Human action recognition using fusion of multiview and deep features: an application to video surveillance
Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this articl...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 5; pp. 14885 - 14911 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this article, a new fully automated scheme is proposed for Human action recognition by fusion of deep neural network (DNN) and multiview features. The DNN features are initially extracted by employing a pre-trained CNN model name VGG19. Subsequently, multiview features are computed from horizontal and vertical gradients, along with vertical directional features. Afterwards, all features are combined in order to select the best features. The best features are selected by employing three parameters i.e. relative entropy, mutual information, and strong correlation coefficient (SCC). Furthermore, these parameters are used for selection of best subset of features through a higher probability based threshold function. The final selected features are provided to Naive Bayes classifier for final recognition. The proposed scheme is tested on five datasets name HMDB51, UCF Sports, YouTube, IXMAS, and KTH and the achieved accuracy were 93.7%, 98%, 99.4%, 95.2%, and 97%, respectively. Lastly, the proposed method in this article is compared with existing techniques. The resuls shows that the proposed scheme outperforms the state of the art methods. |
---|---|
AbstractList | Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this article, a new fully automated scheme is proposed for Human action recognition by fusion of deep neural network (DNN) and multiview features. The DNN features are initially extracted by employing a pre-trained CNN model name VGG19. Subsequently, multiview features are computed from horizontal and vertical gradients, along with vertical directional features. Afterwards, all features are combined in order to select the best features. The best features are selected by employing three parameters i.e. relative entropy, mutual information, and strong correlation coefficient (SCC). Furthermore, these parameters are used for selection of best subset of features through a higher probability based threshold function. The final selected features are provided to Naive Bayes classifier for final recognition. The proposed scheme is tested on five datasets name HMDB51, UCF Sports, YouTube, IXMAS, and KTH and the achieved accuracy were 93.7%, 98%, 99.4%, 95.2%, and 97%, respectively. Lastly, the proposed method in this article is compared with existing techniques. The resuls shows that the proposed scheme outperforms the state of the art methods. |
Author | Khan, Junaid Ali Habib, Usman Javed, Kashif Saba, Tanzila Abbasi, Aaqif Afzaal Khan, Muhammad Attique Khan, Sajid Ali |
Author_xml | – sequence: 1 givenname: Muhammad Attique surname: Khan fullname: Khan, Muhammad Attique organization: Department of Computer Science, HITEC University Museum Road – sequence: 2 givenname: Kashif surname: Javed fullname: Javed, Kashif organization: Department of Robotics, SMME NUST – sequence: 3 givenname: Sajid Ali surname: Khan fullname: Khan, Sajid Ali email: sajidalibn@gmail.com organization: Department of Software Engineering, Foundation University Islamabad – sequence: 4 givenname: Tanzila surname: Saba fullname: Saba, Tanzila organization: College of Computer and Information Sciences, Prince Sultan University – sequence: 5 givenname: Usman surname: Habib fullname: Habib, Usman organization: FAST-National University of Computer & Emerging Sciences (NUCES), Chiniot-Faisalabad Campus – sequence: 6 givenname: Junaid Ali surname: Khan fullname: Khan, Junaid Ali organization: Department of Computer Science, HITEC University Museum Road – sequence: 7 givenname: Aaqif Afzaal surname: Abbasi fullname: Abbasi, Aaqif Afzaal organization: Department of Software Engineering, Foundation University Islamabad |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52CS73kT8goIXPYc0Oykp22RNdiv-e7etoHjoaWZgnvedeWdoEmIAhC4puaaEqJtMKSlZQRgpSFURWdQnaEqF4oVSjE7-9GdolvOaECoFK6do_TxsTMDG9j4GnMDGVfD7fsg-rLAbyzhEhzdD2_uth09sQoMbgA47MP2QIN_inUTXtd6aPdtHvPUNRJyHtAXftiZYOEenzrQZLn7qHL0_PrzdPxeL16eX-7tFYTmt-0I1ogJZW-LE0iq5LBVjpOS1BGedEJQLUwpCK14DNZxwunSNkI5UlrFGUsrn6Oqg26X4MUDu9ToOKYyWmtW0UlJVQo5b7LBlU8w5gdNd8huTvjQlepepPmSqx0z1PlNdj1D1D7K-37_cJ-Pb4yg_oHn0CStIv1cdob4BSnmOEg |
CitedBy_id | crossref_primary_10_3390_app12168023 crossref_primary_10_1007_s10489_021_02450_y crossref_primary_10_1109_ACCESS_2020_3039740 crossref_primary_10_1002_spe_3394 crossref_primary_10_1007_s11042_020_09485_2 crossref_primary_10_1038_s41598_024_81762_8 crossref_primary_10_26599_TST_2021_9010068 crossref_primary_10_4018_IJCVIP_296584 crossref_primary_10_1109_ACCESS_2023_3296252 crossref_primary_10_1109_ACCESS_2020_3034217 crossref_primary_10_1007_s11042_021_10811_5 crossref_primary_10_3390_rs13050912 crossref_primary_10_1007_s11265_023_01892_6 crossref_primary_10_1007_s40747_020_00244_2 crossref_primary_10_1142_S021800142256002X crossref_primary_10_1007_s00500_021_05701_9 crossref_primary_10_1007_s00521_023_08440_0 crossref_primary_10_1007_s11831_021_09681_9 crossref_primary_10_7717_peerj_cs_764 crossref_primary_10_1007_s11042_023_14508_9 crossref_primary_10_1177_01655515211022665 crossref_primary_10_1109_ACCESS_2025_3546266 crossref_primary_10_3390_s21248178 crossref_primary_10_1007_s11042_023_17810_8 crossref_primary_10_1007_s11042_020_09874_7 crossref_primary_10_1007_s11042_020_08851_4 crossref_primary_10_3389_fnbot_2024_1443432 crossref_primary_10_1007_s42979_024_03345_8 crossref_primary_10_1016_j_neucom_2020_09_035 crossref_primary_10_1109_ACCESS_2024_3498852 crossref_primary_10_1007_s13042_024_02454_3 crossref_primary_10_61506_01_00459 crossref_primary_10_1007_s00500_022_06900_8 crossref_primary_10_1177_17543371241237085 crossref_primary_10_1016_j_jvcir_2025_104441 crossref_primary_10_1007_s11042_024_20354_0 crossref_primary_10_1007_s11760_024_03510_9 crossref_primary_10_1007_s11042_020_10103_4 crossref_primary_10_1109_TCSS_2023_3249152 crossref_primary_10_3390_electronics13163301 crossref_primary_10_1109_JSTARS_2023_3249216 crossref_primary_10_3390_app10144966 crossref_primary_10_2139_ssrn_5082217 crossref_primary_10_1155_2021_5577393 crossref_primary_10_1007_s11042_021_10918_9 crossref_primary_10_1016_j_micpro_2021_104027 crossref_primary_10_1109_ACCESS_2024_3519335 crossref_primary_10_1109_TIM_2024_3374285 crossref_primary_10_1007_s11042_024_19164_1 crossref_primary_10_1007_s11042_020_08852_3 crossref_primary_10_1016_j_rcim_2022_102449 crossref_primary_10_1007_s10115_024_02122_6 crossref_primary_10_1109_ACCESS_2020_3037529 crossref_primary_10_3390_electronics11030334 crossref_primary_10_3390_electronics12173567 crossref_primary_10_1109_ACCESS_2024_3412653 crossref_primary_10_1109_ACCESS_2024_3470789 crossref_primary_10_32604_cmc_2024_056767 crossref_primary_10_1155_2021_6321860 crossref_primary_10_1007_s11227_021_04145_0 crossref_primary_10_1007_s11042_020_09408_1 crossref_primary_10_1007_s11220_020_00305_3 crossref_primary_10_1007_s13735_024_00338_4 crossref_primary_10_1109_ACCESS_2024_3473828 crossref_primary_10_1007_s00371_022_02460_y crossref_primary_10_1080_10589759_2023_2274008 crossref_primary_10_1016_j_patcog_2024_111272 crossref_primary_10_1109_ACCESS_2024_3498093 crossref_primary_10_1016_j_dsp_2024_104823 crossref_primary_10_1016_j_aej_2024_09_046 crossref_primary_10_1007_s42452_021_04821_z crossref_primary_10_3390_s24217077 crossref_primary_10_1016_j_aei_2024_102893 crossref_primary_10_1080_23311886_2025_2474863 crossref_primary_10_3390_app13116856 crossref_primary_10_1089_big_2021_0268 crossref_primary_10_1109_TIP_2023_3308750 crossref_primary_10_1016_j_knosys_2025_113232 crossref_primary_10_1007_s11042_022_13316_x crossref_primary_10_1007_s11042_024_18361_2 crossref_primary_10_1109_OJCS_2023_3334528 crossref_primary_10_1109_ACCESS_2024_3516511 crossref_primary_10_1007_s11227_021_04188_3 crossref_primary_10_1007_s11042_020_10140_z crossref_primary_10_1007_s10845_024_02518_9 crossref_primary_10_1109_TMM_2023_3313258 crossref_primary_10_1007_s00521_024_10962_0 crossref_primary_10_1016_j_dsp_2022_103487 crossref_primary_10_1109_TCSVT_2024_3470801 crossref_primary_10_3390_s25020441 crossref_primary_10_3389_fphy_2021_715465 crossref_primary_10_1109_ACCESS_2021_3132559 crossref_primary_10_1007_s11042_020_08928_0 crossref_primary_10_1016_j_patrec_2021_02_025 crossref_primary_10_1007_s11042_022_14075_5 crossref_primary_10_1007_s41870_024_01955_2 crossref_primary_10_1007_s11042_020_09937_9 crossref_primary_10_1117_1_JEI_34_2_023021 |
Cites_doi | 10.3390/s19051005 10.1109/TIP.2018.2836323 10.1504/IJAPR.2018.094815 10.1016/j.asoc.2019.105986 10.1016/j.cviu.2018.03.003 10.1109/ACCESS.2017.2675478 10.1109/TPAMI.2016.2537337 10.1016/j.cviu.2006.07.013 10.1016/j.asoc.2019.105820 10.1109/ACCESS.2018.2878601 10.1016/j.future.2019.01.029 10.1016/j.patcog.2018.01.020 10.1016/j.image.2018.09.003 10.1007/s12193-016-0229-4 10.1016/j.patcog.2019.03.002 10.1166/jmihi.2019.2611 10.1109/ACCESS.2019.2908040 10.1109/CVPR.2009.5206744 10.1007/s11760-018-1354-1 10.4018/JOEUC.2020040104 10.1016/j.patcog.2018.07.028 10.1007/s11042-018-7031-0 10.1109/ICCV.2011.6126543 10.1007/s42835-018-00012-w 10.1109/ITCE.2019.8646504 10.1109/CVPR42600.2020.00119 10.1007/s10044-019-00788-1 10.1007/s10044-019-00789-0 10.1007/978-3-030-46732-6_10 10.1109/TSMC.2018.2850149 10.1609/aaai.v31i1.11231 10.1007/s13042-019-00947-0 10.1049/iet-ipr.2018.5769 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-08806-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 14911 |
ExternalDocumentID | 10_1007_s11042_020_08806_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-7d58e69c0f5bc76b472204396efcf55135a4501839e1a3031bfd56f08c22d6113 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 22:15:42 EDT 2025 Tue Jul 01 02:07:06 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Fri Feb 21 02:41:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Human action recognition Deep features Multiview features Features fusion Recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7d58e69c0f5bc76b472204396efcf55135a4501839e1a3031bfd56f08c22d6113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918767856 |
PQPubID | 54626 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2918767856 crossref_primary_10_1007_s11042_020_08806_9 crossref_citationtrail_10_1007_s11042_020_08806_9 springer_journals_10_1007_s11042_020_08806_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Krizhevsky, Sutskever, Hinton (CR14) 2012 Kuehne, Jhuang, Garrote, Poggio, Serre (CR15) 2011 Yang, Yuan, Li, Du, Xing, Hu (CR40) 2019; 85 Wang, Liu, Shen, Shen (CR36) 2019; 91 Sharif, Akram, Raza, Saba, Rehman (CR28) 2020; 87 CR19 Liu, Su, Nie, Kankanhalli (CR17) 2016; 39 Rashid, Khan, Sharif, Raza, Sarfraz, Afza (CR22) 2019; 78 CR12 Rahimi, Aghagolzadeh, Ezoji (CR21) 2019; 13 CR33 CR32 CR31 Ahad, Islam, Jahan (CR1) 2016; 10 Khan, Lali, Sharif, Javed, Aurangzeb, Haider (CR13) 2019 Pham, Khoudour, Crouzil, Zegers, Velastin (CR20) 2018; 170 Zhang, Shum, Han, Shao (CR42) 2018; 27 Ullah, Muhammad, Haq, Baik (CR35) 2019; 96 Zhang, Zhang, Zhong, Lei, Yang, Du (CR44) 2019; 19 Liu, Luo, Shah (CR16) 2009 CR2 Khan (CR10) 2019 Khan, Hussain, Xiaoming, Yang (CR11) 2018; 6 CR3 Yang, Yang, Li, Fan, Li (CR39) 2019 Rish (CR23) 2001 Rodriguez, Ahmed, Shah (CR24) 2008 Tu, Xie, Qin, Poppe, Veltkamp, Li (CR34) 2018; 79 CR7 Siddiqui, Khan, Bashir, Sharif, Azam, Javed (CR30) 2018; 5 CR9 CR27 Dai, Liu, Lai (CR5) 2020; 86 Weinland, Ronfard, Boyer (CR37) 2006; 104 CR25 Sharif, Attique, Tahir, Yasmim, Saba, Tanik (CR29) 2020; 32 Aurangzeb, Haider, Khan, Saba, Javed, Iqbal, Rehman, Ali, Sarfraz (CR4) 2019; 9 Jalal, Kamal, Azurdia-Meza (CR8) 2019; 14 CR43 He, Zhang, Ren, Sun (CR6) 2016 CR41 Zhao, Xu, Su, Ji (CR45) 2019 Ma, Chen, Kira, AlRegib (CR18) 2019; 71 Wu, Qiu, Zeng, Kong, Senhadji, Shu (CR38) 2017; 5 Sharif, Khan, Javed, Gulfam, Iqbal, Saba (CR26) 2019; 21 C Dai (8806_CR5) 2020; 86 A Sharif (8806_CR26) 2019; 21 8806_CR32 8806_CR7 8806_CR31 H Yang (8806_CR40) 2019; 85 8806_CR2 M Rashid (8806_CR22) 2019; 78 8806_CR3 MD Rodriguez (8806_CR24) 2008 A Jalal (8806_CR8) 2019; 14 R Zhao (8806_CR45) 2019 8806_CR12 8806_CR33 A Krizhevsky (8806_CR14) 2012 CY Ma (8806_CR18) 2019; 71 J Liu (8806_CR16) 2009 P Wang (8806_CR36) 2019; 91 MAR Ahad (8806_CR1) 2016; 10 8806_CR19 SA Khan (8806_CR11) 2018; 6 MA Khan (8806_CR13) 2019 D Weinland (8806_CR37) 2006; 104 8806_CR9 I Rish (8806_CR23) 2001 HH Pham (8806_CR20) 2018; 170 8806_CR41 8806_CR43 M Sharif (8806_CR28) 2020; 87 H Kuehne (8806_CR15) 2011 8806_CR27 SA Khan (8806_CR10) 2019 S Rahimi (8806_CR21) 2019; 13 Z Tu (8806_CR34) 2018; 79 K Aurangzeb (8806_CR4) 2019; 9 K He (8806_CR6) 2016 8806_CR25 M Sharif (8806_CR29) 2020; 32 S Yang (8806_CR39) 2019 J Wu (8806_CR38) 2017; 5 S Siddiqui (8806_CR30) 2018; 5 HB Zhang (8806_CR44) 2019; 19 AA Liu (8806_CR17) 2016; 39 J Zhang (8806_CR42) 2018; 27 A Ullah (8806_CR35) 2019; 96 |
References_xml | – ident: CR43 – volume: 19 start-page: 1005 year: 2019 ident: CR44 article-title: A comprehensive survey of vision-based human action recognition methods publication-title: Sensors doi: 10.3390/s19051005 – volume: 27 start-page: 4709 year: 2018 end-page: 4723 ident: CR42 article-title: Action recognition from arbitrary views using transferable dictionary learning publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2836323 – volume: 5 start-page: 206 year: 2018 end-page: 228 ident: CR30 article-title: Human action recognition: a construction of codebook by discriminative features selection approach publication-title: International Journal of Applied Pattern Recognition doi: 10.1504/IJAPR.2018.094815 – volume: 87 start-page: 105986 year: 2020 ident: CR28 article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: an application to intelligent human action recognition publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105986 – start-page: 6 year: 2008 ident: CR24 article-title: Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition – ident: CR2 – volume: 170 start-page: 51 year: 2018 end-page: 66 ident: CR20 article-title: Exploiting deep residual networks for human action recognition from skeletal data publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.03.003 – start-page: 770 year: 2016 end-page: 778 ident: CR6 article-title: Deep residual learning for image recognition – ident: CR12 – start-page: 41 year: 2001 end-page: 46 ident: CR23 article-title: An empirical study of the naive Bayes classifier – volume: 5 start-page: 3322 year: 2017 end-page: 3331 ident: CR38 article-title: Multilinear principal component analysis network for tensor object classification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2675478 – year: 2019 ident: CR10 publication-title: Facial expression recognition in unconstrained environment – start-page: 1097 year: 2012 end-page: 1105 ident: CR14 article-title: Imagenet classification with deep convolutional neural networks – ident: CR33 – volume: 39 start-page: 102 year: 2016 end-page: 114 ident: CR17 article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2537337 – volume: 104 start-page: 249 year: 2006 end-page: 257 ident: CR37 article-title: Free viewpoint action recognition using motion history volumes publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2006.07.013 – volume: 86 start-page: 105820 year: 2020 ident: CR5 article-title: Human action recognition using two-stream attention based LSTM networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105820 – ident: CR25 – ident: CR27 – volume: 6 start-page: 67459 year: 2018 end-page: 67468 ident: CR11 article-title: An effective framework for driver fatigue recognition based on intelligent facial expressions analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878601 – volume: 96 start-page: 386 year: 2019 end-page: 397 ident: CR35 article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.01.029 – volume: 79 start-page: 32 year: 2018 end-page: 43 ident: CR34 article-title: Multi-stream CNN: learning representations based on human-related regions for action recognition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.01.020 – volume: 71 start-page: 76 year: 2019 end-page: 87 ident: CR18 article-title: Ts-lstm and temporal-inception: exploiting spatiotemporal dynamics for activity recognition publication-title: Signal Process Image Commun doi: 10.1016/j.image.2018.09.003 – ident: CR19 – volume: 10 start-page: 335 year: 2016 end-page: 344 ident: CR1 article-title: Action recognition based on binary patterns of action-history and histogram of oriented gradient publication-title: Journal on Multimodal User Interfaces doi: 10.1007/s12193-016-0229-4 – volume: 91 start-page: 357 year: 2019 end-page: 365 ident: CR36 article-title: Order-aware convolutional pooling for video based action recognition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.03.002 – start-page: 569 year: 2019 end-page: 579 ident: CR39 article-title: Human Action Recognition Based on Fusion Features – volume: 9 start-page: 662 year: 2019 end-page: 669 ident: CR4 article-title: Human behavior analysis based on multi-types features fusion and Von Nauman entropy based features reduction publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2019.2611 – start-page: 7733 year: 2019 end-page: 7742 ident: CR45 article-title: Bayesian Hierarchical Dynamic Model for Human Action Recognition – ident: CR3 – ident: CR31 – year: 2019 ident: CR13 publication-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection doi: 10.1109/ACCESS.2019.2908040 – year: 2009 ident: CR16 publication-title: Recognizing realistic actions from videos in the wild doi: 10.1109/CVPR.2009.5206744 – ident: CR9 – volume: 13 start-page: 271 year: 2019 end-page: 279 ident: CR21 article-title: "human action recognition based on the Grassmann multi-graph embedding," publication-title: Image and Video Processing doi: 10.1007/s11760-018-1354-1 – volume: 32 start-page: 67 year: 2020 end-page: 92 ident: CR29 article-title: A Machine Learning Method with Threshold Based Parallel Feature Fusion and Feature Selection for Automated Gait Recognition publication-title: Journal of Organizational and End User Computing (JOEUC) doi: 10.4018/JOEUC.2020040104 – ident: CR32 – volume: 85 start-page: 1 year: 2019 end-page: 12 ident: CR40 article-title: Asymmetric 3d convolutional neural networks for action recognition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.07.028 – volume: 21 start-page: 3 year: 2019 end-page: 11 ident: CR26 article-title: Intelligent human action recognition: a framework of optimal features selection based on Euclidean distance and strong correlation publication-title: Journal of Control Engineering and Applied Informatics – volume: 78 start-page: 15751 year: 2019 end-page: 15777 ident: CR22 article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7031-0 – ident: CR7 – start-page: 2556 year: 2011 end-page: 2563 ident: CR15 article-title: HMDB: a large video database for human motion recognition doi: 10.1109/ICCV.2011.6126543 – ident: CR41 – volume: 14 start-page: 455 year: 2019 end-page: 461 ident: CR8 article-title: Depth maps-based human segmentation and action recognition using full-body plus body color cues via recognizer engine publication-title: Journal of Electrical Engineering & Technology doi: 10.1007/s42835-018-00012-w – start-page: 41 volume-title: IJCAI 2001 workshop on empirical methods in artificial intelligence year: 2001 ident: 8806_CR23 – start-page: 6 volume-title: CVPR year: 2008 ident: 8806_CR24 – volume: 9 start-page: 662 year: 2019 ident: 8806_CR4 publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2019.2611 – ident: 8806_CR7 – volume: 39 start-page: 102 year: 2016 ident: 8806_CR17 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2537337 – volume-title: Recognizing realistic actions from videos in the wild year: 2009 ident: 8806_CR16 doi: 10.1109/CVPR.2009.5206744 – volume: 10 start-page: 335 year: 2016 ident: 8806_CR1 publication-title: Journal on Multimodal User Interfaces doi: 10.1007/s12193-016-0229-4 – volume: 79 start-page: 32 year: 2018 ident: 8806_CR34 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.01.020 – volume: 78 start-page: 15751 year: 2019 ident: 8806_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7031-0 – ident: 8806_CR31 – volume: 91 start-page: 357 year: 2019 ident: 8806_CR36 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.03.002 – volume: 6 start-page: 67459 year: 2018 ident: 8806_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878601 – volume: 71 start-page: 76 year: 2019 ident: 8806_CR18 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2018.09.003 – volume: 5 start-page: 3322 year: 2017 ident: 8806_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2675478 – ident: 8806_CR2 doi: 10.1109/ITCE.2019.8646504 – ident: 8806_CR43 doi: 10.1109/CVPR42600.2020.00119 – volume: 21 start-page: 3 year: 2019 ident: 8806_CR26 publication-title: Journal of Control Engineering and Applied Informatics – volume: 27 start-page: 4709 year: 2018 ident: 8806_CR42 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2836323 – ident: 8806_CR41 doi: 10.1007/s10044-019-00788-1 – start-page: 569 volume-title: The International Conference on Cyber Security Intelligence and Analytics year: 2019 ident: 8806_CR39 – start-page: 1097 volume-title: Advances in neural information processing systems year: 2012 ident: 8806_CR14 – volume: 13 start-page: 271 year: 2019 ident: 8806_CR21 publication-title: Image and Video Processing doi: 10.1007/s11760-018-1354-1 – ident: 8806_CR27 doi: 10.1007/s10044-019-00789-0 – volume: 19 start-page: 1005 year: 2019 ident: 8806_CR44 publication-title: Sensors doi: 10.3390/s19051005 – volume: 86 start-page: 105820 year: 2020 ident: 8806_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105820 – start-page: 7733 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2019 ident: 8806_CR45 – ident: 8806_CR19 doi: 10.1007/978-3-030-46732-6_10 – volume: 96 start-page: 386 year: 2019 ident: 8806_CR35 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.01.029 – volume: 14 start-page: 455 year: 2019 ident: 8806_CR8 publication-title: Journal of Electrical Engineering & Technology doi: 10.1007/s42835-018-00012-w – ident: 8806_CR9 doi: 10.1109/TSMC.2018.2850149 – volume-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection year: 2019 ident: 8806_CR13 doi: 10.1109/ACCESS.2019.2908040 – ident: 8806_CR32 – volume: 104 start-page: 249 year: 2006 ident: 8806_CR37 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2006.07.013 – ident: 8806_CR33 doi: 10.1609/aaai.v31i1.11231 – volume: 85 start-page: 1 year: 2019 ident: 8806_CR40 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.07.028 – volume-title: Facial expression recognition in unconstrained environment year: 2019 ident: 8806_CR10 – start-page: 2556 volume-title: 2011 International Conference on Computer Vision year: 2011 ident: 8806_CR15 doi: 10.1109/ICCV.2011.6126543 – volume: 87 start-page: 105986 year: 2020 ident: 8806_CR28 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105986 – volume: 5 start-page: 206 year: 2018 ident: 8806_CR30 publication-title: International Journal of Applied Pattern Recognition doi: 10.1504/IJAPR.2018.094815 – start-page: 770 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: 8806_CR6 – volume: 170 start-page: 51 year: 2018 ident: 8806_CR20 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.03.003 – volume: 32 start-page: 67 year: 2020 ident: 8806_CR29 publication-title: Journal of Organizational and End User Computing (JOEUC) doi: 10.4018/JOEUC.2020040104 – ident: 8806_CR3 doi: 10.1007/s13042-019-00947-0 – ident: 8806_CR12 doi: 10.1049/iet-ipr.2018.5769 – ident: 8806_CR25 |
SSID | ssj0016524 |
Score | 2.6358526 |
Snippet | Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14885 |
SubjectTerms | Artificial intelligence Artificial neural networks Computer Communication Networks Computer Science Correlation coefficients Data Structures and Information Theory Human activity recognition Multimedia Information Systems Parameters Special Purpose and Application-Based Systems Surveillance |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vejBR1WsVtmDNw1m89gkXkSlpQgWEQu9hWQfgkhSm9Tf70yyaVSwt0CyG5LZec98Q8gFAsLIABhQh3ZoeTLwrFRECq5YpBScAeFig_PThI-n3uPMn5mAW2HKKhuZWAlqmQuMkV87EQPGDUKf384_LZwahdlVM0Jjk3RBBIfgfHXvh5Pnl1UegftmrG1oW6AbmWmbqZvnGLamoPsEnAZ-dfRbNbX25p8UaaV5Rntkx5iM9K6m8T7ZUFmP7DbjGKjhzh7Z_oEteEDeq_A8rfsW6KpOCK6x1P2N6iXGyWiuaVVTiF9Pk0xSqdScalXhfRY3FLdoc9y0zCk27uW0WC6-FE4sglcfkulo-PowtsxgBUsAx5VWIP1Q8UjY2k9FwFMEjMQWWa600DjxxU88BPpzI8US0HEs1dLn2g6F40jOmHtEOlmeqWNCdeinGnyelEnXU9xNRMJToIVwEw3CNOoT1vzTWBjUcRx-8RG3eMlIhxjoEFd0iGHN5WrNvMbcWPv0oCFVbPiviNvT0idXDfna2__vdrJ-t1Oy5YBVU5dtD0inXCzVGVglZXpujt43t7Ldig priority: 102 providerName: ProQuest |
Title | Human action recognition using fusion of multiview and deep features: an application to video surveillance |
URI | https://link.springer.com/article/10.1007/s11042-020-08806-9 https://www.proquest.com/docview/2918767856 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6Rx58E0LS9ukrW-b7APFIeJgPpU2TQSRdezDv9-7rl1VVPCpgSYp9O5ySe5-vwO4IEKYxEMDNH7bt9zEc61YBRpbPNAadUA5BHC-H8nh2L2diEkOClsU2e5FSDJbqUuwGycoCR130DLwHBxUoCbo7I5aPLY7m9iBFLabw2N-HvfVBZX7ym-h0MzD9PdhN98ass5algewpad12CvKLrDcCuuw84lD8BBes2t4tsYnsE0-ELYppf2FmRXdh7HUsCx3kCIBLJomLNF6xozOeD0X14ymKGPZbJkyAuilbLGav2uqTISfPoJxv_d0M7TyAgqWQstaWl4ifC0D1TYiVp6MiRiSoLBSG2WosouIXCL0cwLNI_RlPDaJkKbtK9tOJOfOMVSn6VSfADO-iA2ebWKeOK6WTqQiGaPbU05kcNEMGsCLfxqqnF2cily8hSUvMskhRDmEmRxCHHO5GTNbc2v82btZiCrM7WwR2gHH5dzzhWzAVSG-8vXvs53-r_sZbKOmuet07SZUl_OVPsfdyDJuQcXvD1pQ6_S73RE9B893PXx2e6OHx1ammh_4Qtyg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60HtSDb_FRdQ960mA3j00iiIhaW18nBW8x2Ycg0lTbKv4pf6MzeTQq6K23hWQnsPPczHwzANvUEEb5qIAmaASWq3zXSmSoccVDrVEGpEMA5-sb0bpzL-69-zH4LLEwVFZZ2sTMUKtU0j_yfTvkqLh-4Imj7otFU6Mou1qO0MjF4lJ_vOOVrXfYPkX-7th28-z2pGUVUwUsieLWt3zlBVqEsmG8RPoioW6JhA8V2khD40682KUud06oeYwGnidGecI0AmnbSnDuIN1xmHAd3ELI9Ob5MGshvGKIbtCw0BPzAqSTQ_U4AWHosoZ6jbf48KcjrKLbXwnZzM8152CmCFDZcS5R8zCmOwswWw5_YIUtWIDpb50MF-EpSwawHCXBhlVJuKbC-kdmBvRXjqWGZRWMdNYs7iimtO4yo7Puor0DRiSqjDrrp4xgginrDV7fNM1Hwk8vwd1IDnwZap20o1eAmcBLDN6wEq4cVwsnlrFI0PlKJzZousNV4OWZRrLocU6jNp6jqjsz8SFCPkQZHyLcszvc0807fPz7dr1kVVRoey-qZHMV9kr2VY__prb2P7UtmGzdXl9FV-2by3WYsjGeygvG61Drvw70BsZD_WQzE0IGD6OW-i-w8BdV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS-RAEC7cEZb1wWt3cTz7wX1yg-kcnUQQ8Rq8dhBZwbds0ocgMhmdGcW_5q-zKulMXEHffGtIugJdV1eq6iuAdQKEUREqoInd2AlUFDi5TDSueKI1yoD0qcH5T1ccXQYnV-HVBDzXvTBUVlnbxNJQq0LSP_JNL-GouFEcik1jyyLODzo7_TuHJkhRprUep1GJyKl-esTwbbB9fIC8_uV5ncO_-0eOnTDgSBS9oROpMNYika4JcxmJnJATqVdUaCMNjT4Js4AQ7_xE8wyNPc-NCoVxY-l5SnDuI90vMBlhVOS2YHLvsHt-Mc5hiNCO1I1dB_0yty07VeMep7YYCt1QyzGmT_53i81d9016tvR6nVmYttdVtlvJ1xxM6N48zNSjIJi1DPMw9QrX8DvclKkBVvVMsHGNEq6pzP6amRH9o2OFYWU9I508y3qKKa37zOgSa3SwxYhEk19nw4JR02DBBqP7B03TkvDTP-DyU478J7R6RU8vADNxmBuMt3Ku_EALP5OZyNEVSz8zaMiTNvD6TFNpEc9p8MZt2mA1Ex9S5ENa8iHFPRvjPf0K7-PDt5drVqVW9wdpI6lt-F2zr3n8PrXFj6mtwVeU-PTsuHu6BN88vFxV1ePL0Brej_QKXo6G-aqVQgb_PlvwXwCWQRzn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+action+recognition+using+fusion+of+multiview+and+deep+features%3A+an+application+to+video+surveillance&rft.jtitle=Multimedia+tools+and+applications&rft.au=Khan%2C+Muhammad+Attique&rft.au=Javed%2C+Kashif&rft.au=Khan%2C+Sajid+Ali&rft.au=Saba%2C+Tanzila&rft.date=2024-02-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=5&rft.spage=14885&rft.epage=14911&rft_id=info:doi/10.1007%2Fs11042-020-08806-9&rft.externalDocID=10_1007_s11042_020_08806_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |