Automatic repair of convex optimization problems
Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem invol...
Saved in:
Published in | Optimization and engineering Vol. 22; no. 1; pp. 247 - 259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1389-4420 1573-2924 |
DOI | 10.1007/s11081-020-09508-9 |
Cover
Abstract | Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem involving the minimization of a convex regularization function of the parameters, subject to the constraint that the parameters result in a solvable problem. We propose a heuristic for approximately solving this problem that is based on the penalty method and leverages recently developed methods that can efficiently evaluate the derivative of the solution of a convex cone program with respect to its parameters. We illustrate our method by applying it to examples in optimal control and economics. |
---|---|
AbstractList | Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem involving the minimization of a convex regularization function of the parameters, subject to the constraint that the parameters result in a solvable problem. We propose a heuristic for approximately solving this problem that is based on the penalty method and leverages recently developed methods that can efficiently evaluate the derivative of the solution of a convex cone program with respect to its parameters. We illustrate our method by applying it to examples in optimal control and economics. |
Author | Angeris, Guillermo Barratt, Shane Boyd, Stephen |
Author_xml | – sequence: 1 givenname: Shane surname: Barratt fullname: Barratt, Shane email: stbarratt@gmail.com organization: Department of Electrical Engineering, Stanford University – sequence: 2 givenname: Guillermo surname: Angeris fullname: Angeris, Guillermo organization: Department of Electrical Engineering, Stanford University – sequence: 3 givenname: Stephen surname: Boyd fullname: Boyd, Stephen organization: Department of Electrical Engineering, Stanford University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqOTf93kWIpaoeBFz2E3m0hKd7MmW1E_vWlXEDz0NAPzfvNm3gxNutBZhK4J3BKA8i4RApJgoIBBCZBYnaEpESXDVFE-yT2TCnNO4QLNUtoCkIWgcopguR9CWw3eFNH2lY9FcIUJ3Yf9LEI_-NZ_52Hoij6GemfbdInOXbVL9uq3ztHrw_3Lao03z49Pq-UGG0bUgMuGS1VJMI7V3AJYymrLGic4qaumtNzWDJyQioNqSlI64wS1DhrBgIFRbI5uxr3Z-H1v06C3YR-7bKkpl5yWakF4VtFRZWJIKVqn--jbKn5pAvqQjB6T0TkZfUxGH1bLf5Dxw_HLIVZ-dxplI5qyT_dm499VJ6gfgx55mA |
CitedBy_id | crossref_primary_10_1109_TCNS_2020_3007821 crossref_primary_10_1109_JAS_2021_1004075 |
Cites_doi | 10.1017/CBO9780511804441 10.1287/ijoc.3.2.157 10.1006/jmaa.1999.6357 10.1016/0167-6377(87)90057-5 10.1007/BFb0121180 10.1145/355921.355923 10.1016/S0377-2217(97)00168-9 10.1137/1.9780898718829 10.1016/0305-0548(95)00018-H 10.2307/1967919 10.1007/3-540-48777-8_4 10.1109/ALLERTON.2019.8919776 10.1287/ijoc.3.3.253 10.1007/s10957-019-01480-4 10.1007/3-540-57785-8_168 10.1007/s10107-012-0629-5 10.1007/978-1-4684-2001-2_9 10.1016/0377-2217(81)90177-6 10.1287/ijoc.9.2.164 10.1137/050645828 10.1007/BF02284627 10.1007/s10957-016-0892-3 10.1561/2400000003 10.1016/j.cor.2006.08.007 10.1023/A:1013178600790 10.1287/mnsc.25.9.916 10.1016/0167-6377(93)90079-V |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s11081-020-09508-9 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2924 |
EndPage | 259 |
ExternalDocumentID | 10_1007_s11081_020_09508_9 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 KR7 |
ID | FETCH-LOGICAL-c319t-7d489a80cf3b4e00e23be3df541bad7e4eb30f589409d717fcf52ef0d53030c93 |
IEDL.DBID | AGYKE |
ISSN | 1389-4420 |
IngestDate | Fri Jul 25 12:24:50 EDT 2025 Tue Jul 01 00:40:01 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:49:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Parametric optimization Unboundedness Convex programming Infeasibility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7d489a80cf3b4e00e23be3df541bad7e4eb30f589409d717fcf52ef0d53030c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2484279614 |
PQPubID | 326265 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2484279614 crossref_primary_10_1007_s11081_020_09508_9 crossref_citationtrail_10_1007_s11081_020_09508_9 springer_journals_10_1007_s11081_020_09508_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
PublicationTitle | Optimization and engineering |
PublicationTitleAbbrev | Optim Eng |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DiamondSBoydSCVXPY: a Python-embedded modeling language for convex optimizationJ Mach Learn Res201617831534829211360.90008 NesterovYGradient methods for minimizing composite functionsMath Program20131401125161307186510.1007/s10107-012-0629-5 ObuchowskaWOn infeasibility of systems of convex analytic inequalitiesJ Math Anal Appl19992341223245169483710.1006/jmaa.1999.6357 RoodmanGNote–post-infeasibility analysis in linear programmingManage Sci197925991692256096510.1287/mnsc.25.9.916 MartinetBBrève communication. régularisation d’inéquations variationnelles par approximations successivesESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique19704R31541580215.21103 BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441 ObuchowskaWInfeasibility analysis for systems of quadratic convex inequalitiesEur J Oper Res1998107363364310.1016/S0377-2217(97)00168-9 Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59 GUROBI Optimization (2019) Gurobi optimizer reference manual KellnerKPfetschMTheobaldTIrreducible infeasible subsystems of semidefinite systemsJ Optim Theory Appl20191813727742395183710.1007/s10957-019-01480-4 KuratorWO’NeillRPERUSE: an interactive system for mathematical programsACM Trans Math Softw19806448950910.1145/355921.355923 ParikhNBoydSProximal algorithmsFound Trends® Optim20141312723910.1561/2400000003 Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570 Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97 O’DonoghueBChuEParikhNBoydSConic optimization via operator splitting and homogeneous self-dual embeddingJ Optim Theory Appl2016169310421068350139710.1007/s10957-016-0892-3 AgrawalABarrattSBoydSBussetiEMoursiWDifferentiating through a cone programJ Appl Numer Optim201912107115 Carver W (1922) Systems of linear inequalities. Ann Math 212–220 SankaranJA note on resolving infeasibility in linear programs by constraint relaxationOper Res Lett19931311920121109510.1016/0167-6377(93)90079-V Barratt S, Boyd S (2019) Least squares auto-tuning. arXiv preprint arXiv:1904.05460 ChinneckJAn effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problemAnn Math Artif Intell1996171127144141573010.1007/BF02284627 ChinneckJFeasibility and infeasibility in optimization: algorithms and computational methods2007BerlinSpringer1178.90369 ChinneckJAnalyzing mathematical programs using MProbeAnn Oper Res20011041–43348187751610.1023/A:1013178600790 IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual PfetschMBranch-and-cut for the maximum feasible subsystem problemSIAM J Optim20081912138240302010.1137/050645828 MOSEK Aps (2020) MOSEK optimizer API for Python. https://docs.mosek.com Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103 Van LoonJNMIrreducibly inconsistent systems of linear inequalitiesEur J Oper Res19818328328863740110.1016/0377-2217(81)90177-6 GreenbergHANALYZE: a computer-assisted analysis system for linear programming modelsOper Res Lett19876524925510.1016/0167-6377(87)90057-5 TamizMMardleSJonesDDetecting IIS in infeasible linear programmes using techniques from goal programmingComput Oper Res199623211311910.1016/0305-0548(95)00018-H ChinneckJDravnieksELocating minimal infeasible constraint sets in linear programsORSA J Comput19913215716810.1287/ijoc.3.2.157 Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943 AmaralPJúdiceJSheraliHA reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraintsComput Oper Res200835514941509257832110.1016/j.cor.2006.08.007 ChinneckJFinding a useful subset of constraints for analysis in an infeasible linear programINFORMS J Comput199792164174147731210.1287/ijoc.9.2.164 GreenbergHMurphyFApproaches to diagnosing infeasible linear programsORSA J Comput19913325326110.1287/ijoc.3.3.253 H Greenberg (9508_CR17) 1987; 6 JNM Van Loon (9508_CR38) 1981; 8 9508_CR26 J Chinneck (9508_CR13) 2007 S Diamond (9508_CR15) 2016; 17 9508_CR22 9508_CR21 W Obuchowska (9508_CR28) 1998; 107 9508_CR20 A Agrawal (9508_CR2) 2019; 1 M Pfetsch (9508_CR33) 2008; 19 N Parikh (9508_CR31) 2014; 1 J Chinneck (9508_CR14) 1991; 3 W Obuchowska (9508_CR29) 1999; 234 B Martinet (9508_CR25) 1970; 4 J Chinneck (9508_CR11) 1997; 9 P Amaral (9508_CR5) 2008; 35 W Kurator (9508_CR24) 1980; 6 Y Nesterov (9508_CR27) 2013; 140 9508_CR16 G Roodman (9508_CR34) 1979; 25 9508_CR36 S Boyd (9508_CR8) 2004 J Chinneck (9508_CR10) 1996; 17 J Chinneck (9508_CR12) 2001; 104 9508_CR32 B O’Donoghue (9508_CR30) 2016; 169 M Tamiz (9508_CR37) 1996; 23 9508_CR1 9508_CR9 J Sankaran (9508_CR35) 1993; 13 9508_CR7 K Kellner (9508_CR23) 2019; 181 9508_CR6 H Greenberg (9508_CR19) 1991; 3 9508_CR4 9508_CR3 9508_CR18 |
References_xml | – reference: NesterovYGradient methods for minimizing composite functionsMath Program20131401125161307186510.1007/s10107-012-0629-5 – reference: SankaranJA note on resolving infeasibility in linear programs by constraint relaxationOper Res Lett19931311920121109510.1016/0167-6377(93)90079-V – reference: ChinneckJDravnieksELocating minimal infeasible constraint sets in linear programsORSA J Comput19913215716810.1287/ijoc.3.2.157 – reference: BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441 – reference: Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK – reference: Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97 – reference: O’DonoghueBChuEParikhNBoydSConic optimization via operator splitting and homogeneous self-dual embeddingJ Optim Theory Appl2016169310421068350139710.1007/s10957-016-0892-3 – reference: MOSEK Aps (2020) MOSEK optimizer API for Python. https://docs.mosek.com – reference: ObuchowskaWInfeasibility analysis for systems of quadratic convex inequalitiesEur J Oper Res1998107363364310.1016/S0377-2217(97)00168-9 – reference: ObuchowskaWOn infeasibility of systems of convex analytic inequalitiesJ Math Anal Appl19992341223245169483710.1006/jmaa.1999.6357 – reference: ChinneckJAnalyzing mathematical programs using MProbeAnn Oper Res20011041–43348187751610.1023/A:1013178600790 – reference: KellnerKPfetschMTheobaldTIrreducible infeasible subsystems of semidefinite systemsJ Optim Theory Appl20191813727742395183710.1007/s10957-019-01480-4 – reference: GreenbergHMurphyFApproaches to diagnosing infeasible linear programsORSA J Comput19913325326110.1287/ijoc.3.3.253 – reference: PfetschMBranch-and-cut for the maximum feasible subsystem problemSIAM J Optim20081912138240302010.1137/050645828 – reference: TamizMMardleSJonesDDetecting IIS in infeasible linear programmes using techniques from goal programmingComput Oper Res199623211311910.1016/0305-0548(95)00018-H – reference: Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer – reference: DiamondSBoydSCVXPY: a Python-embedded modeling language for convex optimizationJ Mach Learn Res201617831534829211360.90008 – reference: GreenbergHANALYZE: a computer-assisted analysis system for linear programming modelsOper Res Lett19876524925510.1016/0167-6377(87)90057-5 – reference: Barratt S, Boyd S (2019) Least squares auto-tuning. arXiv preprint arXiv:1904.05460 – reference: ChinneckJFeasibility and infeasibility in optimization: algorithms and computational methods2007BerlinSpringer1178.90369 – reference: Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis – reference: Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM – reference: ChinneckJAn effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problemAnn Math Artif Intell1996171127144141573010.1007/BF02284627 – reference: GUROBI Optimization (2019) Gurobi optimizer reference manual – reference: IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual – reference: Van LoonJNMIrreducibly inconsistent systems of linear inequalitiesEur J Oper Res19818328328863740110.1016/0377-2217(81)90177-6 – reference: Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570 – reference: AgrawalABarrattSBoydSBussetiEMoursiWDifferentiating through a cone programJ Appl Numer Optim201912107115 – reference: Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59 – reference: Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103 – reference: ChinneckJFinding a useful subset of constraints for analysis in an infeasible linear programINFORMS J Comput199792164174147731210.1287/ijoc.9.2.164 – reference: RoodmanGNote–post-infeasibility analysis in linear programmingManage Sci197925991692256096510.1287/mnsc.25.9.916 – reference: KuratorWO’NeillRPERUSE: an interactive system for mathematical programsACM Trans Math Softw19806448950910.1145/355921.355923 – reference: AmaralPJúdiceJSheraliHA reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraintsComput Oper Res200835514941509257832110.1016/j.cor.2006.08.007 – reference: ParikhNBoydSProximal algorithmsFound Trends® Optim20141312723910.1561/2400000003 – reference: MartinetBBrève communication. régularisation d’inéquations variationnelles par approximations successivesESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique19704R31541580215.21103 – reference: Carver W (1922) Systems of linear inequalities. Ann Math 212–220 – reference: Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943 – volume-title: Convex optimization year: 2004 ident: 9508_CR8 doi: 10.1017/CBO9780511804441 – ident: 9508_CR32 – volume: 3 start-page: 157 issue: 2 year: 1991 ident: 9508_CR14 publication-title: ORSA J Comput doi: 10.1287/ijoc.3.2.157 – ident: 9508_CR6 – volume: 234 start-page: 223 issue: 1 year: 1999 ident: 9508_CR29 publication-title: J Math Anal Appl doi: 10.1006/jmaa.1999.6357 – ident: 9508_CR26 – ident: 9508_CR36 – volume: 6 start-page: 249 issue: 5 year: 1987 ident: 9508_CR17 publication-title: Oper Res Lett doi: 10.1016/0167-6377(87)90057-5 – ident: 9508_CR18 doi: 10.1007/BFb0121180 – ident: 9508_CR21 – volume: 4 start-page: 154 issue: R3 year: 1970 ident: 9508_CR25 publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique – volume: 6 start-page: 489 issue: 4 year: 1980 ident: 9508_CR24 publication-title: ACM Trans Math Softw doi: 10.1145/355921.355923 – volume: 107 start-page: 633 issue: 3 year: 1998 ident: 9508_CR28 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(97)00168-9 – ident: 9508_CR7 doi: 10.1137/1.9780898718829 – volume: 23 start-page: 113 issue: 2 year: 1996 ident: 9508_CR37 publication-title: Comput Oper Res doi: 10.1016/0305-0548(95)00018-H – ident: 9508_CR9 doi: 10.2307/1967919 – ident: 9508_CR4 doi: 10.1007/3-540-48777-8_4 – ident: 9508_CR16 doi: 10.1109/ALLERTON.2019.8919776 – volume: 3 start-page: 253 issue: 3 year: 1991 ident: 9508_CR19 publication-title: ORSA J Comput doi: 10.1287/ijoc.3.3.253 – volume: 181 start-page: 727 issue: 3 year: 2019 ident: 9508_CR23 publication-title: J Optim Theory Appl doi: 10.1007/s10957-019-01480-4 – ident: 9508_CR3 doi: 10.1007/3-540-57785-8_168 – volume: 140 start-page: 125 issue: 1 year: 2013 ident: 9508_CR27 publication-title: Math Program doi: 10.1007/s10107-012-0629-5 – ident: 9508_CR1 – ident: 9508_CR22 doi: 10.1007/978-1-4684-2001-2_9 – volume: 8 start-page: 283 issue: 3 year: 1981 ident: 9508_CR38 publication-title: Eur J Oper Res doi: 10.1016/0377-2217(81)90177-6 – volume: 9 start-page: 164 issue: 2 year: 1997 ident: 9508_CR11 publication-title: INFORMS J Comput doi: 10.1287/ijoc.9.2.164 – volume: 19 start-page: 21 issue: 1 year: 2008 ident: 9508_CR33 publication-title: SIAM J Optim doi: 10.1137/050645828 – volume: 17 start-page: 127 issue: 1 year: 1996 ident: 9508_CR10 publication-title: Ann Math Artif Intell doi: 10.1007/BF02284627 – volume-title: Feasibility and infeasibility in optimization: algorithms and computational methods year: 2007 ident: 9508_CR13 – volume: 169 start-page: 1042 issue: 3 year: 2016 ident: 9508_CR30 publication-title: J Optim Theory Appl doi: 10.1007/s10957-016-0892-3 – volume: 1 start-page: 127 issue: 3 year: 2014 ident: 9508_CR31 publication-title: Found Trends® Optim doi: 10.1561/2400000003 – volume: 1 start-page: 107 issue: 2 year: 2019 ident: 9508_CR2 publication-title: J Appl Numer Optim – volume: 35 start-page: 1494 issue: 5 year: 2008 ident: 9508_CR5 publication-title: Comput Oper Res doi: 10.1016/j.cor.2006.08.007 – volume: 17 start-page: 1 issue: 83 year: 2016 ident: 9508_CR15 publication-title: J Mach Learn Res – ident: 9508_CR20 – volume: 104 start-page: 33 issue: 1–4 year: 2001 ident: 9508_CR12 publication-title: Ann Oper Res doi: 10.1023/A:1013178600790 – volume: 25 start-page: 916 issue: 9 year: 1979 ident: 9508_CR34 publication-title: Manage Sci doi: 10.1287/mnsc.25.9.916 – volume: 13 start-page: 19 issue: 1 year: 1993 ident: 9508_CR35 publication-title: Oper Res Lett doi: 10.1016/0167-6377(93)90079-V |
SSID | ssj0016528 |
Score | 2.254051 |
Snippet | Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 247 |
SubjectTerms | Control Convex analysis Convexity Engineering Environmental Management Financial Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimal control Optimization Parameters Questions Regularization Research Article Systems Theory |
Title | Automatic repair of convex optimization problems |
URI | https://link.springer.com/article/10.1007/s11081-020-09508-9 https://www.proquest.com/docview/2484279614 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHv8XpHD140460TdrmWGRzKPNkYZ5K81EQdZW1A_GvN83SVYcKO4amoX1J3gfv_d4P4DIlPsUiQDZjwlcBis9tSiogcEp5yEVIkQaFTR78cYzvpmRqQGFFXe1epyS1pm7Abo4yX3YV7qCKutSmLegQJ6RhGzrR7dP9cJU98InmVK1ycDbGLjJgmd9X-WmQGi9zLTGq7c1oD-L6S5dlJi-DRckG_HOtieOmv7IPu8YBtaLliTmALTk7hJ1vbQnVaLLq5VocAYoWZa4H1lzZrue5lWeWLlb_sHKlcN4MktMy3DTFMcSj4ePN2DY8CzZXF7C0A4FDmoaIZx7DEiHpekx6IiPYYakIJFYBN8pISFUsKFT4l_GMuDJDgij7hzj1TqA9y2fyFCyHV9z1qc85JtjzlQqTOJBphhmSwsWiC04t7ISbJuQVF8Zr0rRPrmSTKNkkWjYJ7cLV6p33ZQuOf2f36j1MzHUsEheH2A2ockW6cF1vSfP479XONpt-DttuVfOia9R60C7nC3mhnJaS9c0Z7UMrdqMvkYbgOg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oPKgH8ROnU3vwpoGsTdrmOMQxddtpg91Cmw8QdJW1A_98kyxdVVTwGJrm8GvzPnjv934A1xmNGZEJRnkuY5OgxAIxaonAGROpkCnDjhQ2GseDKXmc0ZknhZV1t3tdknSWuiG7dY37QjbdwVa6FLFN2DLBQGp1C6Zhb107iKlTVLUVOERIiD1V5uczvrqjJsb8VhZ13qa_D3s-TAx6q-96ABtqfgi7n4YHmtVoPXG1PALcW1aFWwQL42GeF0GhA9dS_h4Uxiy8er5l4BVkymOY9u8ndwPk1RCQMNekQokkKctSLHSUE4WxCqNcRVJT0s0zmShi0mKsacpMxiZNkqaFpqHSWFLjpbBg0Qm05sVcnULQFVZhPouFIJREsTE0iiQq0yTHSoZEtqFbg8KFHxVuFSteeDPk2ALJDZDcAclZG27W77ytBmX8ubtTY839pSl5SFISJswEDG24rfFvHv9-2tn_tl_B9mAyGvLhw_jpHHZC26Xiuso60KoWS3Vhwowqv3R_1QeGqcU6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBNGD-InTqT1407A0TdrmONQxPzY8ONittPkAQduxdeCfb5J16xQVPIYmObwmee_x3u_3A7hMWcipjDDKMhmaBCUUiDMLBE65iIWMOXagsP4g7A3pw4iNVlD8rtt9UZKcYxosS1NetsdSt2vgm29cGbKpD7Yypoivw4Z5jn170oeks6wjhMypq9pqHKKU4Ao28_MeX11THW9-K5E6z9PdhZ0qZPQ683-8B2sq34ftFSJBM-ov2VenB4A7s7JwA29ivM3rxCu059rLP7zCPBHvFfbSq9Rkpocw7N693PRQpYyAhLkyJYokjXkaY6GDjCqMFQkyFUjNqJ-lMlLUpMhYs5ib7E2ahE0LzYjSWDLjsbDgwRE08iJXx-D5wqrNp6EQlNEgNI-OopFKNc2wkoTKJvgLoySiog236hVvSU14bA2ZGEMmzpAJb8LVcs14Tprx5-zWwtZJdYGmCaExJRE3wUMTrhf2rz__vtvJ_6ZfwObzbTd5uh88nsIWsQ0rrsGsBY1yMlNnJuIos3N3qD4BVWvJdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+repair+of+convex+optimization+problems&rft.jtitle=Optimization+and+engineering&rft.au=Barratt%2C+Shane&rft.au=Angeris+Guillermo&rft.au=Boyd%2C+Stephen&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=1&rft.spage=247&rft.epage=259&rft_id=info:doi/10.1007%2Fs11081-020-09508-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |