Seismic risk and resilience analysis of networked industrial facilities
Industrial facilities, as an essential part of socio-economic systems, are susceptible to disruptions caused by earthquakes. Such disruptions may result from direct structural damage to facilities or their loss of functionality due to impacts on their support facilities and infrastructure systems. D...
Saved in:
Published in | Bulletin of earthquake engineering Vol. 22; no. 1; pp. 255 - 276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industrial facilities, as an essential part of socio-economic systems, are susceptible to disruptions caused by earthquakes. Such disruptions may result from direct structural damage to facilities or their loss of functionality due to impacts on their support facilities and infrastructure systems. Decisions to improve the seismic performance of industrial facilities should ideally be informed by risk (and resilience) analysis, taking into account their loss of functionality and the following recovery under the influence of various sources of uncertainty. Rather than targeting specific individual facilities like a hazardous chemical plant, our objective is to quantify the resilience of interacting industrial facilities (i.e., networked industrial facilities) in the face of uncertain seismic events while accounting for their functional dependencies on infrastructure systems. A specific facility, such as a hazardous chemical plant, can be a compound node in the network representation, interacting with other facilities and their supporting infrastructure components. In this context, a compound node is a complex system in its own right. To this end, this paper proposes a formulation to model the functionality of interacting industrial facilities and infrastructure using a system of coupled differential equations, representing dynamic processes on interdependent networked systems. The equations are subject to uncertain initial conditions and have uncertain coefficients, capturing the effects of uncertainties in earthquake intensity measures, structural damage, and post-disaster recovery process. The paper presents a computationally tractable approach to quantify and propagate various sources of uncertainty through the formulated equations. It also discusses the recovery of damaged industrial facilities and infrastructure components under resource and implementation constraints. The effects of changes in structural properties and networks’ connectivity are incorporated into the governing equations to model networks’ functionality recovery and quantify their resilience. The paper illustrates the proposed approach for the seismic resilience analysis of a hypothetical but realistic shipping company in the city of Memphis in Tennessee, United States. The example models the effects of dependent water and power infrastructure systems on the functionality disruption and recovery of networked industrial facilities subject to seismic hazards. |
---|---|
AbstractList | Industrial facilities, as an essential part of socio-economic systems, are susceptible to disruptions caused by earthquakes. Such disruptions may result from direct structural damage to facilities or their loss of functionality due to impacts on their support facilities and infrastructure systems. Decisions to improve the seismic performance of industrial facilities should ideally be informed by risk (and resilience) analysis, taking into account their loss of functionality and the following recovery under the influence of various sources of uncertainty. Rather than targeting specific individual facilities like a hazardous chemical plant, our objective is to quantify the resilience of interacting industrial facilities (i.e., networked industrial facilities) in the face of uncertain seismic events while accounting for their functional dependencies on infrastructure systems. A specific facility, such as a hazardous chemical plant, can be a compound node in the network representation, interacting with other facilities and their supporting infrastructure components. In this context, a compound node is a complex system in its own right. To this end, this paper proposes a formulation to model the functionality of interacting industrial facilities and infrastructure using a system of coupled differential equations, representing dynamic processes on interdependent networked systems. The equations are subject to uncertain initial conditions and have uncertain coefficients, capturing the effects of uncertainties in earthquake intensity measures, structural damage, and post-disaster recovery process. The paper presents a computationally tractable approach to quantify and propagate various sources of uncertainty through the formulated equations. It also discusses the recovery of damaged industrial facilities and infrastructure components under resource and implementation constraints. The effects of changes in structural properties and networks’ connectivity are incorporated into the governing equations to model networks’ functionality recovery and quantify their resilience. The paper illustrates the proposed approach for the seismic resilience analysis of a hypothetical but realistic shipping company in the city of Memphis in Tennessee, United States. The example models the effects of dependent water and power infrastructure systems on the functionality disruption and recovery of networked industrial facilities subject to seismic hazards. |
Author | Gardoni, Paolo Sharma, Neetesh Tabandeh, Armin |
Author_xml | – sequence: 1 givenname: Armin orcidid: 0000-0003-3662-6569 surname: Tabandeh fullname: Tabandeh, Armin email: tabande2@illinois.edu organization: Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign – sequence: 2 givenname: Neetesh surname: Sharma fullname: Sharma, Neetesh organization: Department of Civil and Environmental Engineering, Stanford University – sequence: 3 givenname: Paolo surname: Gardoni fullname: Gardoni, Paolo organization: Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqPJptlkj1K0CgUPKngL2XxI2m22ZlKk_95tVxA89DQz8D7DyzNBo9hFh9A1JbeUEHEHlHAqMSkZJlSUEvMzNKZcMExnvBodd4JFRT8u0ARgRUjJRU3GaPHqAmyCKVKAdaGjLZKD0AYXjetP3e4hQNH5Irr83aW1s0WIdgc5Bd0WXps-m4ODS3TudQvu6ndO0fvjw9v8CS9fFs_z-yU2jNYZCy89s5JRK6Q1TNrGV6IyJXFMN5JpynXTVLPaSF5SUxPPreekYYZXtrFasCm6Gf5uU_e1c5DVqtulvieosu5VzEjNDik5pEzqAJLzyoSsc-hiTjq0ihJ10KYGbarXpo7aFO_R8h-6TWGj0_40xAYI-nD8dOmv1QnqB9PNgrM |
CitedBy_id | crossref_primary_10_1007_s43452_024_00874_0 crossref_primary_10_1016_j_ress_2025_110807 crossref_primary_10_3390_geosciences15030082 crossref_primary_10_1016_j_ress_2024_110086 crossref_primary_10_1061_AJRUA6_RUENG_1307 crossref_primary_10_1016_j_ress_2024_110186 crossref_primary_10_1016_j_eswa_2024_123962 crossref_primary_10_1016_j_ress_2024_110792 crossref_primary_10_1016_j_cscm_2024_e03827 crossref_primary_10_1007_s10518_024_01879_z crossref_primary_10_1002_eqe_4198 crossref_primary_10_1007_s10518_023_01799_4 |
Cites_doi | 10.1061/(ASCE)0733-9399(2002)128:10(1024) 10.1111/mice.12606 10.1080/23789689.2021.2000146 10.3133/ofr20141091 10.1016/j.ress.2021.108208 10.1007/s10518-020-00960-7 10.1061/(ASCE)0733-9496(1988)114:3(276) 10.1061/(ASCE)NH.1527-6996.0000535 10.48550/arXiv.1707.09913 10.1061/(ASCE)1076-0342(1998)4:3(118) 10.1016/j.ress.2021.108074 10.1016/j.strusafe.2018.01.001 10.1002/eqe.2506 10.1115/1.4040804 10.1061/AJRUA6.0000939 10.3389/frsus.2020.595961 10.1193/1.2791001 10.1016/j.strusafe.2020.101999 10.1016/j.ijdrr.2019.101163 10.2172/1376816 10.1016/j.ress.2021.108042 10.4171/EMSS/2 10.1007/s10518-016-0077-3 10.1093/oso/9780198805090.001.0001 10.1016/j.apm.2007.10.023 10.1073/pnas.1517384113 10.1115/PVP2015-45374 10.1016/j.ijdrr.2020.101855 10.1142/5807 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s10518-023-01728-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1456 |
EndPage | 276 |
ExternalDocumentID | 10_1007_s10518_023_01728_5 |
GrantInformation_xml | – fundername: National Institute of Standards and Technology grantid: 70NANB15H044 funderid: http://dx.doi.org/10.13039/100000161 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6J9 6NX 7XC 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U SOI |
ID | FETCH-LOGICAL-c319t-7f8f3d831d78dc38dbf676c20e3ab83a15abb649c8521c90f5df50b3c56dbda73 |
IEDL.DBID | BENPR |
ISSN | 1570-761X |
IngestDate | Wed Sep 03 14:40:33 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Tue Jul 01 01:42:16 EDT 2025 Fri Feb 21 02:40:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Networked systems Uncertainty propagation Seismic resilience Functionality Reliability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7f8f3d831d78dc38dbf676c20e3ab83a15abb649c8521c90f5df50b3c56dbda73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3662-6569 |
PQID | 2910040937 |
PQPubID | 55380 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2910040937 crossref_citationtrail_10_1007_s10518_023_01728_5 crossref_primary_10_1007_s10518_023_01728_5 springer_journals_10_1007_s10518_023_01728_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | Official Publication of the European Association for Earthquake Engineering |
PublicationTitle | Bulletin of earthquake engineering |
PublicationTitleAbbrev | Bull Earthquake Eng |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | BressanAČanićSGaravelloMHertyMPiccoliBFlows on networks: recent results and perspectivesEMS Surv Math Sci2014114711110.4171/EMSS/2 BishopCPattern recognition and machine learning2006New York, NYSpringer-Verlag Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N, Chen R, Rukstales KS, Luco N, Wheeler RL, Williams RA, Olsen AH (2014). Documentation for the 2014 update of the United States national seismic hazard maps. Technical report, US Geological Survey Open-File Report 2014-1091 VanmarckeERandom fields: analysis and synthesis2010SingaporeWorld Scientific10.1142/5807 GuckenheimerJHolmesPNonlinear oscillations, dynamical systems, and bifurcations of vector fields2013BerlinSpringer Klise, K. A, Hart, D, Moriarty, D, Bynum, M. L, Murray, R, Burkhardt, J, and Haxton, T. (2017). Water network tool for resilience (WNTR) user manual. Technical Report SAND2017–8883R, Sandia National Laboratories (SNL-NM), Albuquerque, NM, USA KrausmannEGirginSNecciANatural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicatorsInt J Disaster Risk Reduct20194010.1016/j.ijdrr.2019.101163 IannaconeLGardoniPPhysics-based repair rate curves for segmented pipelines subject to seismic excitationsSustain Resil Infrastruct202210.1080/23789689.2021.2000146 GardoniPERoutledge handbook of sustainable and resilient infrastructure2019Routledge GrigoriuMReduced order models for random functions. application to stochastic problemsAppl Math Model200933116117510.1016/j.apm.2007.10.023 MeansRSBuilding construction costs book2016Kingston, MAConstruction publishers and consultants Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. In: Proceedings of the National Academy of Sciences 113(15):3932–3937 GardoniPERisk and reliability analysis: theory and applications2017BerlinSpringer Sharma N, Gardoni P (2019a). Mathematical modeling of interdependent infrastructure: an object-oriented approach for generalized network-system analysis. Reliability Engineering & System Safety. page (submitted) BSSC (2015). Nehrp recommended seismic provisions for new buildings and other structures, volume 1: Part 1 provisions, part 2 commentary. Technical report, FEMA P-1050-1, Washington, DC, USA Caputo, A. C, Giannini, R, and Paolacci, F. (2015). Quantitative seismic risk assessment of process plants: state of the art review and directions for future research. In: ASME 2015 pressure vessels and piping conference, Boston, Massachusetts, USA. American Society of Mechanical Engineers CaputoACPaolacciFBursiOSGianniniRProblems and perspectives in seismic quantitative risk analysis of chemical process plantsJ Press Vessel Technol2019141110.1115/1.4040804 NewmanMNetworks2018OxfordOxford University Press10.1093/oso/9780198805090.001.0001 ChristouVBocchiniPMirandaMJKaramlouAEffective sampling of spatially correlated intensity maps using hazard quantization: application to seismic eventsASCE-ASME J Risk Uncertain Eng Syst, Part A: Civil Eng2018410401703510.1061/AJRUA6.0000939 JiaGGardoniPState-dependent stochastic models: a general stochastic framework for modeling deteriorating engineering systems considering multiple deterioration processes and their interactionsStruct Saf2018729911010.1016/j.strusafe.2018.01.001 Thompson EM, Wald DJ, Worden B, Field N, Luco N, Petersen MD, Powers PM, Badie R (2016) Shakemap earthquake scenario: building seismic safety council 2014 event set (BSSC2014). Technical report, US Geological Survey Digital Object Identifier Catalog El-HalwagiMMSenguptaDPistikopoulosENSammonsJEljackFKaziM-KDisaster-resilient design of manufacturing facilities through process integration: principal strategies, perspectives, and research challengesFront Sustain2020110.3389/frsus.2020.595961 IannaconeLSharmaNTabandehAGardoniPModeling time-varying reliability and resilience of deteriorating infrastructureReliab Eng Syst Saf202221710.1016/j.ress.2021.108074 MillerMBakerJWGround-motion intensity and damage map selection for probabilistic infrastructure network risk assessment using optimizationEarthqe Eng Struct Dyn20154471139115610.1002/eqe.2506 Steelman J, Hajjar JF (2008). Capstone scenario applications of consequence-based risk management for the memphis testbed. Technical report, University of Illinois Urbana-Champaign, Urbana, IL LeeRKiremidjianASUncertainty and correlation for loss assessment of spatially distributed systemsEarthq Spectra200723475377010.1193/1.2791001 XuHGardoniPMulti-level, multi-variate, non-stationary, random field modeling and fragility analysis of engineering systemsStruct Saf20208710.1016/j.strusafe.2020.101999 TabandehASharmaNGardoniPUncertainty propagation in risk and resilience analysis of hierarchical systemsReliab Eng Syst Saf202221910.1016/j.ress.2021.108208 HwangHHLinHShinozukaMSeismic performance assessment of water delivery systemsJ Infrastruct Syst19984311812510.1061/(ASCE)1076-0342(1998)4:3(118) KumasakiMKingMThree cases in Japan occurred by natural hazards and lessons for Natech disaster managementInt J Disaster Risk Reduct20205110.1016/j.ijdrr.2020.101855 Ballantyne DB, Berg E, Kennedy J, Reneau R, Wu D (1990) Earthquake loss estimation modeling of the seattle water system. Technical report, Kennedy/Jenks/Chilton, Federal Way, WA SharmaNGardoniPMathematical modeling of interdependent infrastructure: an object-oriented approach for generalized network-system analysisReliab Eng Syst Saf202221710.1016/j.ress.2021.108042 Sharma N, Gardoni P(2019b). Promoting resilient interdependent infrastructure: the role of strategic recovery scheduling. Computer-aided civil and infrastructure engineering, (in preparation) GardoniPDer KiureghianAMosalamKProbabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observationsJ Eng Mech2002128101024103810.1061/(ASCE)0733-9399(2002)128:10(1024) WagnerJMShamirUMarksDHWater distribution reliability: simulation methodsJ Water Resour Plan Manag1988114327629410.1061/(ASCE)0733-9496(1988)114:3(276) PhanHNPaolacciFDi FilippoRBursiOSSeismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regressionBull Earthq Eng2020186883690610.1007/s10518-020-00960-7 KongarIGiovinazziSRossettoTSeismic performance of buried electrical cables: evidence-based repair rates and fragility functionsBull Earthq Eng2017153151318110.1007/s10518-016-0077-3 Sharma, N, Tabandeh A, Gardoni P (2019). Resilience-informed recovery optimization: a multi-scale formulation for interdependent infrastructure. Computer-aided civil and infrastructure engineering, (in preparation) BrownTHörschJSchlachtbergerDPyPSA: python for power system analysisJ Open Res Softw201710.48550/arXiv.1707.09913 EllingwoodBRWangNHarrisJRMcAllisterTPGardoniPPerformance-based engineering to achieve community resilienceHandbook of sustainable and resilient infrastructure2019Routledge94112 SharmaNTabandehAGardoniPRegional resilience analysis: a multiscale approach to optimize the resilience of interdependent infrastructureComput-Aided Civil Infrastruct Eng202035121315133010.1111/mice.12606 FEMA (2014). Multi-hazard loss estimation methodology: earthquake model HAZUS-MH 2.1 technical manual. Technical report, Federal Emergency Management Agency, Washington, DC AngAH-STangWHProbability concepts in engineering planning and design: emphasis on applications in cvil & environmental engineering2007New York, NYWiley Eidinger J, Avila E, Ballantyne D, Cheng L, Der Kiureghian A, Maison B, O’Rourke T, Power M (2001) Seismic fragility formulations for water systems, part 1: Guideline. Technical report, American Lifelines Alliance, Reston, VA, USA SunWBocchiniPDavisonBDOverview of interdependency models of critical infrastructure for resilience assessmentNat Hazard Rev20222310402105810.1061/(ASCE)NH.1527-6996.0000535 AH-S Ang (1728_CR1) 2007 PE Gardoni (1728_CR16) 2019 L Iannacone (1728_CR21) 2022 AC Caputo (1728_CR9) 2019; 141 BR Ellingwood (1728_CR13) 2019 N Sharma (1728_CR36) 2020; 35 P Gardoni (1728_CR17) 2002; 128 M Grigoriu (1728_CR18) 2009; 33 J Guckenheimer (1728_CR19) 2013 H Xu (1728_CR45) 2020; 87 E Krausmann (1728_CR26) 2019; 40 1728_CR39 MM El-Halwagi (1728_CR12) 2020; 1 M Newman (1728_CR30) 2018 1728_CR34 V Christou (1728_CR10) 2018; 4 1728_CR11 1728_CR31 1728_CR38 1728_CR37 1728_CR14 A Bressan (1728_CR4) 2014; 1 PE Gardoni (1728_CR15) 2017 G Jia (1728_CR23) 2018; 72 N Sharma (1728_CR35) 2022; 217 HN Phan (1728_CR32) 2020; 18 E Vanmarcke (1728_CR43) 2010 W Sun (1728_CR40) 2022; 23 T Brown (1728_CR5) 2017 R Lee (1728_CR28) 2007; 23 L Iannacone (1728_CR22) 2022; 217 C Bishop (1728_CR3) 2006 1728_CR2 M Kumasaki (1728_CR27) 2020; 51 M Miller (1728_CR29) 2015; 44 1728_CR8 1728_CR7 JM Wagner (1728_CR44) 1988; 114 1728_CR6 HH Hwang (1728_CR20) 1998; 4 RS Means (1728_CR33) 2016 A Tabandeh (1728_CR41) 2022; 219 1728_CR42 I Kongar (1728_CR25) 2017; 15 1728_CR24 |
References_xml | – reference: GardoniPERisk and reliability analysis: theory and applications2017BerlinSpringer – reference: Eidinger J, Avila E, Ballantyne D, Cheng L, Der Kiureghian A, Maison B, O’Rourke T, Power M (2001) Seismic fragility formulations for water systems, part 1: Guideline. Technical report, American Lifelines Alliance, Reston, VA, USA – reference: Sharma, N, Tabandeh A, Gardoni P (2019). Resilience-informed recovery optimization: a multi-scale formulation for interdependent infrastructure. Computer-aided civil and infrastructure engineering, (in preparation) – reference: Sharma N, Gardoni P (2019a). Mathematical modeling of interdependent infrastructure: an object-oriented approach for generalized network-system analysis. Reliability Engineering & System Safety. page (submitted) – reference: PhanHNPaolacciFDi FilippoRBursiOSSeismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regressionBull Earthq Eng2020186883690610.1007/s10518-020-00960-7 – reference: Steelman J, Hajjar JF (2008). Capstone scenario applications of consequence-based risk management for the memphis testbed. Technical report, University of Illinois Urbana-Champaign, Urbana, IL – reference: VanmarckeERandom fields: analysis and synthesis2010SingaporeWorld Scientific10.1142/5807 – reference: SharmaNTabandehAGardoniPRegional resilience analysis: a multiscale approach to optimize the resilience of interdependent infrastructureComput-Aided Civil Infrastruct Eng202035121315133010.1111/mice.12606 – reference: EllingwoodBRWangNHarrisJRMcAllisterTPGardoniPPerformance-based engineering to achieve community resilienceHandbook of sustainable and resilient infrastructure2019Routledge94112 – reference: AngAH-STangWHProbability concepts in engineering planning and design: emphasis on applications in cvil & environmental engineering2007New York, NYWiley – reference: JiaGGardoniPState-dependent stochastic models: a general stochastic framework for modeling deteriorating engineering systems considering multiple deterioration processes and their interactionsStruct Saf2018729911010.1016/j.strusafe.2018.01.001 – reference: BrownTHörschJSchlachtbergerDPyPSA: python for power system analysisJ Open Res Softw201710.48550/arXiv.1707.09913 – reference: MillerMBakerJWGround-motion intensity and damage map selection for probabilistic infrastructure network risk assessment using optimizationEarthqe Eng Struct Dyn20154471139115610.1002/eqe.2506 – reference: GardoniPDer KiureghianAMosalamKProbabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observationsJ Eng Mech2002128101024103810.1061/(ASCE)0733-9399(2002)128:10(1024) – reference: KongarIGiovinazziSRossettoTSeismic performance of buried electrical cables: evidence-based repair rates and fragility functionsBull Earthq Eng2017153151318110.1007/s10518-016-0077-3 – reference: Sharma N, Gardoni P(2019b). Promoting resilient interdependent infrastructure: the role of strategic recovery scheduling. Computer-aided civil and infrastructure engineering, (in preparation) – reference: GardoniPERoutledge handbook of sustainable and resilient infrastructure2019Routledge – reference: Klise, K. A, Hart, D, Moriarty, D, Bynum, M. L, Murray, R, Burkhardt, J, and Haxton, T. (2017). Water network tool for resilience (WNTR) user manual. Technical Report SAND2017–8883R, Sandia National Laboratories (SNL-NM), Albuquerque, NM, USA – reference: BishopCPattern recognition and machine learning2006New York, NYSpringer-Verlag – reference: KrausmannEGirginSNecciANatural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicatorsInt J Disaster Risk Reduct20194010.1016/j.ijdrr.2019.101163 – reference: FEMA (2014). Multi-hazard loss estimation methodology: earthquake model HAZUS-MH 2.1 technical manual. Technical report, Federal Emergency Management Agency, Washington, DC – reference: MeansRSBuilding construction costs book2016Kingston, MAConstruction publishers and consultants – reference: LeeRKiremidjianASUncertainty and correlation for loss assessment of spatially distributed systemsEarthq Spectra200723475377010.1193/1.2791001 – reference: CaputoACPaolacciFBursiOSGianniniRProblems and perspectives in seismic quantitative risk analysis of chemical process plantsJ Press Vessel Technol2019141110.1115/1.4040804 – reference: ChristouVBocchiniPMirandaMJKaramlouAEffective sampling of spatially correlated intensity maps using hazard quantization: application to seismic eventsASCE-ASME J Risk Uncertain Eng Syst, Part A: Civil Eng2018410401703510.1061/AJRUA6.0000939 – reference: IannaconeLGardoniPPhysics-based repair rate curves for segmented pipelines subject to seismic excitationsSustain Resil Infrastruct202210.1080/23789689.2021.2000146 – reference: GuckenheimerJHolmesPNonlinear oscillations, dynamical systems, and bifurcations of vector fields2013BerlinSpringer – reference: SunWBocchiniPDavisonBDOverview of interdependency models of critical infrastructure for resilience assessmentNat Hazard Rev20222310402105810.1061/(ASCE)NH.1527-6996.0000535 – reference: Caputo, A. C, Giannini, R, and Paolacci, F. (2015). Quantitative seismic risk assessment of process plants: state of the art review and directions for future research. In: ASME 2015 pressure vessels and piping conference, Boston, Massachusetts, USA. American Society of Mechanical Engineers – reference: El-HalwagiMMSenguptaDPistikopoulosENSammonsJEljackFKaziM-KDisaster-resilient design of manufacturing facilities through process integration: principal strategies, perspectives, and research challengesFront Sustain2020110.3389/frsus.2020.595961 – reference: BressanAČanićSGaravelloMHertyMPiccoliBFlows on networks: recent results and perspectivesEMS Surv Math Sci2014114711110.4171/EMSS/2 – reference: KumasakiMKingMThree cases in Japan occurred by natural hazards and lessons for Natech disaster managementInt J Disaster Risk Reduct20205110.1016/j.ijdrr.2020.101855 – reference: HwangHHLinHShinozukaMSeismic performance assessment of water delivery systemsJ Infrastruct Syst19984311812510.1061/(ASCE)1076-0342(1998)4:3(118) – reference: IannaconeLSharmaNTabandehAGardoniPModeling time-varying reliability and resilience of deteriorating infrastructureReliab Eng Syst Saf202221710.1016/j.ress.2021.108074 – reference: Ballantyne DB, Berg E, Kennedy J, Reneau R, Wu D (1990) Earthquake loss estimation modeling of the seattle water system. Technical report, Kennedy/Jenks/Chilton, Federal Way, WA – reference: TabandehASharmaNGardoniPUncertainty propagation in risk and resilience analysis of hierarchical systemsReliab Eng Syst Saf202221910.1016/j.ress.2021.108208 – reference: Thompson EM, Wald DJ, Worden B, Field N, Luco N, Petersen MD, Powers PM, Badie R (2016) Shakemap earthquake scenario: building seismic safety council 2014 event set (BSSC2014). Technical report, US Geological Survey Digital Object Identifier Catalog – reference: Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. In: Proceedings of the National Academy of Sciences 113(15):3932–3937 – reference: GrigoriuMReduced order models for random functions. application to stochastic problemsAppl Math Model200933116117510.1016/j.apm.2007.10.023 – reference: Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N, Chen R, Rukstales KS, Luco N, Wheeler RL, Williams RA, Olsen AH (2014). Documentation for the 2014 update of the United States national seismic hazard maps. Technical report, US Geological Survey Open-File Report 2014-1091 – reference: SharmaNGardoniPMathematical modeling of interdependent infrastructure: an object-oriented approach for generalized network-system analysisReliab Eng Syst Saf202221710.1016/j.ress.2021.108042 – reference: BSSC (2015). Nehrp recommended seismic provisions for new buildings and other structures, volume 1: Part 1 provisions, part 2 commentary. Technical report, FEMA P-1050-1, Washington, DC, USA – reference: NewmanMNetworks2018OxfordOxford University Press10.1093/oso/9780198805090.001.0001 – reference: XuHGardoniPMulti-level, multi-variate, non-stationary, random field modeling and fragility analysis of engineering systemsStruct Saf20208710.1016/j.strusafe.2020.101999 – reference: WagnerJMShamirUMarksDHWater distribution reliability: simulation methodsJ Water Resour Plan Manag1988114327629410.1061/(ASCE)0733-9496(1988)114:3(276) – start-page: 94 volume-title: Handbook of sustainable and resilient infrastructure year: 2019 ident: 1728_CR13 – volume: 128 start-page: 1024 issue: 10 year: 2002 ident: 1728_CR17 publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024) – volume: 35 start-page: 1315 issue: 12 year: 2020 ident: 1728_CR36 publication-title: Comput-Aided Civil Infrastruct Eng doi: 10.1111/mice.12606 – year: 2022 ident: 1728_CR21 publication-title: Sustain Resil Infrastruct doi: 10.1080/23789689.2021.2000146 – ident: 1728_CR31 doi: 10.3133/ofr20141091 – volume: 219 year: 2022 ident: 1728_CR41 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108208 – volume: 18 start-page: 6883 year: 2020 ident: 1728_CR32 publication-title: Bull Earthq Eng doi: 10.1007/s10518-020-00960-7 – volume: 114 start-page: 276 issue: 3 year: 1988 ident: 1728_CR44 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(1988)114:3(276) – ident: 1728_CR2 – ident: 1728_CR39 – volume: 23 start-page: 04021058 issue: 1 year: 2022 ident: 1728_CR40 publication-title: Nat Hazard Rev doi: 10.1061/(ASCE)NH.1527-6996.0000535 – ident: 1728_CR34 – ident: 1728_CR14 – ident: 1728_CR38 – volume-title: Risk and reliability analysis: theory and applications year: 2017 ident: 1728_CR15 – year: 2017 ident: 1728_CR5 publication-title: J Open Res Softw doi: 10.48550/arXiv.1707.09913 – volume: 4 start-page: 118 issue: 3 year: 1998 ident: 1728_CR20 publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)1076-0342(1998)4:3(118) – volume: 217 year: 2022 ident: 1728_CR22 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108074 – volume-title: Pattern recognition and machine learning year: 2006 ident: 1728_CR3 – volume: 72 start-page: 99 year: 2018 ident: 1728_CR23 publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.01.001 – volume: 44 start-page: 1139 issue: 7 year: 2015 ident: 1728_CR29 publication-title: Earthqe Eng Struct Dyn doi: 10.1002/eqe.2506 – volume: 141 issue: 1 year: 2019 ident: 1728_CR9 publication-title: J Press Vessel Technol doi: 10.1115/1.4040804 – ident: 1728_CR7 – volume: 4 start-page: 04017035 issue: 1 year: 2018 ident: 1728_CR10 publication-title: ASCE-ASME J Risk Uncertain Eng Syst, Part A: Civil Eng doi: 10.1061/AJRUA6.0000939 – volume: 1 year: 2020 ident: 1728_CR12 publication-title: Front Sustain doi: 10.3389/frsus.2020.595961 – volume: 23 start-page: 753 issue: 4 year: 2007 ident: 1728_CR28 publication-title: Earthq Spectra doi: 10.1193/1.2791001 – volume: 87 year: 2020 ident: 1728_CR45 publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.101999 – volume: 40 year: 2019 ident: 1728_CR26 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2019.101163 – volume-title: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields year: 2013 ident: 1728_CR19 – volume-title: Probability concepts in engineering planning and design: emphasis on applications in cvil & environmental engineering year: 2007 ident: 1728_CR1 – ident: 1728_CR24 doi: 10.2172/1376816 – ident: 1728_CR37 – volume: 217 year: 2022 ident: 1728_CR35 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108042 – volume: 1 start-page: 47 issue: 1 year: 2014 ident: 1728_CR4 publication-title: EMS Surv Math Sci doi: 10.4171/EMSS/2 – ident: 1728_CR11 – volume: 15 start-page: 3151 year: 2017 ident: 1728_CR25 publication-title: Bull Earthq Eng doi: 10.1007/s10518-016-0077-3 – volume-title: Networks year: 2018 ident: 1728_CR30 doi: 10.1093/oso/9780198805090.001.0001 – volume: 33 start-page: 161 issue: 1 year: 2009 ident: 1728_CR18 publication-title: Appl Math Model doi: 10.1016/j.apm.2007.10.023 – ident: 1728_CR6 doi: 10.1073/pnas.1517384113 – volume-title: Building construction costs book year: 2016 ident: 1728_CR33 – ident: 1728_CR8 doi: 10.1115/PVP2015-45374 – volume: 51 year: 2020 ident: 1728_CR27 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2020.101855 – volume-title: Routledge handbook of sustainable and resilient infrastructure year: 2019 ident: 1728_CR16 – ident: 1728_CR42 – volume-title: Random fields: analysis and synthesis year: 2010 ident: 1728_CR43 doi: 10.1142/5807 |
SSID | ssj0025790 |
Score | 2.4225755 |
Snippet | Industrial facilities, as an essential part of socio-economic systems, are susceptible to disruptions caused by earthquakes. Such disruptions may result from... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 255 |
SubjectTerms | Analysis Chemical industry Chemical plants Civil Engineering Coefficients Complex systems Components Differential equations Disaster recovery Earth and Environmental Science Earth Sciences Earthquake damage Earthquake resistance Earthquakes Economic systems Environmental Engineering/Biotechnology Environmental risk Geological hazards Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Impact damage Industrial plants Infrastructure Initial conditions Mathematical models Recovery Resilience Risk analysis S.I. : Natech Risk Assessment of Hazardous Facilities Seismic activity Seismic hazard Seismic response Shipping Socioeconomic aspects Structural damage Structural Geology Uncertainty |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1hf5OBNA9nNc49FrEXQixZ6W_KEhboVW_-_SXa3raKCx2WzOXyZ2Xlk5hsArjgtSHTbkfGZRpRTjpTmFHmneEzmFzh1eD8-8dGYPkzYpG0Km3fV7t2VZPpTrzW7sUyiYGNQjFskYptgi8XYPUjxOB8swywmUmYlYwKjEKRP2laZn_f4ao5WPua3a9FkbYZ7YLd1E-GgOdd9sOHqA7CzRh54CO6fXTV_rQyM1eFQ1RaGyLmaJlUNjw3XCJx5WDeV3s7CajmnA3plYlVsiJOPwHh493I7Qu1YBGSCviyQ8NITK0lmhbSGSKs9F9zk2BGlJVEZUzrAXRgZTLMpsGfWM6yJYdxqqwQ5Br16VrsTAIPOeeeENxY7amiuVVF4zKQw1nMseB9kHTqlaTnD4-iKabliO46IlgHRMiFasj64Xn7z1jBm_Ln6vAO9bLVnXuZF5LHDwXPqg5vuIFavf9_t9H_Lz8B2kB_aZFTOQW_x_uEugo-x0JdJpD4By_fHCA priority: 102 providerName: Springer Nature |
Title | Seismic risk and resilience analysis of networked industrial facilities |
URI | https://link.springer.com/article/10.1007/s10518-023-01728-5 https://www.proquest.com/docview/2910040937 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBfGK1lhy8aXBfeexJqrQVRRG1UE9LnlDQrdr6_01201YFPe4rh292MvNN5gFwTLM89W47VjaWOKMZxULSDFsjqA_m51FV4X17R6-G2fWIjELAbRrSKud7YrVR64nyMfKzJPe9zRz_Zudv79hPjfKnq2GExio03RbMHflqXvTu7h8WlIuwKsoSExZhR9hHoWwmFM-RmGNns7DnQRyTn6Zp6W_-OiKtLE9_EzaCy4i6tYy3YMWU27D-rZHgDgwezXj6OlbIZ4ojUWrkWPT4pVJbd1n3HUETi8o669toNF7M7EBWKJ8h6zjzLgz7vafLKxxGJGDldGeGmeU21TyNNeNapVxLSxlVSWRSIXkqYiKkgz5X3JlplUeWaEsimSpCtdSCpXvQKCel2Qfk9M8aw6zSkclUlkiR5zYinCltacRoC-I5OoUK_cP9GIuXYtn52CNaOESLCtGCtOBk8c1b3T3j37fbc9CLoEnTYin3FpzOBbF8_PdqB_-vdghrifNP6mhKGxqzj09z5PyLmezAKu8POtDsDp5vep3wS7m7w6T7BQ9fztw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH4CegAOiFIQYWnnUE5lhO3xLD5UCLVNQkm4FKTczKxSpOAACUL8KX5jZ7wkFKnccrTsGVnfvH3eAvCVpRkJZjvWLlY4ZSnDUrEUOytZCOZnUVnh3b9k3ev094AOluClqYUJaZWNTCwFtRnrECM_SbLQ28z73_z07h6HqVHhdrUZoVGRxYV9fvIu2-T7-U9_vkdJ0v519aOL66kCWHtym2LuhCNGkNhwYTQRRjnGmU4iS6QSRMZUKv-3mRZes-ksctQ4GimiKTPKSE78vsvwISUkCxwl2p2Zg0d5GdOJKY8wZ_GgLtKpS_VoLLDXkDh4XQLTfxXh3Lp9cyFb6rn2JmzUBio6qyjqIyzZYgvWX7Ut_ASdP3Y4uR1qFPLSkSwM8j77cFQKCf9YdTlBY4eKKsfcGjScTQhBTuqQj-s99G24Xgh0O7BSjAu7C8hzu7OWO20im-o0UTLLXEQF18axiLMWxA06ua67lYehGaN83mc5IJp7RPMS0Zy24NtszV3Vq-Pdrw8a0POabyf5nMpacNwcxPz1_3fbe3-3L7Daver38t755cU-rCXeMqriOAewMn14tIfespmqzyU5IbhZNP3-BSjmCFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhA9EBSMi4h90BN06Hn0Yw7GyGMF0Q0RSfY29jPZZJ0Fd4nxr_nrrJ7HrprIjeNkpjuT6q-76quuB8ArkRdZNNupDYmhucgF1UbkNHgtojO_YHWG96ehOL3KP4z4aAV-dbkwMayyOxPrg9pNbfSRH6RFrG2G_FsehDYs4uJ48Pb6hsYOUvGmtWun0UDk3P_8gfRt9ubsGNf6dZoOTr4cndK2wwC1CL05lUGFzKkscVI5mylngpDCpsxn2qhMJ1wb_PPCKtRytmCBu8CZySwXzjgtM5z3AaxKZEWsB6uHJ8OLzwu6x2Xt4Um4ZFSKZNSm7LSJezxRFPUljRxMUf63Wlzauv9cz9Zab7AB6625St41-HoMK756Ao_-KGK4Ce8v_Xj2bWxJjFInunIEGfx4Uh8Z-NjUPCHTQKom4tw7Ml70CyFB2xidi3x9C67uRXhPoVdNK_8MCO794L0M1jGf2zw1uigC40paFwSTog9JJ53StrXLYwuNSbmsuhwlWqJEy1qiJe_D3mLMdVO5486vdzqhl-0unpVLzPVhv1uI5ev_z7Z992wvYQ2xW348G54_h4cpmkmNU2cHevPvt_4Fmjlzs9viicDX-4bwb9veDew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+risk+and+resilience+analysis+of+networked+industrial+facilities&rft.jtitle=Bulletin+of+earthquake+engineering&rft.au=Tabandeh%2C+Armin&rft.au=Sharma%2C+Neetesh&rft.au=Gardoni%2C+Paolo&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1570-761X&rft.eissn=1573-1456&rft.volume=22&rft.issue=1&rft.spage=255&rft.epage=276&rft_id=info:doi/10.1007%2Fs10518-023-01728-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-761X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-761X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-761X&client=summon |