Automatic repair of convex optimization problems

Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem invol...

Full description

Saved in:
Bibliographic Details
Published inOptimization and engineering Vol. 22; no. 1; pp. 247 - 259
Main Authors Barratt, Shane, Angeris, Guillermo, Boyd, Stephen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1389-4420
1573-2924
DOI10.1007/s11081-020-09508-9

Cover

Abstract Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem involving the minimization of a convex regularization function of the parameters, subject to the constraint that the parameters result in a solvable problem. We propose a heuristic for approximately solving this problem that is based on the penalty method and leverages recently developed methods that can efficiently evaluate the derivative of the solution of a convex cone program with respect to its parameters. We illustrate our method by applying it to examples in optimal control and economics.
AbstractList Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the problem’s parameters such that the problem becomes solvable? In this paper, we address this question by posing it as an optimization problem involving the minimization of a convex regularization function of the parameters, subject to the constraint that the parameters result in a solvable problem. We propose a heuristic for approximately solving this problem that is based on the penalty method and leverages recently developed methods that can efficiently evaluate the derivative of the solution of a convex cone program with respect to its parameters. We illustrate our method by applying it to examples in optimal control and economics.
Author Angeris, Guillermo
Barratt, Shane
Boyd, Stephen
Author_xml – sequence: 1
  givenname: Shane
  surname: Barratt
  fullname: Barratt, Shane
  email: stbarratt@gmail.com
  organization: Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: Guillermo
  surname: Angeris
  fullname: Angeris, Guillermo
  organization: Department of Electrical Engineering, Stanford University
– sequence: 3
  givenname: Stephen
  surname: Boyd
  fullname: Boyd, Stephen
  organization: Department of Electrical Engineering, Stanford University
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqOTf93kWIpaoeBFz2E3m0hKd7MmW1E_vWlXEDz0NAPzfvNm3gxNutBZhK4J3BKA8i4RApJgoIBBCZBYnaEpESXDVFE-yT2TCnNO4QLNUtoCkIWgcopguR9CWw3eFNH2lY9FcIUJ3Yf9LEI_-NZ_52Hoij6GemfbdInOXbVL9uq3ztHrw_3Lao03z49Pq-UGG0bUgMuGS1VJMI7V3AJYymrLGic4qaumtNzWDJyQioNqSlI64wS1DhrBgIFRbI5uxr3Z-H1v06C3YR-7bKkpl5yWakF4VtFRZWJIKVqn--jbKn5pAvqQjB6T0TkZfUxGH1bLf5Dxw_HLIVZ-dxplI5qyT_dm499VJ6gfgx55mA
CitedBy_id crossref_primary_10_1109_TCNS_2020_3007821
crossref_primary_10_1109_JAS_2021_1004075
Cites_doi 10.1017/CBO9780511804441
10.1287/ijoc.3.2.157
10.1006/jmaa.1999.6357
10.1016/0167-6377(87)90057-5
10.1007/BFb0121180
10.1145/355921.355923
10.1016/S0377-2217(97)00168-9
10.1137/1.9780898718829
10.1016/0305-0548(95)00018-H
10.2307/1967919
10.1007/3-540-48777-8_4
10.1109/ALLERTON.2019.8919776
10.1287/ijoc.3.3.253
10.1007/s10957-019-01480-4
10.1007/3-540-57785-8_168
10.1007/s10107-012-0629-5
10.1007/978-1-4684-2001-2_9
10.1016/0377-2217(81)90177-6
10.1287/ijoc.9.2.164
10.1137/050645828
10.1007/BF02284627
10.1007/s10957-016-0892-3
10.1561/2400000003
10.1016/j.cor.2006.08.007
10.1023/A:1013178600790
10.1287/mnsc.25.9.916
10.1016/0167-6377(93)90079-V
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11081-020-09508-9
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2924
EndPage 259
ExternalDocumentID 10_1007_s11081_020_09508_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
KR7
ID FETCH-LOGICAL-c319t-7d489a80cf3b4e00e23be3df541bad7e4eb30f589409d717fcf52ef0d53030c93
IEDL.DBID AGYKE
ISSN 1389-4420
IngestDate Fri Jul 25 12:24:50 EDT 2025
Tue Jul 01 00:40:01 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:49:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parametric optimization
Unboundedness
Convex programming
Infeasibility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7d489a80cf3b4e00e23be3df541bad7e4eb30f589409d717fcf52ef0d53030c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2484279614
PQPubID 326265
PageCount 13
ParticipantIDs proquest_journals_2484279614
crossref_primary_10_1007_s11081_020_09508_9
crossref_citationtrail_10_1007_s11081_020_09508_9
springer_journals_10_1007_s11081_020_09508_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences
PublicationTitle Optimization and engineering
PublicationTitleAbbrev Optim Eng
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DiamondSBoydSCVXPY: a Python-embedded modeling language for convex optimizationJ Mach Learn Res201617831534829211360.90008
NesterovYGradient methods for minimizing composite functionsMath Program20131401125161307186510.1007/s10107-012-0629-5
ObuchowskaWOn infeasibility of systems of convex analytic inequalitiesJ Math Anal Appl19992341223245169483710.1006/jmaa.1999.6357
RoodmanGNote–post-infeasibility analysis in linear programmingManage Sci197925991692256096510.1287/mnsc.25.9.916
MartinetBBrève communication. régularisation d’inéquations variationnelles par approximations successivesESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique19704R31541580215.21103
BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
ObuchowskaWInfeasibility analysis for systems of quadratic convex inequalitiesEur J Oper Res1998107363364310.1016/S0377-2217(97)00168-9
Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis
Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM
Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59
GUROBI Optimization (2019) Gurobi optimizer reference manual
KellnerKPfetschMTheobaldTIrreducible infeasible subsystems of semidefinite systemsJ Optim Theory Appl20191813727742395183710.1007/s10957-019-01480-4
KuratorWO’NeillRPERUSE: an interactive system for mathematical programsACM Trans Math Softw19806448950910.1145/355921.355923
ParikhNBoydSProximal algorithmsFound Trends® Optim20141312723910.1561/2400000003
Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570
Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97
O’DonoghueBChuEParikhNBoydSConic optimization via operator splitting and homogeneous self-dual embeddingJ Optim Theory Appl2016169310421068350139710.1007/s10957-016-0892-3
AgrawalABarrattSBoydSBussetiEMoursiWDifferentiating through a cone programJ Appl Numer Optim201912107115
Carver W (1922) Systems of linear inequalities. Ann Math 212–220
SankaranJA note on resolving infeasibility in linear programs by constraint relaxationOper Res Lett19931311920121109510.1016/0167-6377(93)90079-V
Barratt S, Boyd S (2019) Least squares auto-tuning. arXiv preprint arXiv:1904.05460
ChinneckJAn effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problemAnn Math Artif Intell1996171127144141573010.1007/BF02284627
ChinneckJFeasibility and infeasibility in optimization: algorithms and computational methods2007BerlinSpringer1178.90369
ChinneckJAnalyzing mathematical programs using MProbeAnn Oper Res20011041–43348187751610.1023/A:1013178600790
IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual
PfetschMBranch-and-cut for the maximum feasible subsystem problemSIAM J Optim20081912138240302010.1137/050645828
MOSEK Aps (2020) MOSEK optimizer API for Python. https://docs.mosek.com
Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer
Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK
Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103
Van LoonJNMIrreducibly inconsistent systems of linear inequalitiesEur J Oper Res19818328328863740110.1016/0377-2217(81)90177-6
GreenbergHANALYZE: a computer-assisted analysis system for linear programming modelsOper Res Lett19876524925510.1016/0167-6377(87)90057-5
TamizMMardleSJonesDDetecting IIS in infeasible linear programmes using techniques from goal programmingComput Oper Res199623211311910.1016/0305-0548(95)00018-H
ChinneckJDravnieksELocating minimal infeasible constraint sets in linear programsORSA J Comput19913215716810.1287/ijoc.3.2.157
Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943
AmaralPJúdiceJSheraliHA reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraintsComput Oper Res200835514941509257832110.1016/j.cor.2006.08.007
ChinneckJFinding a useful subset of constraints for analysis in an infeasible linear programINFORMS J Comput199792164174147731210.1287/ijoc.9.2.164
GreenbergHMurphyFApproaches to diagnosing infeasible linear programsORSA J Comput19913325326110.1287/ijoc.3.3.253
H Greenberg (9508_CR17) 1987; 6
JNM Van Loon (9508_CR38) 1981; 8
9508_CR26
J Chinneck (9508_CR13) 2007
S Diamond (9508_CR15) 2016; 17
9508_CR22
9508_CR21
W Obuchowska (9508_CR28) 1998; 107
9508_CR20
A Agrawal (9508_CR2) 2019; 1
M Pfetsch (9508_CR33) 2008; 19
N Parikh (9508_CR31) 2014; 1
J Chinneck (9508_CR14) 1991; 3
W Obuchowska (9508_CR29) 1999; 234
B Martinet (9508_CR25) 1970; 4
J Chinneck (9508_CR11) 1997; 9
P Amaral (9508_CR5) 2008; 35
W Kurator (9508_CR24) 1980; 6
Y Nesterov (9508_CR27) 2013; 140
9508_CR16
G Roodman (9508_CR34) 1979; 25
9508_CR36
S Boyd (9508_CR8) 2004
J Chinneck (9508_CR10) 1996; 17
J Chinneck (9508_CR12) 2001; 104
9508_CR32
B O’Donoghue (9508_CR30) 2016; 169
M Tamiz (9508_CR37) 1996; 23
9508_CR1
9508_CR9
J Sankaran (9508_CR35) 1993; 13
9508_CR7
K Kellner (9508_CR23) 2019; 181
9508_CR6
H Greenberg (9508_CR19) 1991; 3
9508_CR4
9508_CR3
9508_CR18
References_xml – reference: NesterovYGradient methods for minimizing composite functionsMath Program20131401125161307186510.1007/s10107-012-0629-5
– reference: SankaranJA note on resolving infeasibility in linear programs by constraint relaxationOper Res Lett19931311920121109510.1016/0167-6377(93)90079-V
– reference: ChinneckJDravnieksELocating minimal infeasible constraint sets in linear programsORSA J Comput19913215716810.1287/ijoc.3.2.157
– reference: BoydSVandenbergheLConvex optimization2004CambridgeCambridge University Press10.1017/CBO9780511804441
– reference: Tamiz M, Mardle S, Jones D (1995) Resolving inconsistency in infeasible linear programmes. Technical report, School of Mathematical Studies, University of Portsmouth, UK
– reference: Greenberg H (1987) Computer-assisted analysis for diagnosing infeasible or unbounded linear programs. In: Computation mathematical programming. Springer, pp 79–97
– reference: O’DonoghueBChuEParikhNBoydSConic optimization via operator splitting and homogeneous self-dual embeddingJ Optim Theory Appl2016169310421068350139710.1007/s10957-016-0892-3
– reference: MOSEK Aps (2020) MOSEK optimizer API for Python. https://docs.mosek.com
– reference: ObuchowskaWInfeasibility analysis for systems of quadratic convex inequalitiesEur J Oper Res1998107363364310.1016/S0377-2217(97)00168-9
– reference: ObuchowskaWOn infeasibility of systems of convex analytic inequalitiesJ Math Anal Appl19992341223245169483710.1006/jmaa.1999.6357
– reference: ChinneckJAnalyzing mathematical programs using MProbeAnn Oper Res20011041–43348187751610.1023/A:1013178600790
– reference: KellnerKPfetschMTheobaldTIrreducible infeasible subsystems of semidefinite systemsJ Optim Theory Appl20191813727742395183710.1007/s10957-019-01480-4
– reference: GreenbergHMurphyFApproaches to diagnosing infeasible linear programsORSA J Comput19913325326110.1287/ijoc.3.3.253
– reference: PfetschMBranch-and-cut for the maximum feasible subsystem problemSIAM J Optim20081912138240302010.1137/050645828
– reference: TamizMMardleSJonesDDetecting IIS in infeasible linear programmes using techniques from goal programmingComput Oper Res199623211311910.1016/0305-0548(95)00018-H
– reference: Amaldi E (1994) From finding maximum feasible subsystems of linear systems to feedforward neural network design. Ph.D. thesis, Citeseer
– reference: DiamondSBoydSCVXPY: a Python-embedded modeling language for convex optimizationJ Mach Learn Res201617831534829211360.90008
– reference: GreenbergHANALYZE: a computer-assisted analysis system for linear programming modelsOper Res Lett19876524925510.1016/0167-6377(87)90057-5
– reference: Barratt S, Boyd S (2019) Least squares auto-tuning. arXiv preprint arXiv:1904.05460
– reference: ChinneckJFeasibility and infeasibility in optimization: algorithms and computational methods2007BerlinSpringer1178.90369
– reference: Pfetsch M (2003) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis
– reference: Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol 2. SIAM
– reference: ChinneckJAn effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problemAnn Math Artif Intell1996171127144141573010.1007/BF02284627
– reference: GUROBI Optimization (2019) Gurobi optimizer reference manual
– reference: IBM (2016) IBM ILOG CPLEX optimization studio CPLEX user’s manual
– reference: Van LoonJNMIrreducibly inconsistent systems of linear inequalitiesEur J Oper Res19818328328863740110.1016/0377-2217(81)90177-6
– reference: Agrawal A, Amos B, Barratt S, Boyd S, Diamond S, Kolter J.Z (2019a) Differentiable convex optimization layers. In: Advances in neural information processing systems, pp 9558–9570
– reference: AgrawalABarrattSBoydSBussetiEMoursiWDifferentiating through a cone programJ Appl Numer Optim201912107115
– reference: Amaldi E, Pfetsch M, Trotter L (1999) Some structural and algorithmic properties of the maximum feasible subsystem problem. In: International conference on integer programming and combinatorial optimization. Springer, pp 45–59
– reference: Karp R (1972) Reducibility among combinatorial problems. In: Complexity of computer computations, pp 85–103
– reference: ChinneckJFinding a useful subset of constraints for analysis in an infeasible linear programINFORMS J Comput199792164174147731210.1287/ijoc.9.2.164
– reference: RoodmanGNote–post-infeasibility analysis in linear programmingManage Sci197925991692256096510.1287/mnsc.25.9.916
– reference: KuratorWO’NeillRPERUSE: an interactive system for mathematical programsACM Trans Math Softw19806448950910.1145/355921.355923
– reference: AmaralPJúdiceJSheraliHA reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraintsComput Oper Res200835514941509257832110.1016/j.cor.2006.08.007
– reference: ParikhNBoydSProximal algorithmsFound Trends® Optim20141312723910.1561/2400000003
– reference: MartinetBBrève communication. régularisation d’inéquations variationnelles par approximations successivesESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique19704R31541580215.21103
– reference: Carver W (1922) Systems of linear inequalities. Ann Math 212–220
– reference: Gambella C, Marecek J, Mevissen M (2019) Projections onto the set of feasible inputs and the set of feasible solutions. In: Allerton conference on communication, control, and computing. IEEE, pp 937–943
– volume-title: Convex optimization
  year: 2004
  ident: 9508_CR8
  doi: 10.1017/CBO9780511804441
– ident: 9508_CR32
– volume: 3
  start-page: 157
  issue: 2
  year: 1991
  ident: 9508_CR14
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.3.2.157
– ident: 9508_CR6
– volume: 234
  start-page: 223
  issue: 1
  year: 1999
  ident: 9508_CR29
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.1999.6357
– ident: 9508_CR26
– ident: 9508_CR36
– volume: 6
  start-page: 249
  issue: 5
  year: 1987
  ident: 9508_CR17
  publication-title: Oper Res Lett
  doi: 10.1016/0167-6377(87)90057-5
– ident: 9508_CR18
  doi: 10.1007/BFb0121180
– ident: 9508_CR21
– volume: 4
  start-page: 154
  issue: R3
  year: 1970
  ident: 9508_CR25
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique
– volume: 6
  start-page: 489
  issue: 4
  year: 1980
  ident: 9508_CR24
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355921.355923
– volume: 107
  start-page: 633
  issue: 3
  year: 1998
  ident: 9508_CR28
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(97)00168-9
– ident: 9508_CR7
  doi: 10.1137/1.9780898718829
– volume: 23
  start-page: 113
  issue: 2
  year: 1996
  ident: 9508_CR37
  publication-title: Comput Oper Res
  doi: 10.1016/0305-0548(95)00018-H
– ident: 9508_CR9
  doi: 10.2307/1967919
– ident: 9508_CR4
  doi: 10.1007/3-540-48777-8_4
– ident: 9508_CR16
  doi: 10.1109/ALLERTON.2019.8919776
– volume: 3
  start-page: 253
  issue: 3
  year: 1991
  ident: 9508_CR19
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.3.3.253
– volume: 181
  start-page: 727
  issue: 3
  year: 2019
  ident: 9508_CR23
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-019-01480-4
– ident: 9508_CR3
  doi: 10.1007/3-540-57785-8_168
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  ident: 9508_CR27
  publication-title: Math Program
  doi: 10.1007/s10107-012-0629-5
– ident: 9508_CR1
– ident: 9508_CR22
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 8
  start-page: 283
  issue: 3
  year: 1981
  ident: 9508_CR38
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(81)90177-6
– volume: 9
  start-page: 164
  issue: 2
  year: 1997
  ident: 9508_CR11
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.9.2.164
– volume: 19
  start-page: 21
  issue: 1
  year: 2008
  ident: 9508_CR33
  publication-title: SIAM J Optim
  doi: 10.1137/050645828
– volume: 17
  start-page: 127
  issue: 1
  year: 1996
  ident: 9508_CR10
  publication-title: Ann Math Artif Intell
  doi: 10.1007/BF02284627
– volume-title: Feasibility and infeasibility in optimization: algorithms and computational methods
  year: 2007
  ident: 9508_CR13
– volume: 169
  start-page: 1042
  issue: 3
  year: 2016
  ident: 9508_CR30
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-016-0892-3
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 9508_CR31
  publication-title: Found Trends® Optim
  doi: 10.1561/2400000003
– volume: 1
  start-page: 107
  issue: 2
  year: 2019
  ident: 9508_CR2
  publication-title: J Appl Numer Optim
– volume: 35
  start-page: 1494
  issue: 5
  year: 2008
  ident: 9508_CR5
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2006.08.007
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  ident: 9508_CR15
  publication-title: J Mach Learn Res
– ident: 9508_CR20
– volume: 104
  start-page: 33
  issue: 1–4
  year: 2001
  ident: 9508_CR12
  publication-title: Ann Oper Res
  doi: 10.1023/A:1013178600790
– volume: 25
  start-page: 916
  issue: 9
  year: 1979
  ident: 9508_CR34
  publication-title: Manage Sci
  doi: 10.1287/mnsc.25.9.916
– volume: 13
  start-page: 19
  issue: 1
  year: 1993
  ident: 9508_CR35
  publication-title: Oper Res Lett
  doi: 10.1016/0167-6377(93)90079-V
SSID ssj0016528
Score 2.254051
Snippet Given an infeasible, unbounded, or pathological convex optimization problem, a natural question to ask is: what is the smallest change we can make to the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Control
Convex analysis
Convexity
Engineering
Environmental Management
Financial Engineering
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimal control
Optimization
Parameters
Questions
Regularization
Research Article
Systems Theory
Title Automatic repair of convex optimization problems
URI https://link.springer.com/article/10.1007/s11081-020-09508-9
https://www.proquest.com/docview/2484279614
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHv8XpHD140460TdrmWGRzKPNkYZ5K81EQdZW1A_GvN83SVYcKO4amoX1J3gfv_d4P4DIlPsUiQDZjwlcBis9tSiogcEp5yEVIkQaFTR78cYzvpmRqQGFFXe1epyS1pm7Abo4yX3YV7qCKutSmLegQJ6RhGzrR7dP9cJU98InmVK1ycDbGLjJgmd9X-WmQGi9zLTGq7c1oD-L6S5dlJi-DRckG_HOtieOmv7IPu8YBtaLliTmALTk7hJ1vbQnVaLLq5VocAYoWZa4H1lzZrue5lWeWLlb_sHKlcN4MktMy3DTFMcSj4ePN2DY8CzZXF7C0A4FDmoaIZx7DEiHpekx6IiPYYakIJFYBN8pISFUsKFT4l_GMuDJDgij7hzj1TqA9y2fyFCyHV9z1qc85JtjzlQqTOJBphhmSwsWiC04t7ISbJuQVF8Zr0rRPrmSTKNkkWjYJ7cLV6p33ZQuOf2f36j1MzHUsEheH2A2ockW6cF1vSfP479XONpt-DttuVfOia9R60C7nC3mhnJaS9c0Z7UMrdqMvkYbgOg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oPKgH8ROnU3vwpoGsTdrmOMQxddtpg91Cmw8QdJW1A_98kyxdVVTwGJrm8GvzPnjv934A1xmNGZEJRnkuY5OgxAIxaonAGROpkCnDjhQ2GseDKXmc0ZknhZV1t3tdknSWuiG7dY37QjbdwVa6FLFN2DLBQGp1C6Zhb107iKlTVLUVOERIiD1V5uczvrqjJsb8VhZ13qa_D3s-TAx6q-96ABtqfgi7n4YHmtVoPXG1PALcW1aFWwQL42GeF0GhA9dS_h4Uxiy8er5l4BVkymOY9u8ndwPk1RCQMNekQokkKctSLHSUE4WxCqNcRVJT0s0zmShi0mKsacpMxiZNkqaFpqHSWFLjpbBg0Qm05sVcnULQFVZhPouFIJREsTE0iiQq0yTHSoZEtqFbg8KFHxVuFSteeDPk2ALJDZDcAclZG27W77ytBmX8ubtTY839pSl5SFISJswEDG24rfFvHv9-2tn_tl_B9mAyGvLhw_jpHHZC26Xiuso60KoWS3Vhwowqv3R_1QeGqcU6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBNGD-InTqT1407A0TdrmONQxPzY8ONittPkAQduxdeCfb5J16xQVPIYmObwmee_x3u_3A7hMWcipjDDKMhmaBCUUiDMLBE65iIWMOXagsP4g7A3pw4iNVlD8rtt9UZKcYxosS1NetsdSt2vgm29cGbKpD7Yypoivw4Z5jn170oeks6wjhMypq9pqHKKU4Ao28_MeX11THW9-K5E6z9PdhZ0qZPQ683-8B2sq34ftFSJBM-ov2VenB4A7s7JwA29ivM3rxCu059rLP7zCPBHvFfbSq9Rkpocw7N693PRQpYyAhLkyJYokjXkaY6GDjCqMFQkyFUjNqJ-lMlLUpMhYs5ib7E2ahE0LzYjSWDLjsbDgwRE08iJXx-D5wqrNp6EQlNEgNI-OopFKNc2wkoTKJvgLoySiog236hVvSU14bA2ZGEMmzpAJb8LVcs14Tprx5-zWwtZJdYGmCaExJRE3wUMTrhf2rz__vtvJ_6ZfwObzbTd5uh88nsIWsQ0rrsGsBY1yMlNnJuIos3N3qD4BVWvJdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+repair+of+convex+optimization+problems&rft.jtitle=Optimization+and+engineering&rft.au=Barratt%2C+Shane&rft.au=Angeris+Guillermo&rft.au=Boyd%2C+Stephen&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=1&rft.spage=247&rft.epage=259&rft_id=info:doi/10.1007%2Fs11081-020-09508-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon