Slip flow of Casson–Maxwell nanofluid confined through stretchable disks
This study reports an incompressible electrically conducting Casson–Maxwell fluid flow confined across two uniformly stretchable disks. Buongiorno nanofluid model is implemented in the fluid flow. Cattaneo–Christov theory of double-diffusion is characterized through the heat and mass equations. Velo...
Saved in:
Published in | Indian journal of physics Vol. 96; no. 7; pp. 2041 - 2049 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study reports an incompressible electrically conducting Casson–Maxwell fluid flow confined across two uniformly stretchable disks. Buongiorno nanofluid model is implemented in the fluid flow. Cattaneo–Christov theory of double-diffusion is characterized through the heat and mass equations. Velocity, thermal and concentration slip conditions are executed at the lower stretchable disk. The flow model is dimensionalized through the similarity functions and then numerical solution is attained by RKF-45 scheme combined with shooting technique. The results of physical parameters are discussed by plotting the effects of such parameters on velocity, thermal and concentration fields. The results revealed that the Maxwell liquid is highly effected by Lorentz force than the Casson liquid. Thermal gradient of Maxwell liquid is highly influenced by stretching ratio parameter when compared to Casson fluid. Increase in Casson parameter and Deborah number declines the velocity gradient. Rise in the values of Brownian motion parameter declines the concentration gradient. Finally, the upsurge in thermal relaxation time parameter enhances the thermal gradient quickly in absence of thermal slip parameter. |
---|---|
AbstractList | This study reports an incompressible electrically conducting Casson–Maxwell fluid flow confined across two uniformly stretchable disks. Buongiorno nanofluid model is implemented in the fluid flow. Cattaneo–Christov theory of double-diffusion is characterized through the heat and mass equations. Velocity, thermal and concentration slip conditions are executed at the lower stretchable disk. The flow model is dimensionalized through the similarity functions and then numerical solution is attained by RKF-45 scheme combined with shooting technique. The results of physical parameters are discussed by plotting the effects of such parameters on velocity, thermal and concentration fields. The results revealed that the Maxwell liquid is highly effected by Lorentz force than the Casson liquid. Thermal gradient of Maxwell liquid is highly influenced by stretching ratio parameter when compared to Casson fluid. Increase in Casson parameter and Deborah number declines the velocity gradient. Rise in the values of Brownian motion parameter declines the concentration gradient. Finally, the upsurge in thermal relaxation time parameter enhances the thermal gradient quickly in absence of thermal slip parameter. |
Author | Shehzad, S. A. Prasannakumara, B. C. Rauf, A. Gowda, R. J. Punith Naveen Kumar, R. |
Author_xml | – sequence: 1 givenname: R. J. Punith surname: Gowda fullname: Gowda, R. J. Punith organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 2 givenname: A. surname: Rauf fullname: Rauf, A. organization: Department of Mathematics, COMSATS University Islamabad – sequence: 3 givenname: R. surname: Naveen Kumar fullname: Naveen Kumar, R. organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 4 givenname: B. C. surname: Prasannakumara fullname: Prasannakumara, B. C. organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 5 givenname: S. A. surname: Shehzad fullname: Shehzad, S. A. email: sabirali@cuisahiwal.edu.pk organization: Department of Mathematics, COMSATS University Islamabad |
BookMark | eNp9kE1OwzAQhS1UJErhAqwssQ7YcRI7S1TxqyIWwNpyHLt1MXaxExV23IEbchLcBgmJRRejGY3mm_f0DsHIeacAOMHoDCNEzyPOq4JlKMebKklG98AY1bTIalaUo-1MMlyU7AAcxrhEqKoxLcfg7tGaFdTWr6HXcCpi9O778-tevK-VtdAJ57XtTQuld9o41cJuEXw_X8DYBdXJhWisgq2JL_EI7Gthozr-7RPwfHX5NL3JZg_Xt9OLWSYJrruMaqWaGjdUFo1umCCFJgwRrSiVaZvr5JSVJK_aotKSVUqlLWlbKXLCiBJkAk6Hv6vg33oVO770fXBJkucVRRhjQqp0lQ9XMvgYg9J8FcyrCB8cI77JjA-Z8ZQX32bGaYLYP0iaTnTGuy4IY3ejZEBj0nFzFf5c7aB-AIJfhH0 |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2021_105683 crossref_primary_10_1142_S0217979223502922 crossref_primary_10_3389_fphy_2024_1408933 crossref_primary_10_1016_j_asej_2022_102021 crossref_primary_10_1016_j_jics_2022_100709 crossref_primary_10_1080_10407790_2023_2174624 crossref_primary_10_1142_S0217979223501837 crossref_primary_10_1080_01430750_2021_1999325 crossref_primary_10_1007_s12043_023_02618_w crossref_primary_10_1142_S0217979223503010 crossref_primary_10_1039_D3NA00735A crossref_primary_10_1080_10407782_2023_2228483 crossref_primary_10_1016_j_aej_2023_06_043 crossref_primary_10_1038_s41598_022_25600_9 crossref_primary_10_1142_S0217979224502011 crossref_primary_10_1002_htj_22376 crossref_primary_10_1007_s11771_023_5339_z crossref_primary_10_1016_j_jics_2023_100983 crossref_primary_10_1155_2024_5730530 crossref_primary_10_1038_s41598_022_27118_6 crossref_primary_10_1080_17455030_2022_2053234 crossref_primary_10_1142_S0217979224503429 crossref_primary_10_1142_S0217979225500444 crossref_primary_10_1142_S0217984924501549 crossref_primary_10_1016_j_icheatmasstransfer_2022_106545 crossref_primary_10_1080_10407782_2024_2355520 crossref_primary_10_1142_S0217979222502241 crossref_primary_10_1177_09544089231224523 crossref_primary_10_1016_j_chaos_2023_113424 crossref_primary_10_1080_10407790_2023_2223355 crossref_primary_10_1142_S0217979222501910 crossref_primary_10_1142_S0217979222501557 crossref_primary_10_1142_S021797922350008X crossref_primary_10_1080_10407782_2023_2177215 crossref_primary_10_1142_S0217979223500376 crossref_primary_10_1016_j_ijheatfluidflow_2024_109406 crossref_primary_10_1016_j_jics_2022_100731 crossref_primary_10_1080_10407790_2023_2186989 crossref_primary_10_1142_S0217979224503831 crossref_primary_10_1080_17455030_2022_2128224 crossref_primary_10_1142_S021797922550002X crossref_primary_10_1016_j_aej_2024_07_093 crossref_primary_10_1016_j_ijheatfluidflow_2024_109322 crossref_primary_10_1080_17455030_2021_2025280 crossref_primary_10_1142_S0217984924501811 crossref_primary_10_1007_s10973_023_12611_5 crossref_primary_10_1016_j_cjph_2023_10_008 crossref_primary_10_3390_math11163501 crossref_primary_10_1177_23977914241304625 crossref_primary_10_1016_j_jksus_2022_102389 crossref_primary_10_1080_17455030_2022_2125598 crossref_primary_10_1080_10407782_2023_2297000 crossref_primary_10_1080_17455030_2023_2168787 crossref_primary_10_3390_math10183342 crossref_primary_10_1080_01430750_2024_2367743 crossref_primary_10_1080_10407782_2023_2210259 crossref_primary_10_1142_S0217984923502275 crossref_primary_10_3390_en14165019 crossref_primary_10_1080_02286203_2021_1957330 crossref_primary_10_1016_j_petrol_2022_110857 crossref_primary_10_1038_s41598_022_23239_0 crossref_primary_10_1002_mma_8759 crossref_primary_10_1080_17455030_2022_2096942 crossref_primary_10_1016_j_csite_2022_102479 crossref_primary_10_1016_j_jrras_2024_101117 crossref_primary_10_1016_j_csite_2023_103292 crossref_primary_10_1038_s41598_022_22970_y crossref_primary_10_1615_InterfacPhenomHeatTransfer_2024053119 crossref_primary_10_1080_01430750_2021_2023038 crossref_primary_10_1016_j_jmmm_2022_170330 crossref_primary_10_1080_10407790_2023_2252597 crossref_primary_10_1007_s00419_022_02187_1 crossref_primary_10_1038_s41598_023_35988_7 crossref_primary_10_1177_23977914251322207 crossref_primary_10_1016_j_aej_2023_05_017 crossref_primary_10_1142_S0217984923501130 crossref_primary_10_1007_s13204_022_02528_0 crossref_primary_10_1080_10407782_2023_2282150 crossref_primary_10_1142_S0217984924501276 crossref_primary_10_3390_inventions6040095 crossref_primary_10_1080_10407782_2023_2176383 crossref_primary_10_1080_10407790_2023_2252592 crossref_primary_10_1515_phys_2022_0258 crossref_primary_10_3389_fphy_2022_920372 crossref_primary_10_1080_10407782_2023_2290086 |
Cites_doi | 10.1016/j.icheatmasstransfer.2020.104955 10.1038/s41598-020-69411-2 10.1016/j.icheatmasstransfer.2019.104409 10.1007/s10483-020-2593-9 10.1115/1.2150834 10.1016/j.aej.2017.05.010 10.1016/j.ijheatmasstransfer.2018.05.093 10.1007/s10483-020-2611-5 10.1142/S0217984920503832 10.1016/j.cjph.2019.02.010 10.1016/j.cjph.2017.04.019 10.1108/EC-01-2017-0021 10.1016/j.jcis.2017.03.024 10.1016/j.cjche.2020.01.021 10.1002/num.22680 10.2298/TSCI150325096A 10.1016/j.chaos.2021.110774 10.1007/s12648-017-0959-5 10.1088/1402-4896/ab5ca7 10.1016/j.cmpb.2019.104997 10.15388/NA.17.4.14048 10.1080/00319104.2017.1317778 10.1007/s13369-020-04453-2 10.1063/1.3249752 10.4028/www.scientific.net/DDF.393.138 10.1016/j.ijengsci.2011.09.011 10.1016/j.cjph.2020.03.006 10.1007/s10973-019-08019-9 10.1016/j.icheatmasstransfer.2020.104693 10.1007/s13204-019-01008-2 10.1007/s10973-020-09322-6 10.1108/HFF-02-2018-0041 10.1016/j.cjph.2020.10.014 10.1007/s40314-017-0492-3 10.1007/s10973-019-09183-8 10.1016/j.rinp.2020.103544 10.1016/j.surfin.2020.100864 10.1177/09544089211001353 10.52292/j.laar.2020.254 10.1080/00986445.2014.910770 10.1007/s40430-019-1974-6 10.1007/s00009-016-0730-8 10.1007/978-3-642-00718-7 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2021 Indian Association for the Cultivation of Science 2021. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2021 – notice: Indian Association for the Cultivation of Science 2021. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-021-02153-7 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 2049 |
ExternalDocumentID | 10_1007_s12648_021_02153_7 |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-7feeb91b7c4bfb8a34f3803fe77c1b72f97385326d46fc86ee1b73ddca2383ea3 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 03:53:46 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Tue Jul 01 03:02:34 EDT 2025 Fri Feb 21 02:45:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Double-diffusive theory Stretchable disks Casson–Maxwell fluid Slip conditions Buongiorno model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7feeb91b7c4bfb8a34f3803fe77c1b72f97385326d46fc86ee1b73ddca2383ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2670111336 |
PQPubID | 2034531 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2670111336 crossref_primary_10_1007_s12648_021_02153_7 crossref_citationtrail_10_1007_s12648_021_02153_7 springer_journals_10_1007_s12648_021_02153_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2022 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | KhanMSarfrazMAhmedJAhmadLFetecauCAppl. Math. Mech.20204172510.1007/s10483-020-2611-5 ArmaghaniTKasaeipoorAIzadiMPopIInt. J. Numer. Methods Heat Fluid Flow201828291610.1108/HFF-02-2018-0041 HayatTNassemAKhanMIFarooqMAl-SaediAPhys. Chem. Liq.20185618910.1080/00319104.2017.1317778 ShehzadSAMushtaqTAbbasZRaufAJ. Therm. Anal. Calorim.202114344510.1007/s10973-019-09183-8 TurkyilmazogluMPhys. Fluids2009211061042009PhFl...21j6104T10.1063/1.3249752 BuongiornoJJ. Heat Transf.200612824010.1115/1.2150834 AhmedJKhanMAhmadLChin. J. Phys.2019602210.1016/j.cjph.2019.02.010 ShawSDogonchiASNayakMKMakindeODArab. J. Sci. Eng.202045547110.1007/s13369-020-04453-2 KhanMAhmedJAliWJ. Therm. Anal. Calorim.202010.1007/s10973-020-09322-6 KhanMIWaqasMHayatTAlsaediAJ. Colloid Interf. Sci.2017498852017JCIS..498...85K10.1016/j.jcis.2017.03.024 HayatTQayyumSShehzadSAAlsaediARes. Phys.20188489 AwatiVBMakindeODJyotiMEng. Comput.201835165510.1108/EC-01-2017-0021 ShehzadSAHayatTAlsaediAComput. Appl. Math.2018372932382601710.1007/s40314-017-0492-3 KhanJAMustafaMHayatTAlzahraniFInd. J. Phys.20179152710.1007/s12648-017-0959-5 GowdaRJPChaos Solitons Fract.202114511077410.1016/j.chaos.2021.110774 KumarMSSandeepNKumarBRSaleemSAlex. Eng. J.201857202710.1016/j.aej.2017.05.010 QayyumSKhanMIChamamWKhanWAAliZUl-HaqWMod. Phys. Lett. B20203420503832020MPLB...3450383Q10.1142/S0217984920503832 M G Reddy, R J P Gowda, R N Kumar, B C Prasannakumara and K G Kumar Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089211001353 (2021). https://doi.org/10.1177/09544089211001353. JayadevamurthyPGRRangaswamyNKPrasannakumaraBCNisarKSNumer. Methods Part. Differ. Equ.202010.1002/num.22680 WaqasHImranMBhattiMMChin. J. Phys.20206855810.1016/j.cjph.2020.10.014 Punith GowdaRJSurf. Interface20212210086410.1016/j.surfin.2020.100864 IzadiMA Behzadmehr and M M Shahmardan ChemEng. Commun.2015202169310.1080/00986445.2014.910770 HayatTQayyumSImtiazMAlsaediARes. Phys.20177126 KhanMIAlzahraniFHobinyAAliZIntegr. Med. Res.202096172 AbbasZMushtaqTShehzadSARaufAKumarRJ. Braz. Soc. Mech. Sci. Eng.20194146510.1007/s40430-019-1974-6 IzadiMChin. J. Chem. Eng.202028120310.1016/j.cjche.2020.01.021 ShehzadSAMaboodFRaufATliliIInt. Commun. Heat Mass Transf.202011610469310.1016/j.icheatmasstransfer.2020.104693 MohebbiRMehryanSAMIzadiMMahianOJ. Therm. Anal. Calorim.2019137171910.1007/s10973-019-08019-9 SohailMShahZSci. Rep.202010125302020NatSR..1012530S10.1038/s41598-020-69411-2 TurkyilmazogluMInt. J. Heat Mass Transf.201812697410.1016/j.ijheatmasstransfer.2018.05.093 K Gowthami, P H Prasad, B Mallikarjuna and O D Makinde 393 138 (2019). ShehzadSAReddyMGRaufAAbbasZPhys. Scrip.2020950452072020PhyS...95d5207S10.1088/1402-4896/ab5ca7 KhanMAhmedAAhmedJAppl. Math. Mech.20204165510.1007/s10483-020-2593-9 AliAUmarNBukhariZAbbasZResu. Phys.20201910354410.1016/j.rinp.2020.103544 IzadiMSheremetMAMehryanSAMPopIÖztopHFAbu-HamdehNInt. Commun. Heat Mass Transf.202011010440910.1016/j.icheatmasstransfer.2019.104409 RashidSKhanMIHayatTAyubMAlsaediAAppl. Nanosci.202010296510.1007/s13204-019-01008-2 AliKAhmadSAshrafMThermal Sci.201721215510.2298/TSCI150325096A PrasadKVVaidyaHMakindeODVajraveluKRamajiniVLatin Am. Appl. Res. Int. J.20205015910.52292/j.laar.2020.254 SheikholeslamiMRokniHBChin. J. Phys.201755111510.1016/j.cjph.2017.04.019 TurkyilmazogluMInt. J. Eng. Sci.20125123310.1016/j.ijengsci.2011.09.011 FarooqUIjazMAKhanMISuzillianaaSMohamedPChenDInt. Commun. Heat Mass Transf.202011910495510.1016/j.icheatmasstransfer.2020.104955 TurkyilmazogluMMediterr. J. Math.2016134019356448910.1007/s00009-016-0730-8 ShevchukIVConvective Heat and Mass Transfer in Rotating Disk Systems2009BerlinSpringer1179.8000310.1007/978-3-642-00718-7 TurkyilmazogluMComput. Methods Prog. Biomed.201917910499710.1016/j.cmpb.2019.104997 IzadiMSheremetMAMehryanSAMChin. J. Phys.20206544710.1016/j.cjph.2020.03.006 HashmiMMHayatTAlsaediANonlinear Anal. Model Control201217418300993010.15388/NA.17.4.14048 SA Shehzad (2153_CR34) 2020; 95 VB Awati (2153_CR13) 2018; 35 T Hayat (2153_CR35) 2018; 56 Z Abbas (2153_CR41) 2019; 41 KV Prasad (2153_CR15) 2020; 50 IV Shevchuk (2153_CR46) 2009 T Armaghani (2153_CR26) 2018; 28 M Izadi (2153_CR28) 2020; 65 PGR Jayadevamurthy (2153_CR14) 2020 M Turkyilmazoglu (2153_CR22) 2019; 179 K Ali (2153_CR44) 2017; 21 J Buongiorno (2153_CR17) 2006; 128 T Hayat (2153_CR40) 2017; 7 M Sheikholeslami (2153_CR18) 2017; 55 M Turkyilmazoglu (2153_CR45) 2016; 13 M Izadi (2153_CR27) 2020; 110 SA Shehzad (2153_CR1) 2018; 37 SA Shehzad (2153_CR8) 2020; 116 M Izadi (2153_CR23) 2020; 28 T Hayat (2153_CR30) 2018; 8 JA Khan (2153_CR19) 2017; 91 M Khan (2153_CR24) 2020; 41 M Turkyilmazoglu (2153_CR10) 2009; 21 MI Khan (2153_CR36) 2020; 9 M Izadi (2153_CR25) 2015; 202 MS Kumar (2153_CR42) 2018; 57 2153_CR31 R Mohebbi (2153_CR29) 2019; 137 M Khan (2153_CR7) 2020 J Ahmed (2153_CR12) 2019; 60 RJP Gowda (2153_CR33) 2021; 145 A Ali (2153_CR39) 2020; 19 S Shaw (2153_CR3) 2020; 45 U Farooq (2153_CR5) 2020; 119 H Waqas (2153_CR9) 2020; 68 MI Khan (2153_CR2) 2017; 498 M Sohail (2153_CR4) 2020; 10 SA Shehzad (2153_CR32) 2021; 143 2153_CR38 RJ Punith Gowda (2153_CR16) 2021; 22 S Qayyum (2153_CR37) 2020; 34 M Turkyilmazoglu (2153_CR11) 2012; 51 M Turkyilmazoglu (2153_CR20) 2018; 126 MM Hashmi (2153_CR43) 2012; 17 M Khan (2153_CR21) 2020; 41 S Rashid (2153_CR6) 2020; 10 |
References_xml | – reference: ShehzadSAMaboodFRaufATliliIInt. Commun. Heat Mass Transf.202011610469310.1016/j.icheatmasstransfer.2020.104693 – reference: KhanMSarfrazMAhmedJAhmadLFetecauCAppl. Math. Mech.20204172510.1007/s10483-020-2611-5 – reference: KhanMIWaqasMHayatTAlsaediAJ. Colloid Interf. Sci.2017498852017JCIS..498...85K10.1016/j.jcis.2017.03.024 – reference: JayadevamurthyPGRRangaswamyNKPrasannakumaraBCNisarKSNumer. Methods Part. Differ. Equ.202010.1002/num.22680 – reference: TurkyilmazogluMInt. J. Heat Mass Transf.201812697410.1016/j.ijheatmasstransfer.2018.05.093 – reference: PrasadKVVaidyaHMakindeODVajraveluKRamajiniVLatin Am. Appl. Res. Int. J.20205015910.52292/j.laar.2020.254 – reference: IzadiMA Behzadmehr and M M Shahmardan ChemEng. Commun.2015202169310.1080/00986445.2014.910770 – reference: K Gowthami, P H Prasad, B Mallikarjuna and O D Makinde 393 138 (2019). – reference: ShawSDogonchiASNayakMKMakindeODArab. J. Sci. Eng.202045547110.1007/s13369-020-04453-2 – reference: ShehzadSAMushtaqTAbbasZRaufAJ. Therm. Anal. Calorim.202114344510.1007/s10973-019-09183-8 – reference: KumarMSSandeepNKumarBRSaleemSAlex. Eng. J.201857202710.1016/j.aej.2017.05.010 – reference: Punith GowdaRJSurf. Interface20212210086410.1016/j.surfin.2020.100864 – reference: ShehzadSAReddyMGRaufAAbbasZPhys. Scrip.2020950452072020PhyS...95d5207S10.1088/1402-4896/ab5ca7 – reference: QayyumSKhanMIChamamWKhanWAAliZUl-HaqWMod. Phys. Lett. B20203420503832020MPLB...3450383Q10.1142/S0217984920503832 – reference: IzadiMChin. J. Chem. Eng.202028120310.1016/j.cjche.2020.01.021 – reference: RashidSKhanMIHayatTAyubMAlsaediAAppl. Nanosci.202010296510.1007/s13204-019-01008-2 – reference: AhmedJKhanMAhmadLChin. J. Phys.2019602210.1016/j.cjph.2019.02.010 – reference: FarooqUIjazMAKhanMISuzillianaaSMohamedPChenDInt. Commun. Heat Mass Transf.202011910495510.1016/j.icheatmasstransfer.2020.104955 – reference: KhanMIAlzahraniFHobinyAAliZIntegr. Med. Res.202096172 – reference: GowdaRJPChaos Solitons Fract.202114511077410.1016/j.chaos.2021.110774 – reference: TurkyilmazogluMPhys. Fluids2009211061042009PhFl...21j6104T10.1063/1.3249752 – reference: ShevchukIVConvective Heat and Mass Transfer in Rotating Disk Systems2009BerlinSpringer1179.8000310.1007/978-3-642-00718-7 – reference: KhanJAMustafaMHayatTAlzahraniFInd. J. Phys.20179152710.1007/s12648-017-0959-5 – reference: HayatTNassemAKhanMIFarooqMAl-SaediAPhys. Chem. Liq.20185618910.1080/00319104.2017.1317778 – reference: KhanMAhmedJAliWJ. Therm. Anal. Calorim.202010.1007/s10973-020-09322-6 – reference: HayatTQayyumSImtiazMAlsaediARes. Phys.20177126 – reference: ArmaghaniTKasaeipoorAIzadiMPopIInt. J. Numer. Methods Heat Fluid Flow201828291610.1108/HFF-02-2018-0041 – reference: WaqasHImranMBhattiMMChin. J. Phys.20206855810.1016/j.cjph.2020.10.014 – reference: IzadiMSheremetMAMehryanSAMPopIÖztopHFAbu-HamdehNInt. Commun. Heat Mass Transf.202011010440910.1016/j.icheatmasstransfer.2019.104409 – reference: AbbasZMushtaqTShehzadSARaufAKumarRJ. Braz. Soc. Mech. Sci. Eng.20194146510.1007/s40430-019-1974-6 – reference: AwatiVBMakindeODJyotiMEng. Comput.201835165510.1108/EC-01-2017-0021 – reference: SohailMShahZSci. Rep.202010125302020NatSR..1012530S10.1038/s41598-020-69411-2 – reference: AliKAhmadSAshrafMThermal Sci.201721215510.2298/TSCI150325096A – reference: HayatTQayyumSShehzadSAAlsaediARes. Phys.20188489 – reference: TurkyilmazogluMInt. J. Eng. Sci.20125123310.1016/j.ijengsci.2011.09.011 – reference: IzadiMSheremetMAMehryanSAMChin. J. Phys.20206544710.1016/j.cjph.2020.03.006 – reference: HashmiMMHayatTAlsaediANonlinear Anal. Model Control201217418300993010.15388/NA.17.4.14048 – reference: BuongiornoJJ. Heat Transf.200612824010.1115/1.2150834 – reference: TurkyilmazogluMComput. Methods Prog. Biomed.201917910499710.1016/j.cmpb.2019.104997 – reference: AliAUmarNBukhariZAbbasZResu. Phys.20201910354410.1016/j.rinp.2020.103544 – reference: ShehzadSAHayatTAlsaediAComput. Appl. Math.2018372932382601710.1007/s40314-017-0492-3 – reference: SheikholeslamiMRokniHBChin. J. Phys.201755111510.1016/j.cjph.2017.04.019 – reference: KhanMAhmedAAhmedJAppl. Math. Mech.20204165510.1007/s10483-020-2593-9 – reference: MohebbiRMehryanSAMIzadiMMahianOJ. Therm. Anal. Calorim.2019137171910.1007/s10973-019-08019-9 – reference: TurkyilmazogluMMediterr. J. Math.2016134019356448910.1007/s00009-016-0730-8 – reference: M G Reddy, R J P Gowda, R N Kumar, B C Prasannakumara and K G Kumar Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089211001353 (2021). https://doi.org/10.1177/09544089211001353. – volume: 119 start-page: 104955 year: 2020 ident: 2153_CR5 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104955 – volume: 10 start-page: 12530 year: 2020 ident: 2153_CR4 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69411-2 – volume: 110 start-page: 104409 year: 2020 ident: 2153_CR27 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104409 – volume: 9 start-page: 6172 year: 2020 ident: 2153_CR36 publication-title: Integr. Med. Res. – volume: 41 start-page: 655 year: 2020 ident: 2153_CR21 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-020-2593-9 – volume: 128 start-page: 240 year: 2006 ident: 2153_CR17 publication-title: J. Heat Transf. doi: 10.1115/1.2150834 – volume: 8 start-page: 489 year: 2018 ident: 2153_CR30 publication-title: Res. Phys. – volume: 57 start-page: 2027 year: 2018 ident: 2153_CR42 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.05.010 – volume: 126 start-page: 974 year: 2018 ident: 2153_CR20 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.093 – volume: 41 start-page: 725 year: 2020 ident: 2153_CR24 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-020-2611-5 – volume: 34 start-page: 2050383 year: 2020 ident: 2153_CR37 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920503832 – volume: 60 start-page: 22 year: 2019 ident: 2153_CR12 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.02.010 – volume: 55 start-page: 1115 year: 2017 ident: 2153_CR18 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.04.019 – volume: 35 start-page: 1655 year: 2018 ident: 2153_CR13 publication-title: Eng. Comput. doi: 10.1108/EC-01-2017-0021 – volume: 498 start-page: 85 year: 2017 ident: 2153_CR2 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.03.024 – volume: 28 start-page: 1203 year: 2020 ident: 2153_CR23 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.01.021 – year: 2020 ident: 2153_CR14 publication-title: Numer. Methods Part. Differ. Equ. doi: 10.1002/num.22680 – volume: 21 start-page: 2155 year: 2017 ident: 2153_CR44 publication-title: Thermal Sci. doi: 10.2298/TSCI150325096A – volume: 145 start-page: 110774 year: 2021 ident: 2153_CR33 publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2021.110774 – volume: 91 start-page: 527 year: 2017 ident: 2153_CR19 publication-title: Ind. J. Phys. doi: 10.1007/s12648-017-0959-5 – volume: 95 start-page: 045207 year: 2020 ident: 2153_CR34 publication-title: Phys. Scrip. doi: 10.1088/1402-4896/ab5ca7 – volume: 179 start-page: 104997 year: 2019 ident: 2153_CR22 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.104997 – volume: 17 start-page: 418 year: 2012 ident: 2153_CR43 publication-title: Nonlinear Anal. Model Control doi: 10.15388/NA.17.4.14048 – volume: 56 start-page: 189 year: 2018 ident: 2153_CR35 publication-title: Phys. Chem. Liq. doi: 10.1080/00319104.2017.1317778 – volume: 45 start-page: 5471 year: 2020 ident: 2153_CR3 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04453-2 – volume: 21 start-page: 106104 year: 2009 ident: 2153_CR10 publication-title: Phys. Fluids doi: 10.1063/1.3249752 – ident: 2153_CR31 doi: 10.4028/www.scientific.net/DDF.393.138 – volume: 51 start-page: 233 year: 2012 ident: 2153_CR11 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2011.09.011 – volume: 65 start-page: 447 year: 2020 ident: 2153_CR28 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.03.006 – volume: 137 start-page: 1719 year: 2019 ident: 2153_CR29 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08019-9 – volume: 116 start-page: 104693 year: 2020 ident: 2153_CR8 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104693 – volume: 10 start-page: 2965 year: 2020 ident: 2153_CR6 publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01008-2 – year: 2020 ident: 2153_CR7 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09322-6 – volume: 28 start-page: 2916 year: 2018 ident: 2153_CR26 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-02-2018-0041 – volume: 7 start-page: 126 year: 2017 ident: 2153_CR40 publication-title: Res. Phys. – volume: 68 start-page: 558 year: 2020 ident: 2153_CR9 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.10.014 – volume: 37 start-page: 2932 year: 2018 ident: 2153_CR1 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-017-0492-3 – volume: 143 start-page: 445 year: 2021 ident: 2153_CR32 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-09183-8 – volume: 19 start-page: 103544 year: 2020 ident: 2153_CR39 publication-title: Resu. Phys. doi: 10.1016/j.rinp.2020.103544 – volume: 22 start-page: 100864 year: 2021 ident: 2153_CR16 publication-title: Surf. Interface doi: 10.1016/j.surfin.2020.100864 – ident: 2153_CR38 doi: 10.1177/09544089211001353 – volume: 50 start-page: 159 year: 2020 ident: 2153_CR15 publication-title: Latin Am. Appl. Res. Int. J. doi: 10.52292/j.laar.2020.254 – volume: 202 start-page: 1693 year: 2015 ident: 2153_CR25 publication-title: Eng. Commun. doi: 10.1080/00986445.2014.910770 – volume: 41 start-page: 465 year: 2019 ident: 2153_CR41 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1974-6 – volume: 13 start-page: 4019 year: 2016 ident: 2153_CR45 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-016-0730-8 – volume-title: Convective Heat and Mass Transfer in Rotating Disk Systems year: 2009 ident: 2153_CR46 doi: 10.1007/978-3-642-00718-7 |
SSID | ssj0069175 |
Score | 2.5497794 |
Snippet | This study reports an incompressible electrically conducting Casson–Maxwell fluid flow confined across two uniformly stretchable disks. Buongiorno nanofluid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2041 |
SubjectTerms | Astrophysics and Astroparticles Brownian motion Concentration gradient Deborah number Disks Fluid dynamics Fluid flow Incompressible flow Lorentz force Mathematical models Maxwell fluids Nanofluids Original Paper Parameters Physical properties Physics Physics and Astronomy Relaxation time Slip flow Temperature gradients Thermal relaxation Velocity gradient |
Title | Slip flow of Casson–Maxwell nanofluid confined through stretchable disks |
URI | https://link.springer.com/article/10.1007/s12648-021-02153-7 https://www.proquest.com/docview/2670111336 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA-6IXgR_-J0jhy8aaBt2qY5bmNzTLaLDuappGkCw9IOu6FHv4Pf0E_iS9daFBU8FdI0hfeS934veb8XhC5Bx5oBrCCWiDgBREyJAE9AtKUVF0xTbRm-82Tqj2bueO7NS1JYXmW7V0eShaWuyW4mGYuYlALjpyhh26jpQexuErlmTreyvz4EIEXiIof_2q4XlFSZn8f46o5qjPntWLTwNsN9tFfCRNzd6PUAban0EO0U6ZoyP0Lju2SxxDrJnnGmcR8AcJa-v75NxIvZi8OpSDOdrBcxhmhXA46McXkfDzbcEFCUIUzheJE_5sdoNhzc90ekvBWBSFguK8K0UhG3IybdSEeBoK6mgUW1YkxCq6O5KVADqCx2fS0DXylopXEsBXhnqgQ9QY00S9UpwjYPXC49yX0WuxGPOYDXyJToc5VmgW21kF0JJ5RlyXBzc0US1sWOjUBDEGZYCDRkLXT1-c1yUzDjz97tSuZhuXjy0PEZWB0Inv0Wuq70UL_-fbSz_3U_R7uOITMUeypt1Fg9rdUFQIxV1EHN7rDXm5rnzcPtoFPMsA__08nm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsMwED5BEYIF8SsKBTzABJaSOI3jgaEqVIW2LFCpW0gcW6qokooUARvvwCvwZDwJ55BQgQCJgdWxreju7PvOvu8MsI861hxhBbXCSFBExIyG6AmotrQSIddMW4bv3Lvw2n33fFAfzMBLyYXJs93LK8l8p56S3UwyFjUpBcZPMcqLVMqOerzHQC07PjtBrR44Tuv0qtmmxVsCVKKRTSjXSkXCjrh0Ix35IXM18y2mFecSWx0tTFkXxDKx62npe0phK4tjGaJPYypkOO8szCH48M3a6TuNcr_3MODJEyVxBmq7db-g5nz_z5_d3xTTfrmGzb1baxmWClhKGu92tAIzKlmF-Tw9VGZrcH45Go6JHqX3JNWkiYA7TV6fnnvhgzn7I0mYpHp0N4wJRtcacWtMivd_iOGioGEYghaJh9lNtg79f5HcBlSSNFGbQGzhu0LWpfB47EYiFgiWI1MS0FWa-7ZVBbsUTiCLEuXmpYxRMC2ubAQaoDCDXKABr8Lhx5jxe4GOX3vXSpkHxWLNAsfjuMthsO5V4ajUw_Tzz7Nt_a37Hiy0r3rdoHt20dmGRccQKfLznBpUJrd3agfhzSTaza2LwPV_m_MbRYoFWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RUKteELQgtvz5UE5gkcTeOD70gIAVPwUhwUrcQmJ7pFVXyapZRHvrO_RFeCaepONs0lUrQOLA1bGt6PPY89mebwzwmcYYFdEKHmS55sSIBc_IE3AM0OlMocDA653PzuOjvjy57l7PwH2rhamj3dsryYmmwWdpKsa7I4u7U-GbD8ziPrzA-yzBVRNWeep-3tGmrfpyfEAjvBVFvcOr_SPevCvADRncmCt0LtdhrozMMU8yIVEkgUCnlKHSCLVP8UK8xsoYTRI7R6XCWpORfxMuE9TvG5iTXn1MM6gf7bVrf0ybnzpoknrgoewmjUzn8X_-1xVO-e1_V7K1p-stwHxDUdnexKYWYcYVH-BtHSpqqo9wcjkcjBgOyztWItsn8l0WD79-n2U__DkgK7KixOHtwDKCFInDWta8BcS8LoWMxIu1mB1U36ol6L8KcsswW5SFWwEW6kRq0zU6Vlbm2moizrlPDygdqiQMOhC24KSmSVfuX80YptNEyx7QlMBMa0BT1YHtv21Gk2Qdz9ZeazFPm4lbpVGsaMWjjXvcgZ12HKafn-7t08uqb8K7i4Ne-vX4_HQV3kdeU1Ef7azB7Pj7rVsnpjPON2rjYnDz2tb8B6r_CYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slip+flow+of+Casson%E2%80%93Maxwell+nanofluid+confined+through+stretchable+disks&rft.jtitle=Indian+journal+of+physics&rft.au=Gowda%2C+R.+J.+Punith&rft.au=Rauf%2C+A.&rft.au=Naveen+Kumar%2C+R.&rft.au=Prasannakumara%2C+B.+C.&rft.date=2022-06-01&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=96&rft.issue=7&rft.spage=2041&rft.epage=2049&rft_id=info:doi/10.1007%2Fs12648-021-02153-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12648_021_02153_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |