10.1080/01630563.2018.1508034 – volume-title: Optimal Control of Systems Governed by Partial Differential Equations year: 1971 ident: 10015_CR41 doi: 10.1007/978-3-642-65024-6 – volume: 39 start-page: 25 year: 2017 ident: 10015_CR40 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1057607 – volume: 62 start-page: 291 year: 2015 ident: 10015_CR30 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9691-7 – volume: 91 start-page: 1653 issue: 11 year: 2020 ident: 10015_CR39 publication-title: SIAM J. Sci. Comput. – volume-title: Sobolev Spaces year: 1975 ident: 10015_CR59 – volume: 29 start-page: 350 issue: 2 year: 2009 ident: 10015_CR49 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drn014 – volume: 191 start-page: 4093 issue: 37-38 year: 2002 ident: 10015_CR48 publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00354-7 – volume: 50 start-page: 2659 issue: 5 year: 2012 ident: 10015_CR17 publication-title: SIAM J. Control Optim. doi: 10.1137/110835438 – volume: 124 start-page: 441 issue: 3 year: 2013 ident: 10015_CR61 publication-title: Numer. Math. doi: 10.1007/s00211-013-0521-0 – volume: 7 start-page: 174 issue: 1 year: 2019 ident: 10015_CR19 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/17M1155892 – volume: 20 start-page: 27 year: 2013 ident: 10015_CR35 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1818 – volume: 31 start-page: 1848 year: 2010 ident: 10015_CR52 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/080742282 – volume: 48 start-page: 385 year: 1947 ident: 10015_CR51 publication-title: Ann. of Math. (2) doi: 10.2307/1969178 – volume: 56 start-page: 1545 issue: 5 year: 2022 ident: 10015_CR53 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2022054 – volume-title: Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics year: 2008 ident: 10015_CR25 – volume: 13 start-page: 153 year: 2010 ident: 10015_CR2 publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-010-0134-4 – volume: 52 start-page: 2215 issue: 6 year: 2018 ident: 10015_CR28 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2018072 – ident: 10015_CR33 doi: 10.1137/1.9780898717440 – volume: 39 start-page: 25 year: 2017 ident: 10015_CR8 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1057607 – volume: 67 start-page: 405 year: 2016 ident: 10015_CR22 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0091-7 – volume: 9 start-page: 354 issue: 2 year: 2021 ident: 10015_CR18 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/19M1294952 – volume: 5 start-page: 466 year: 2017 ident: 10015_CR5 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M109870X – volume: 7 start-page: 856 year: 1986 ident: 10015_CR34 publication-title: SIAM J. Sci. Stat. Comp. doi: 10.1137/0907058 – volume: 42 start-page: 800 issue: 2 year: 2004 ident: 10015_CR43 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902418680 |
SSID | ssj0009675 |
Score | 2.3283157 |
Snippet | We investigate a numerical behavior of robust deterministic optimal control problem subject to a convection-diffusion equation containing uncertain inputs.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Convection-diffusion equation Diffusion Error analysis Galerkin method Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Optimal control Optimization Robust control Visualization |
Title | Stochastic discontinuous Galerkin methods for robust deterministic control of convection-diffusion equations with uncertain coefficients |
URI | https://link.springer.com/article/10.1007/s10444-023-10015-5 https://www.proquest.com/docview/2780437494 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xNFBwI5ZLLujAUg7b2ZQLYkEgaGAlqKLYcUSBNrDJ_gOfzYzjsIAAiSpFHBeZsd94_OYNwFEaEyobzQMdllwoa3iubMpLjfAd5anJDeUhb27V5UhcPcgHXxRWd2z37krS7dSfit2EEBwxhpNukORyHhYlnd3Ri0fRYCa1q5y8LvpayvE00PelMj_P8RWOZjHmt2tRhzbDNVjxYSIbtHZdhzk73oBVHzIyvyDrDVi--ZBdrTfh7a6pzFNO0suMym0ragMxxbM9u0AcoKw4aztG1wxjVTap9LRuWOEZMU6ymXnuOqtK5hjpru6BUx-VKSXWmH1txcFrRilchrDYkgpwtHVyFMTM2ILR8Pz-7JL7Vgvc4BpseB9xTAZB4VgyiQ11UsZGBSIpcCcVNkpkGRojA4vxY5Qrg1GJLtEJwzJObGSDeBsWxtXY7gAzhbYyV0LashD9VPUN3e6aJCxUqnWiehB2fzwzXoec2mE8ZzMFZbJShlbKnJUy2YPjj29eWhWOP0fvd4bM_Iqss4iUluJEpKIHJ51xZ69_n233f8P3YIk60rfknn1YaCZTe4BxS6MPYXEwPD29pefF4_X5oXPbd7mk6Vw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VeqA9QLuAuny0PnADS_mwneSIUJeFslzKSnuLYscRB7SBTfY_9Gd3xnF2AZVKnOP4kLH9XsZv3gCcZDGhstE80GHFhbKGF8pmvNII31GRmcJQHnJyq8ZTcT2TM18U1vRq9_5K0p3Uz4rdhBAcMYaTb5DkcgM-IhlIScg1jc7XVrvK2eviWss4_g2kvlTm33O8hKM1x3x1LerQZvQFtj1NZOddXL_CBzsfwI6njMxvyGYAnycr29VmF_78bmtzX5D1MqNy25raQCzx355dIg5QVpx1HaMbhlyVLWq9bFpWekWMs2xmXrvO6oo5Rbqre-DUR2VJiTVmnzpz8IZRCpchLHaiAhxtnR0FKTP2YDr6eXcx5r7VAje4B1ueIo7JICidSiaxoU6q2KhAJCWepMJGiaxCY2RgkT9GhTLISnSFizCs4sRGNoj3YXNez-03YKbUVhZKSFuVIs1Uauh21yRhqTKtEzWEsP_iufE-5NQO4yFfOyhTlHKMUu6ilMshnK7eeexcOP47-qgPZO53ZJNH5LQUJyITQzjrg7t-_PZsB-8b_gO2xneTm_zm6vbXIXyi7vSd0OcINtvF0h4jh2n1d7dk_wJAw-k_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA5UB6tWErBB25gkYftbI6odHkjJFiJWxQ7tjigzZZk_wM_mxnHywKCSj3H8cEz9jcef_MNwG6eEiobzSMdOy6UNbxUNudOI3wnZW5KQ3nIyyt1MhRnd_LuVRW_Z7tPnyS7mgZSaRq1B-PKHbwqfBNCcMQbThpCkssvsIDHcUx-PUwOZ7K7ykvtot_lHG8G_VA28_Ecb6FpFm--eyL1yDNYgeUQMrLDzsarMGdHa_AthI8sbM5mDZYuXyRYm3V4umlrc1-SDDOj0tuaWkJM8J7PjhETKEPOuu7RDcO4lT3WetK0rArsGC_fzAKPndWOeXa6r4Hg1FNlQkk2Zv92QuENo3QuQ4jsCAY42nppCmJpfIfh4M_t7xMe2i5wgwvY8j5imoyiyjNmMhvrzKVGRSKr8FQVNsmki42RkcVYMimVwQhFO3TI2KWZTWyU_oD5UT2yG8BMpa0slZDWVaKfq76hl16TxZXKtc5UD-LpihcmaJJTa4yHYqamTFYq0EqFt1Ihe7D38s-4U-T45-itqSGLsDubIiHVpTQTuejB_tS4s8-fz7b5f8N3YPH6aFBcnF6d_4Sv1Ki-4_xswXz7OLG_MJxp9bb32Geehu17 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+discontinuous+Galerkin+methods+for+robust+deterministic+control+of+convection-diffusion+equations+with+uncertain+coefficients&rft.jtitle=Advances+in+computational+mathematics&rft.au=%C3%87i%CC%87lo%C4%9Flu+Pelin&rft.au=Hamdullah%2C+Y%C3%BCcel&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=49&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-023-10015-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |