Human action recognition using fusion of multiview and deep features: an application to video surveillance

Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this articl...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 5; pp. 14885 - 14911
Main Authors Khan, Muhammad Attique, Javed, Kashif, Khan, Sajid Ali, Saba, Tanzila, Habib, Usman, Khan, Junaid Ali, Abbasi, Aaqif Afzaal
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this article, a new fully automated scheme is proposed for Human action recognition by fusion of deep neural network (DNN) and multiview features. The DNN features are initially extracted by employing a pre-trained CNN model name VGG19. Subsequently, multiview features are computed from horizontal and vertical gradients, along with vertical directional features. Afterwards, all features are combined in order to select the best features. The best features are selected by employing three parameters i.e. relative entropy, mutual information, and strong correlation coefficient (SCC). Furthermore, these parameters are used for selection of best subset of features through a higher probability based threshold function. The final selected features are provided to Naive Bayes classifier for final recognition. The proposed scheme is tested on five datasets name HMDB51, UCF Sports, YouTube, IXMAS, and KTH and the achieved accuracy were 93.7%, 98%, 99.4%, 95.2%, and 97%, respectively. Lastly, the proposed method in this article is compared with existing techniques. The resuls shows that the proposed scheme outperforms the state of the art methods.
AbstractList Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as video surveillance. The wide range of variations among human actions in daily life makes the recognition process more difficult. In this article, a new fully automated scheme is proposed for Human action recognition by fusion of deep neural network (DNN) and multiview features. The DNN features are initially extracted by employing a pre-trained CNN model name VGG19. Subsequently, multiview features are computed from horizontal and vertical gradients, along with vertical directional features. Afterwards, all features are combined in order to select the best features. The best features are selected by employing three parameters i.e. relative entropy, mutual information, and strong correlation coefficient (SCC). Furthermore, these parameters are used for selection of best subset of features through a higher probability based threshold function. The final selected features are provided to Naive Bayes classifier for final recognition. The proposed scheme is tested on five datasets name HMDB51, UCF Sports, YouTube, IXMAS, and KTH and the achieved accuracy were 93.7%, 98%, 99.4%, 95.2%, and 97%, respectively. Lastly, the proposed method in this article is compared with existing techniques. The resuls shows that the proposed scheme outperforms the state of the art methods.
Author Khan, Junaid Ali
Habib, Usman
Javed, Kashif
Saba, Tanzila
Abbasi, Aaqif Afzaal
Khan, Muhammad Attique
Khan, Sajid Ali
Author_xml – sequence: 1
  givenname: Muhammad Attique
  surname: Khan
  fullname: Khan, Muhammad Attique
  organization: Department of Computer Science, HITEC University Museum Road
– sequence: 2
  givenname: Kashif
  surname: Javed
  fullname: Javed, Kashif
  organization: Department of Robotics, SMME NUST
– sequence: 3
  givenname: Sajid Ali
  surname: Khan
  fullname: Khan, Sajid Ali
  email: sajidalibn@gmail.com
  organization: Department of Software Engineering, Foundation University Islamabad
– sequence: 4
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
  organization: College of Computer and Information Sciences, Prince Sultan University
– sequence: 5
  givenname: Usman
  surname: Habib
  fullname: Habib, Usman
  organization: FAST-National University of Computer & Emerging Sciences (NUCES), Chiniot-Faisalabad Campus
– sequence: 6
  givenname: Junaid Ali
  surname: Khan
  fullname: Khan, Junaid Ali
  organization: Department of Computer Science, HITEC University Museum Road
– sequence: 7
  givenname: Aaqif Afzaal
  surname: Abbasi
  fullname: Abbasi, Aaqif Afzaal
  organization: Department of Software Engineering, Foundation University Islamabad
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52CS73kT8goIXPYc0Oykp22RNdiv-e7etoHjoaWZgnvedeWdoEmIAhC4puaaEqJtMKSlZQRgpSFURWdQnaEqF4oVSjE7-9GdolvOaECoFK6do_TxsTMDG9j4GnMDGVfD7fsg-rLAbyzhEhzdD2_uth09sQoMbgA47MP2QIN_inUTXtd6aPdtHvPUNRJyHtAXftiZYOEenzrQZLn7qHL0_PrzdPxeL16eX-7tFYTmt-0I1ogJZW-LE0iq5LBVjpOS1BGedEJQLUwpCK14DNZxwunSNkI5UlrFGUsrn6Oqg26X4MUDu9ToOKYyWmtW0UlJVQo5b7LBlU8w5gdNd8huTvjQlepepPmSqx0z1PlNdj1D1D7K-37_cJ-Pb4yg_oHn0CStIv1cdob4BSnmOEg
CitedBy_id crossref_primary_10_3390_app12168023
crossref_primary_10_1007_s10489_021_02450_y
crossref_primary_10_1109_ACCESS_2020_3039740
crossref_primary_10_1002_spe_3394
crossref_primary_10_1007_s11042_020_09485_2
crossref_primary_10_1038_s41598_024_81762_8
crossref_primary_10_26599_TST_2021_9010068
crossref_primary_10_4018_IJCVIP_296584
crossref_primary_10_1109_ACCESS_2023_3296252
crossref_primary_10_1109_ACCESS_2020_3034217
crossref_primary_10_1007_s11042_021_10811_5
crossref_primary_10_3390_rs13050912
crossref_primary_10_1007_s11265_023_01892_6
crossref_primary_10_1007_s40747_020_00244_2
crossref_primary_10_1142_S021800142256002X
crossref_primary_10_1007_s00500_021_05701_9
crossref_primary_10_1007_s00521_023_08440_0
crossref_primary_10_1007_s11831_021_09681_9
crossref_primary_10_7717_peerj_cs_764
crossref_primary_10_1007_s11042_023_14508_9
crossref_primary_10_1177_01655515211022665
crossref_primary_10_1109_ACCESS_2025_3546266
crossref_primary_10_3390_s21248178
crossref_primary_10_1007_s11042_023_17810_8
crossref_primary_10_1007_s11042_020_09874_7
crossref_primary_10_1007_s11042_020_08851_4
crossref_primary_10_3389_fnbot_2024_1443432
crossref_primary_10_1007_s42979_024_03345_8
crossref_primary_10_1016_j_neucom_2020_09_035
crossref_primary_10_1109_ACCESS_2024_3498852
crossref_primary_10_1007_s13042_024_02454_3
crossref_primary_10_61506_01_00459
crossref_primary_10_1007_s00500_022_06900_8
crossref_primary_10_1177_17543371241237085
crossref_primary_10_1016_j_jvcir_2025_104441
crossref_primary_10_1007_s11042_024_20354_0
crossref_primary_10_1007_s11760_024_03510_9
crossref_primary_10_1007_s11042_020_10103_4
crossref_primary_10_1109_TCSS_2023_3249152
crossref_primary_10_3390_electronics13163301
crossref_primary_10_1109_JSTARS_2023_3249216
crossref_primary_10_3390_app10144966
crossref_primary_10_2139_ssrn_5082217
crossref_primary_10_1155_2021_5577393
crossref_primary_10_1007_s11042_021_10918_9
crossref_primary_10_1016_j_micpro_2021_104027
crossref_primary_10_1109_ACCESS_2024_3519335
crossref_primary_10_1109_TIM_2024_3374285
crossref_primary_10_1007_s11042_024_19164_1
crossref_primary_10_1007_s11042_020_08852_3
crossref_primary_10_1016_j_rcim_2022_102449
crossref_primary_10_1007_s10115_024_02122_6
crossref_primary_10_1109_ACCESS_2020_3037529
crossref_primary_10_3390_electronics11030334
crossref_primary_10_3390_electronics12173567
crossref_primary_10_1109_ACCESS_2024_3412653
crossref_primary_10_1109_ACCESS_2024_3470789
crossref_primary_10_32604_cmc_2024_056767
crossref_primary_10_1155_2021_6321860
crossref_primary_10_1007_s11227_021_04145_0
crossref_primary_10_1007_s11042_020_09408_1
crossref_primary_10_1007_s11220_020_00305_3
crossref_primary_10_1007_s13735_024_00338_4
crossref_primary_10_1109_ACCESS_2024_3473828
crossref_primary_10_1007_s00371_022_02460_y
crossref_primary_10_1080_10589759_2023_2274008
crossref_primary_10_1016_j_patcog_2024_111272
crossref_primary_10_1109_ACCESS_2024_3498093
crossref_primary_10_1016_j_dsp_2024_104823
crossref_primary_10_1016_j_aej_2024_09_046
crossref_primary_10_1007_s42452_021_04821_z
crossref_primary_10_3390_s24217077
crossref_primary_10_1016_j_aei_2024_102893
crossref_primary_10_1080_23311886_2025_2474863
crossref_primary_10_3390_app13116856
crossref_primary_10_1089_big_2021_0268
crossref_primary_10_1109_TIP_2023_3308750
crossref_primary_10_1016_j_knosys_2025_113232
crossref_primary_10_1007_s11042_022_13316_x
crossref_primary_10_1007_s11042_024_18361_2
crossref_primary_10_1109_OJCS_2023_3334528
crossref_primary_10_1109_ACCESS_2024_3516511
crossref_primary_10_1007_s11227_021_04188_3
crossref_primary_10_1007_s11042_020_10140_z
crossref_primary_10_1007_s10845_024_02518_9
crossref_primary_10_1109_TMM_2023_3313258
crossref_primary_10_1007_s00521_024_10962_0
crossref_primary_10_1016_j_dsp_2022_103487
crossref_primary_10_1109_TCSVT_2024_3470801
crossref_primary_10_3390_s25020441
crossref_primary_10_3389_fphy_2021_715465
crossref_primary_10_1109_ACCESS_2021_3132559
crossref_primary_10_1007_s11042_020_08928_0
crossref_primary_10_1016_j_patrec_2021_02_025
crossref_primary_10_1007_s11042_022_14075_5
crossref_primary_10_1007_s41870_024_01955_2
crossref_primary_10_1007_s11042_020_09937_9
crossref_primary_10_1117_1_JEI_34_2_023021
Cites_doi 10.3390/s19051005
10.1109/TIP.2018.2836323
10.1504/IJAPR.2018.094815
10.1016/j.asoc.2019.105986
10.1016/j.cviu.2018.03.003
10.1109/ACCESS.2017.2675478
10.1109/TPAMI.2016.2537337
10.1016/j.cviu.2006.07.013
10.1016/j.asoc.2019.105820
10.1109/ACCESS.2018.2878601
10.1016/j.future.2019.01.029
10.1016/j.patcog.2018.01.020
10.1016/j.image.2018.09.003
10.1007/s12193-016-0229-4
10.1016/j.patcog.2019.03.002
10.1166/jmihi.2019.2611
10.1109/ACCESS.2019.2908040
10.1109/CVPR.2009.5206744
10.1007/s11760-018-1354-1
10.4018/JOEUC.2020040104
10.1016/j.patcog.2018.07.028
10.1007/s11042-018-7031-0
10.1109/ICCV.2011.6126543
10.1007/s42835-018-00012-w
10.1109/ITCE.2019.8646504
10.1109/CVPR42600.2020.00119
10.1007/s10044-019-00788-1
10.1007/s10044-019-00789-0
10.1007/978-3-030-46732-6_10
10.1109/TSMC.2018.2850149
10.1609/aaai.v31i1.11231
10.1007/s13042-019-00947-0
10.1049/iet-ipr.2018.5769
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-08806-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 14911
ExternalDocumentID 10_1007_s11042_020_08806_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-7d58e69c0f5bc76b472204396efcf55135a4501839e1a3031bfd56f08c22d6113
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 22:15:42 EDT 2025
Tue Jul 01 02:07:06 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Fri Feb 21 02:41:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human action recognition
Deep features
Multiview features
Features fusion
Recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7d58e69c0f5bc76b472204396efcf55135a4501839e1a3031bfd56f08c22d6113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918767856
PQPubID 54626
PageCount 27
ParticipantIDs proquest_journals_2918767856
crossref_primary_10_1007_s11042_020_08806_9
crossref_citationtrail_10_1007_s11042_020_08806_9
springer_journals_10_1007_s11042_020_08806_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Krizhevsky, Sutskever, Hinton (CR14) 2012
Kuehne, Jhuang, Garrote, Poggio, Serre (CR15) 2011
Yang, Yuan, Li, Du, Xing, Hu (CR40) 2019; 85
Wang, Liu, Shen, Shen (CR36) 2019; 91
Sharif, Akram, Raza, Saba, Rehman (CR28) 2020; 87
CR19
Liu, Su, Nie, Kankanhalli (CR17) 2016; 39
Rashid, Khan, Sharif, Raza, Sarfraz, Afza (CR22) 2019; 78
CR12
Rahimi, Aghagolzadeh, Ezoji (CR21) 2019; 13
CR33
CR32
CR31
Ahad, Islam, Jahan (CR1) 2016; 10
Khan, Lali, Sharif, Javed, Aurangzeb, Haider (CR13) 2019
Pham, Khoudour, Crouzil, Zegers, Velastin (CR20) 2018; 170
Zhang, Shum, Han, Shao (CR42) 2018; 27
Ullah, Muhammad, Haq, Baik (CR35) 2019; 96
Zhang, Zhang, Zhong, Lei, Yang, Du (CR44) 2019; 19
Liu, Luo, Shah (CR16) 2009
CR2
Khan (CR10) 2019
Khan, Hussain, Xiaoming, Yang (CR11) 2018; 6
CR3
Yang, Yang, Li, Fan, Li (CR39) 2019
Rish (CR23) 2001
Rodriguez, Ahmed, Shah (CR24) 2008
Tu, Xie, Qin, Poppe, Veltkamp, Li (CR34) 2018; 79
CR7
Siddiqui, Khan, Bashir, Sharif, Azam, Javed (CR30) 2018; 5
CR9
CR27
Dai, Liu, Lai (CR5) 2020; 86
Weinland, Ronfard, Boyer (CR37) 2006; 104
CR25
Sharif, Attique, Tahir, Yasmim, Saba, Tanik (CR29) 2020; 32
Aurangzeb, Haider, Khan, Saba, Javed, Iqbal, Rehman, Ali, Sarfraz (CR4) 2019; 9
Jalal, Kamal, Azurdia-Meza (CR8) 2019; 14
CR43
He, Zhang, Ren, Sun (CR6) 2016
CR41
Zhao, Xu, Su, Ji (CR45) 2019
Ma, Chen, Kira, AlRegib (CR18) 2019; 71
Wu, Qiu, Zeng, Kong, Senhadji, Shu (CR38) 2017; 5
Sharif, Khan, Javed, Gulfam, Iqbal, Saba (CR26) 2019; 21
C Dai (8806_CR5) 2020; 86
A Sharif (8806_CR26) 2019; 21
8806_CR32
8806_CR7
8806_CR31
H Yang (8806_CR40) 2019; 85
8806_CR2
M Rashid (8806_CR22) 2019; 78
8806_CR3
MD Rodriguez (8806_CR24) 2008
A Jalal (8806_CR8) 2019; 14
R Zhao (8806_CR45) 2019
8806_CR12
8806_CR33
A Krizhevsky (8806_CR14) 2012
CY Ma (8806_CR18) 2019; 71
J Liu (8806_CR16) 2009
P Wang (8806_CR36) 2019; 91
MAR Ahad (8806_CR1) 2016; 10
8806_CR19
SA Khan (8806_CR11) 2018; 6
MA Khan (8806_CR13) 2019
D Weinland (8806_CR37) 2006; 104
8806_CR9
I Rish (8806_CR23) 2001
HH Pham (8806_CR20) 2018; 170
8806_CR41
8806_CR43
M Sharif (8806_CR28) 2020; 87
H Kuehne (8806_CR15) 2011
8806_CR27
SA Khan (8806_CR10) 2019
S Rahimi (8806_CR21) 2019; 13
Z Tu (8806_CR34) 2018; 79
K Aurangzeb (8806_CR4) 2019; 9
K He (8806_CR6) 2016
8806_CR25
M Sharif (8806_CR29) 2020; 32
S Yang (8806_CR39) 2019
J Wu (8806_CR38) 2017; 5
S Siddiqui (8806_CR30) 2018; 5
HB Zhang (8806_CR44) 2019; 19
AA Liu (8806_CR17) 2016; 39
J Zhang (8806_CR42) 2018; 27
A Ullah (8806_CR35) 2019; 96
References_xml – ident: CR43
– volume: 19
  start-page: 1005
  year: 2019
  ident: CR44
  article-title: A comprehensive survey of vision-based human action recognition methods
  publication-title: Sensors
  doi: 10.3390/s19051005
– volume: 27
  start-page: 4709
  year: 2018
  end-page: 4723
  ident: CR42
  article-title: Action recognition from arbitrary views using transferable dictionary learning
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2836323
– volume: 5
  start-page: 206
  year: 2018
  end-page: 228
  ident: CR30
  article-title: Human action recognition: a construction of codebook by discriminative features selection approach
  publication-title: International Journal of Applied Pattern Recognition
  doi: 10.1504/IJAPR.2018.094815
– volume: 87
  start-page: 105986
  year: 2020
  ident: CR28
  article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: an application to intelligent human action recognition
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105986
– start-page: 6
  year: 2008
  ident: CR24
  article-title: Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition
– ident: CR2
– volume: 170
  start-page: 51
  year: 2018
  end-page: 66
  ident: CR20
  article-title: Exploiting deep residual networks for human action recognition from skeletal data
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.03.003
– start-page: 770
  year: 2016
  end-page: 778
  ident: CR6
  article-title: Deep residual learning for image recognition
– ident: CR12
– start-page: 41
  year: 2001
  end-page: 46
  ident: CR23
  article-title: An empirical study of the naive Bayes classifier
– volume: 5
  start-page: 3322
  year: 2017
  end-page: 3331
  ident: CR38
  article-title: Multilinear principal component analysis network for tensor object classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2675478
– year: 2019
  ident: CR10
  publication-title: Facial expression recognition in unconstrained environment
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR14
  article-title: Imagenet classification with deep convolutional neural networks
– ident: CR33
– volume: 39
  start-page: 102
  year: 2016
  end-page: 114
  ident: CR17
  article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2537337
– volume: 104
  start-page: 249
  year: 2006
  end-page: 257
  ident: CR37
  article-title: Free viewpoint action recognition using motion history volumes
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2006.07.013
– volume: 86
  start-page: 105820
  year: 2020
  ident: CR5
  article-title: Human action recognition using two-stream attention based LSTM networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105820
– ident: CR25
– ident: CR27
– volume: 6
  start-page: 67459
  year: 2018
  end-page: 67468
  ident: CR11
  article-title: An effective framework for driver fatigue recognition based on intelligent facial expressions analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878601
– volume: 96
  start-page: 386
  year: 2019
  end-page: 397
  ident: CR35
  article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.01.029
– volume: 79
  start-page: 32
  year: 2018
  end-page: 43
  ident: CR34
  article-title: Multi-stream CNN: learning representations based on human-related regions for action recognition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.01.020
– volume: 71
  start-page: 76
  year: 2019
  end-page: 87
  ident: CR18
  article-title: Ts-lstm and temporal-inception: exploiting spatiotemporal dynamics for activity recognition
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2018.09.003
– ident: CR19
– volume: 10
  start-page: 335
  year: 2016
  end-page: 344
  ident: CR1
  article-title: Action recognition based on binary patterns of action-history and histogram of oriented gradient
  publication-title: Journal on Multimodal User Interfaces
  doi: 10.1007/s12193-016-0229-4
– volume: 91
  start-page: 357
  year: 2019
  end-page: 365
  ident: CR36
  article-title: Order-aware convolutional pooling for video based action recognition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.03.002
– start-page: 569
  year: 2019
  end-page: 579
  ident: CR39
  article-title: Human Action Recognition Based on Fusion Features
– volume: 9
  start-page: 662
  year: 2019
  end-page: 669
  ident: CR4
  article-title: Human behavior analysis based on multi-types features fusion and Von Nauman entropy based features reduction
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2019.2611
– start-page: 7733
  year: 2019
  end-page: 7742
  ident: CR45
  article-title: Bayesian Hierarchical Dynamic Model for Human Action Recognition
– ident: CR3
– ident: CR31
– year: 2019
  ident: CR13
  publication-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection
  doi: 10.1109/ACCESS.2019.2908040
– year: 2009
  ident: CR16
  publication-title: Recognizing realistic actions from videos in the wild
  doi: 10.1109/CVPR.2009.5206744
– ident: CR9
– volume: 13
  start-page: 271
  year: 2019
  end-page: 279
  ident: CR21
  article-title: "human action recognition based on the Grassmann multi-graph embedding,"
  publication-title: Image and Video Processing
  doi: 10.1007/s11760-018-1354-1
– volume: 32
  start-page: 67
  year: 2020
  end-page: 92
  ident: CR29
  article-title: A Machine Learning Method with Threshold Based Parallel Feature Fusion and Feature Selection for Automated Gait Recognition
  publication-title: Journal of Organizational and End User Computing (JOEUC)
  doi: 10.4018/JOEUC.2020040104
– ident: CR32
– volume: 85
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR40
  article-title: Asymmetric 3d convolutional neural networks for action recognition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.07.028
– volume: 21
  start-page: 3
  year: 2019
  end-page: 11
  ident: CR26
  article-title: Intelligent human action recognition: a framework of optimal features selection based on Euclidean distance and strong correlation
  publication-title: Journal of Control Engineering and Applied Informatics
– volume: 78
  start-page: 15751
  year: 2019
  end-page: 15777
  ident: CR22
  article-title: Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-7031-0
– ident: CR7
– start-page: 2556
  year: 2011
  end-page: 2563
  ident: CR15
  article-title: HMDB: a large video database for human motion recognition
  doi: 10.1109/ICCV.2011.6126543
– ident: CR41
– volume: 14
  start-page: 455
  year: 2019
  end-page: 461
  ident: CR8
  article-title: Depth maps-based human segmentation and action recognition using full-body plus body color cues via recognizer engine
  publication-title: Journal of Electrical Engineering & Technology
  doi: 10.1007/s42835-018-00012-w
– start-page: 41
  volume-title: IJCAI 2001 workshop on empirical methods in artificial intelligence
  year: 2001
  ident: 8806_CR23
– start-page: 6
  volume-title: CVPR
  year: 2008
  ident: 8806_CR24
– volume: 9
  start-page: 662
  year: 2019
  ident: 8806_CR4
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2019.2611
– ident: 8806_CR7
– volume: 39
  start-page: 102
  year: 2016
  ident: 8806_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2537337
– volume-title: Recognizing realistic actions from videos in the wild
  year: 2009
  ident: 8806_CR16
  doi: 10.1109/CVPR.2009.5206744
– volume: 10
  start-page: 335
  year: 2016
  ident: 8806_CR1
  publication-title: Journal on Multimodal User Interfaces
  doi: 10.1007/s12193-016-0229-4
– volume: 79
  start-page: 32
  year: 2018
  ident: 8806_CR34
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.01.020
– volume: 78
  start-page: 15751
  year: 2019
  ident: 8806_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-7031-0
– ident: 8806_CR31
– volume: 91
  start-page: 357
  year: 2019
  ident: 8806_CR36
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.03.002
– volume: 6
  start-page: 67459
  year: 2018
  ident: 8806_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878601
– volume: 71
  start-page: 76
  year: 2019
  ident: 8806_CR18
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2018.09.003
– volume: 5
  start-page: 3322
  year: 2017
  ident: 8806_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2675478
– ident: 8806_CR2
  doi: 10.1109/ITCE.2019.8646504
– ident: 8806_CR43
  doi: 10.1109/CVPR42600.2020.00119
– volume: 21
  start-page: 3
  year: 2019
  ident: 8806_CR26
  publication-title: Journal of Control Engineering and Applied Informatics
– volume: 27
  start-page: 4709
  year: 2018
  ident: 8806_CR42
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2836323
– ident: 8806_CR41
  doi: 10.1007/s10044-019-00788-1
– start-page: 569
  volume-title: The International Conference on Cyber Security Intelligence and Analytics
  year: 2019
  ident: 8806_CR39
– start-page: 1097
  volume-title: Advances in neural information processing systems
  year: 2012
  ident: 8806_CR14
– volume: 13
  start-page: 271
  year: 2019
  ident: 8806_CR21
  publication-title: Image and Video Processing
  doi: 10.1007/s11760-018-1354-1
– ident: 8806_CR27
  doi: 10.1007/s10044-019-00789-0
– volume: 19
  start-page: 1005
  year: 2019
  ident: 8806_CR44
  publication-title: Sensors
  doi: 10.3390/s19051005
– volume: 86
  start-page: 105820
  year: 2020
  ident: 8806_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105820
– start-page: 7733
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: 8806_CR45
– ident: 8806_CR19
  doi: 10.1007/978-3-030-46732-6_10
– volume: 96
  start-page: 386
  year: 2019
  ident: 8806_CR35
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.01.029
– volume: 14
  start-page: 455
  year: 2019
  ident: 8806_CR8
  publication-title: Journal of Electrical Engineering & Technology
  doi: 10.1007/s42835-018-00012-w
– ident: 8806_CR9
  doi: 10.1109/TSMC.2018.2850149
– volume-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection
  year: 2019
  ident: 8806_CR13
  doi: 10.1109/ACCESS.2019.2908040
– ident: 8806_CR32
– volume: 104
  start-page: 249
  year: 2006
  ident: 8806_CR37
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2006.07.013
– ident: 8806_CR33
  doi: 10.1609/aaai.v31i1.11231
– volume: 85
  start-page: 1
  year: 2019
  ident: 8806_CR40
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.07.028
– volume-title: Facial expression recognition in unconstrained environment
  year: 2019
  ident: 8806_CR10
– start-page: 2556
  volume-title: 2011 International Conference on Computer Vision
  year: 2011
  ident: 8806_CR15
  doi: 10.1109/ICCV.2011.6126543
– volume: 87
  start-page: 105986
  year: 2020
  ident: 8806_CR28
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105986
– volume: 5
  start-page: 206
  year: 2018
  ident: 8806_CR30
  publication-title: International Journal of Applied Pattern Recognition
  doi: 10.1504/IJAPR.2018.094815
– start-page: 770
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2016
  ident: 8806_CR6
– volume: 170
  start-page: 51
  year: 2018
  ident: 8806_CR20
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.03.003
– volume: 32
  start-page: 67
  year: 2020
  ident: 8806_CR29
  publication-title: Journal of Organizational and End User Computing (JOEUC)
  doi: 10.4018/JOEUC.2020040104
– ident: 8806_CR3
  doi: 10.1007/s13042-019-00947-0
– ident: 8806_CR12
  doi: 10.1049/iet-ipr.2018.5769
– ident: 8806_CR25
SSID ssj0016524
Score 2.6358526
Snippet Human Action Recognition (HAR) has become one of the most active research area in the domain of artificial intelligence, due to various applications such as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14885
SubjectTerms Artificial intelligence
Artificial neural networks
Computer Communication Networks
Computer Science
Correlation coefficients
Data Structures and Information Theory
Human activity recognition
Multimedia Information Systems
Parameters
Special Purpose and Application-Based Systems
Surveillance
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vejBR1WsVtmDNw1m89gkXkSlpQgWEQu9hWQfgkhSm9Tf70yyaVSwt0CyG5LZec98Q8gFAsLIABhQh3ZoeTLwrFRECq5YpBScAeFig_PThI-n3uPMn5mAW2HKKhuZWAlqmQuMkV87EQPGDUKf384_LZwahdlVM0Jjk3RBBIfgfHXvh5Pnl1UegftmrG1oW6AbmWmbqZvnGLamoPsEnAZ-dfRbNbX25p8UaaV5Rntkx5iM9K6m8T7ZUFmP7DbjGKjhzh7Z_oEteEDeq_A8rfsW6KpOCK6x1P2N6iXGyWiuaVVTiF9Pk0xSqdScalXhfRY3FLdoc9y0zCk27uW0WC6-FE4sglcfkulo-PowtsxgBUsAx5VWIP1Q8UjY2k9FwFMEjMQWWa600DjxxU88BPpzI8US0HEs1dLn2g6F40jOmHtEOlmeqWNCdeinGnyelEnXU9xNRMJToIVwEw3CNOoT1vzTWBjUcRx-8RG3eMlIhxjoEFd0iGHN5WrNvMbcWPv0oCFVbPiviNvT0idXDfna2__vdrJ-t1Oy5YBVU5dtD0inXCzVGVglZXpujt43t7Ldig
  priority: 102
  providerName: ProQuest
Title Human action recognition using fusion of multiview and deep features: an application to video surveillance
URI https://link.springer.com/article/10.1007/s11042-020-08806-9
https://www.proquest.com/docview/2918767856
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6Rx58E0LS9ukrW-b7APFIeJgPpU2TQSRdezDv9-7rl1VVPCpgSYp9O5ySe5-vwO4IEKYxEMDNH7bt9zEc61YBRpbPNAadUA5BHC-H8nh2L2diEkOClsU2e5FSDJbqUuwGycoCR130DLwHBxUoCbo7I5aPLY7m9iBFLabw2N-HvfVBZX7ym-h0MzD9PdhN98ass5algewpad12CvKLrDcCuuw84lD8BBes2t4tsYnsE0-ELYppf2FmRXdh7HUsCx3kCIBLJomLNF6xozOeD0X14ymKGPZbJkyAuilbLGav2uqTISfPoJxv_d0M7TyAgqWQstaWl4ifC0D1TYiVp6MiRiSoLBSG2WosouIXCL0cwLNI_RlPDaJkKbtK9tOJOfOMVSn6VSfADO-iA2ebWKeOK6WTqQiGaPbU05kcNEMGsCLfxqqnF2cily8hSUvMskhRDmEmRxCHHO5GTNbc2v82btZiCrM7WwR2gHH5dzzhWzAVSG-8vXvs53-r_sZbKOmuet07SZUl_OVPsfdyDJuQcXvD1pQ6_S73RE9B893PXx2e6OHx1ammh_4Qtyg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60HtSDb_FRdQ960mA3j00iiIhaW18nBW8x2Ycg0lTbKv4pf6MzeTQq6K23hWQnsPPczHwzANvUEEb5qIAmaASWq3zXSmSoccVDrVEGpEMA5-sb0bpzL-69-zH4LLEwVFZZ2sTMUKtU0j_yfTvkqLh-4Imj7otFU6Mou1qO0MjF4lJ_vOOVrXfYPkX-7th28-z2pGUVUwUsieLWt3zlBVqEsmG8RPoioW6JhA8V2khD40682KUud06oeYwGnidGecI0AmnbSnDuIN1xmHAd3ELI9Ob5MGshvGKIbtCw0BPzAqSTQ_U4AWHosoZ6jbf48KcjrKLbXwnZzM8152CmCFDZcS5R8zCmOwswWw5_YIUtWIDpb50MF-EpSwawHCXBhlVJuKbC-kdmBvRXjqWGZRWMdNYs7iimtO4yo7Puor0DRiSqjDrrp4xgginrDV7fNM1Hwk8vwd1IDnwZap20o1eAmcBLDN6wEq4cVwsnlrFI0PlKJzZousNV4OWZRrLocU6jNp6jqjsz8SFCPkQZHyLcszvc0807fPz7dr1kVVRoey-qZHMV9kr2VY__prb2P7UtmGzdXl9FV-2by3WYsjGeygvG61Drvw70BsZD_WQzE0IGD6OW-i-w8BdV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS-RAEC7cEZb1wWt3cTz7wX1yg-kcnUQQ8Rq8dhBZwbds0ocgMhmdGcW_5q-zKulMXEHffGtIugJdV1eq6iuAdQKEUREqoInd2AlUFDi5TDSueKI1yoD0qcH5T1ccXQYnV-HVBDzXvTBUVlnbxNJQq0LSP_JNL-GouFEcik1jyyLODzo7_TuHJkhRprUep1GJyKl-esTwbbB9fIC8_uV5ncO_-0eOnTDgSBS9oROpMNYika4JcxmJnJATqVdUaCMNjT4Js4AQ7_xE8wyNPc-NCoVxY-l5SnDuI90vMBlhVOS2YHLvsHt-Mc5hiNCO1I1dB_0yty07VeMep7YYCt1QyzGmT_53i81d9016tvR6nVmYttdVtlvJ1xxM6N48zNSjIJi1DPMw9QrX8DvclKkBVvVMsHGNEq6pzP6amRH9o2OFYWU9I508y3qKKa37zOgSa3SwxYhEk19nw4JR02DBBqP7B03TkvDTP-DyU478J7R6RU8vADNxmBuMt3Ku_EALP5OZyNEVSz8zaMiTNvD6TFNpEc9p8MZt2mA1Ex9S5ENa8iHFPRvjPf0K7-PDt5drVqVW9wdpI6lt-F2zr3n8PrXFj6mtwVeU-PTsuHu6BN88vFxV1ePL0Brej_QKXo6G-aqVQgb_PlvwXwCWQRzn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+action+recognition+using+fusion+of+multiview+and+deep+features%3A+an+application+to+video+surveillance&rft.jtitle=Multimedia+tools+and+applications&rft.au=Khan%2C+Muhammad+Attique&rft.au=Javed%2C+Kashif&rft.au=Khan%2C+Sajid+Ali&rft.au=Saba%2C+Tanzila&rft.date=2024-02-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=5&rft.spage=14885&rft.epage=14911&rft_id=info:doi/10.1007%2Fs11042-020-08806-9&rft.externalDocID=10_1007_s11042_020_08806_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon