Design and development of optical fiber Bragg grating based device for measurement of handgrip force
A non-invasive optical fiber Bragg grating based handgrip device for the dynamic measurement of the handgrip force is proposed. The handgrip force is an indicator of biomechanical parameters like fracture of vertebral bones, limb strength, etc. The proposed device converts the grip force exerted at...
Saved in:
Published in | Optical and quantum electronics Vol. 54; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0306-8919 1572-817X |
DOI | 10.1007/s11082-021-03429-2 |
Cover
Abstract | A non-invasive optical fiber Bragg grating based handgrip device for the dynamic measurement of the handgrip force is proposed. The handgrip force is an indicator of biomechanical parameters like fracture of vertebral bones, limb strength, etc. The proposed device converts the grip force exerted at the surface into strain variation on the vertical bars, which is sensed by the bonded fiber Bragg grating sensors. Ansys Multiphysics is used for modeling and analysis of the handgrip device. The developed device is calibrated using a micro universal testing machine (μUTM) to determine the relationship between the load/force applied on the device and the Bragg wavelength shift of the fiber Bragg grating sensor and a calibration factor of 5.35 µϵ/Kg is obtained. The device shows a sensitivity of 1.21 pm/μϵ. The developed device is used to measure the handgrip force of a subject with a fractured arm. 10 volunteers (both men and women) with fractured arms were involved in the study. Additionally, the fiber Bragg grating based handgrip device is clinically evaluated in comparison to an X-ray image. The radiations due to X-rays harm the healthy tissues, concerning this developed device offers benefits such as being immune to electromagnetic interference, small size, lightweight, highly sensitive and applicable for a variation in the force exerted by the handgrip, aiding in monitoring the rehabilitation of patients with arm injuries. |
---|---|
AbstractList | A non-invasive optical fiber Bragg grating based handgrip device for the dynamic measurement of the handgrip force is proposed. The handgrip force is an indicator of biomechanical parameters like fracture of vertebral bones, limb strength, etc. The proposed device converts the grip force exerted at the surface into strain variation on the vertical bars, which is sensed by the bonded fiber Bragg grating sensors. Ansys Multiphysics is used for modeling and analysis of the handgrip device. The developed device is calibrated using a micro universal testing machine (μUTM) to determine the relationship between the load/force applied on the device and the Bragg wavelength shift of the fiber Bragg grating sensor and a calibration factor of 5.35 µϵ/Kg is obtained. The device shows a sensitivity of 1.21 pm/μϵ. The developed device is used to measure the handgrip force of a subject with a fractured arm. 10 volunteers (both men and women) with fractured arms were involved in the study. Additionally, the fiber Bragg grating based handgrip device is clinically evaluated in comparison to an X-ray image. The radiations due to X-rays harm the healthy tissues, concerning this developed device offers benefits such as being immune to electromagnetic interference, small size, lightweight, highly sensitive and applicable for a variation in the force exerted by the handgrip, aiding in monitoring the rehabilitation of patients with arm injuries. A non-invasive optical fiber Bragg grating based handgrip device for the dynamic measurement of the handgrip force is proposed. The handgrip force is an indicator of biomechanical parameters like fracture of vertebral bones, limb strength, etc. The proposed device converts the grip force exerted at the surface into strain variation on the vertical bars, which is sensed by the bonded fiber Bragg grating sensors. Ansys Multiphysics is used for modeling and analysis of the handgrip device. The developed device is calibrated using a micro universal testing machine (μUTM) to determine the relationship between the load/force applied on the device and the Bragg wavelength shift of the fiber Bragg grating sensor and a calibration factor of 5.35 µϵ/Kg is obtained. The device shows a sensitivity of 1.21 pm/μϵ. The developed device is used to measure the handgrip force of a subject with a fractured arm. 10 volunteers (both men and women) with fractured arms were involved in the study. Additionally, the fiber Bragg grating based handgrip device is clinically evaluated in comparison to an X-ray image. The radiations due to X-rays harm the healthy tissues, concerning this developed device offers benefits such as being immune to electromagnetic interference, small size, lightweight, highly sensitive and applicable for a variation in the force exerted by the handgrip, aiding in monitoring the rehabilitation of patients with arm injuries. |
ArticleNumber | 68 |
Author | Honnungar, Rajini V. Jahan, M. A. Ibrar Asokan, S. Chethana, K. |
Author_xml | – sequence: 1 givenname: M. A. Ibrar surname: Jahan fullname: Jahan, M. A. Ibrar email: ibrarjahan.ec@gmail.com organization: Department of Electronics and Communication Engineering, RNS Institute of Technology – sequence: 2 givenname: K. surname: Chethana fullname: Chethana, K. organization: Department of Electronics and Communication Engineering, Jyothy Institute of Technology – sequence: 3 givenname: Rajini V. surname: Honnungar fullname: Honnungar, Rajini V. organization: Department of Electronics and Communication Engineering, RNS Institute of Technology – sequence: 4 givenname: S. surname: Asokan fullname: Asokan, S. organization: Department of Instrumentation and Applied Physics, Indian Institute of Science |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDrgR-I4SyhPqRIbkNhZjjMOrlo72CkSf0_agJBYdDWLmXPv6MzQxAcPCJ1TckkJKa8SpUSyjDCaEZ6zKmNHaEqLkmWSlm8TNCWciExWtDpBs5RWhBCRF2SKmltIrvVY-wY38Anr0G3A9zhYHLreGb3G1tUQ8U3UbYvbqHvnW1zrBHvAGcA2RLwBnbYRftn3Ia-NrtvtDJyiY6vXCc5-5hy93t-9LB6z5fPD0-J6mRlOqz4rTWNsUVsral5RUcmmqU3FDOeiEE1Ncy01FA0jJbeiyMFIpmsoBBSmZhpyPkcXY24Xw8cWUq9WYRv9UKmYoIJLTvPdFRuvTAwpRbCqi26j45eiRO1sqtGmGmyqvU3FBkj-g4zrBxfB91G79WGUj2gaenwL8e-rA9Q3F9mM5g |
CitedBy_id | crossref_primary_10_3390_s24165100 |
Cites_doi | 10.1063/1.1148392 10.1016/j.clnu.2004.08.007 10.1109/50.618320 10.3390/s120201898 10.1002/jor.24325 10.1016/j.ergon.2005.01.007 10.3390/s18093115 10.1259/bjr/55733882 10.3171/foc.2001.10.4.2 10.1007/s00402-014-2027-3 10.1016/j.medengphy.2011.08.011 10.1016/j.bone.2004.11.007 10.1109/ACCESS.2020.3019138 10.2466/pms.2001.93.2.323 10.1519/JPT.0000000000000034 10.1007/s11420-009-9130-y 10.1093/ageing/afq034 10.1016/j.injury.2011.03.031 10.1117/1.JBO.21.11.117002 10.1302/2046-3758.87.BJR-2018-0215.R2 10.1007/978-1-4471-5451-8_139 10.1109/JSEN.2019.2949608 10.1364/AO.44.003696 10.1109/CONECCT50063.2020.9198583 10.1016/j.matpr.2020.10.471 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-021-03429-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_021_03429_2 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-7cdcf5bff6b391698ddbc92c33656db14a8ae5d2073f654ec82abe56e5cb2ae43 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 11:02:09 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Tue Jul 01 01:26:22 EDT 2025 Fri Feb 21 02:46:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fiber Bragg grating Handgrip device Optical Wavelength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7cdcf5bff6b391698ddbc92c33656db14a8ae5d2073f654ec82abe56e5cb2ae43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2616383144 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2616383144 crossref_primary_10_1007_s11082_021_03429_2 crossref_citationtrail_10_1007_s11082_021_03429_2 springer_journals_10_1007_s11082_021_03429_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Campanella, Cuccovillo, Campanella, Yurt, Passaro (CR5) 2018; 18 Marsell, Einhorn (CR14) 2011; 42 Nicholson, Tsang, MacGillivray, Perks, Simpson (CR18) 2019; 8 Babatunde, Fragomen, Rozbruch (CR2) 2010; 6 Paul, Zhao, Ngoi (CR22) 2005; 44 Presti (CR23) 2020; 8 Vigneswari, Savithri, Mahendran (CR27) 2015; 10 Vermeulen, Neyens, Spreeuwenberg, Van Rossum, Hewson, De Witte (CR26) 2015; 38 Chethana, Prasad, Ravi, Omkar, Asokan (CR6) 2019; 6 Hill, Meltz (CR10) 1997; 15 Norman, Schütz, Kemps, Lübke, Lochs, Pirlich (CR20) 2005; 24 Wall, Kendall, Edwards, Bouffler, Muirhead, Meara (CR28) 2006; 79 CR8 Shefelbine (CR24) 2005; 36 CR7 Mihailov (CR16) 2012; 12 Li, Hewson, Duchêne, Hogrel (CR13) 2010; 15 Cruz-Jentoft (CR9) 2010; 39 Kalfas (CR11) 2001; 10 Bohannon (CR4) 2001; 93 Kumar, Narayan (CR12) 2014; 60 Othonos (CR21) 1997; 68 Wong, Chiu, Russ, Liew (CR30) 2012; 34 Ambastha, Umesh, Dabir, Asokan (CR1) 2016; 21 Mühldorfer-Fodor (CR17) 2014; 134 Nicolay, Walker (CR19) 2005; 35 Massaroni, Zaltieri, Presti, Nicolò, Tosi, Schena (CR15) 2020; 20 Black, Zare, Oblea, Park, Moslehi, Neslen (CR3) 2008; 8 Trinidad Fernandez (CR25) 2017; 41 Wolynski (CR29) 2019; 37 KO Hill (3429_CR10) 1997; 15 M Mühldorfer-Fodor (3429_CR17) 2014; 134 CW Nicolay (3429_CR19) 2005; 35 CE Campanella (3429_CR5) 2018; 18 AJ Cruz-Jentoft (3429_CR9) 2010; 39 IH Kalfas (3429_CR11) 2001; 10 OM Babatunde (3429_CR2) 2010; 6 J Paul (3429_CR22) 2005; 44 R Marsell (3429_CR14) 2011; 42 K Norman (3429_CR20) 2005; 24 DL Presti (3429_CR23) 2020; 8 3429_CR7 3429_CR8 S Ambastha (3429_CR1) 2016; 21 A Othonos (3429_CR21) 1997; 68 C Massaroni (3429_CR15) 2020; 20 SJ Mihailov (3429_CR16) 2012; 12 SV Vigneswari (3429_CR27) 2015; 10 JG Wolynski (3429_CR29) 2019; 37 M Trinidad Fernandez (3429_CR25) 2017; 41 SJ Shefelbine (3429_CR24) 2005; 36 K Li (3429_CR13) 2010; 15 J Vermeulen (3429_CR26) 2015; 38 LCY Wong (3429_CR30) 2012; 34 JA Nicholson (3429_CR18) 2019; 8 RJ Black (3429_CR3) 2008; 8 BF Wall (3429_CR28) 2006; 79 RW Bohannon (3429_CR4) 2001; 93 K Chethana (3429_CR6) 2019; 6 G Kumar (3429_CR12) 2014; 60 |
References_xml | – volume: 68 start-page: 4309 year: 1997 end-page: 4341 ident: CR21 article-title: Fiber Bragg gratings publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148392 – volume: 24 start-page: 143 year: 2005 end-page: 150 ident: CR20 article-title: The subjective global assessment reliably identifies malnutrition-related muscle dysfunction publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2004.08.007 – volume: 15 start-page: 1263 year: 1997 end-page: 1276 ident: CR10 article-title: Fiber Bragg grating technology fundamentals and overview publication-title: J. Light. Technol. doi: 10.1109/50.618320 – volume: 12 start-page: 1898 year: 2012 end-page: 1918 ident: CR16 article-title: Fiber Bragg grating sensors for harsh environments publication-title: Sensors. doi: 10.3390/s120201898 – volume: 37 start-page: 1873 year: 2019 end-page: 1880 ident: CR29 article-title: Utilizing multiple BioMEMS sensors to monitor orthopaedic strain and predict bone fracture healing publication-title: J. Orthop. Res. doi: 10.1002/jor.24325 – volume: 6 start-page: 1 year: 2019 end-page: 14 ident: CR6 article-title: Fiber Bragg grating sensor based device for the measurement of hand grip strength publication-title: JETIR – volume: 35 start-page: 605 year: 2005 end-page: 618 ident: CR19 article-title: Grip strength and endurance influences of anthropometric variation, hand dominance, and gender publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2005.01.007 – volume: 10 start-page: 17315 year: 2015 end-page: 17326 ident: CR27 article-title: Gripping force measurement and EMG classification for hand functions publication-title: Int. J. Appl. Eng. Res. – volume: 41 start-page: 0 year: 2017 end-page: 30 ident: CR25 article-title: Muscle activity and architecture as a predictor of handgrip strength publication-title: Physiol. Meas. – volume: 18 start-page: 3115 year: 2018 ident: CR5 article-title: Fibre Bragg Grating based strain sensors Review of technology and applications publication-title: Sensors doi: 10.3390/s18093115 – volume: 79 start-page: 285 year: 2006 end-page: 294 ident: CR28 article-title: What are the risks from medical X-rays and other low dose radiation? publication-title: Br. J. Radiol. doi: 10.1259/bjr/55733882 – volume: 10 start-page: 1 year: 2001 end-page: 4 ident: CR11 article-title: Principles of bone healing publication-title: Neurosurg. Focus. doi: 10.3171/foc.2001.10.4.2 – volume: 134 start-page: 1179 year: 2014 end-page: 1188 ident: CR17 article-title: Grip force monitoring on the hand: manugraphy system versus Jamar dynamometer publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-014-2027-3 – volume: 34 start-page: 140 year: 2012 end-page: 152 ident: CR30 article-title: Review of techniques for monitoring the healing fracture of bones for implementation in an internally fixated pelvis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.08.011 – ident: CR8 – volume: 36 start-page: 480 year: 2005 end-page: 488 ident: CR24 article-title: Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis publication-title: Bone doi: 10.1016/j.bone.2004.11.007 – volume: 8 start-page: 156863 year: 2020 end-page: 156888 ident: CR23 article-title: Fiber Bragg gratings for medical applications and future challenges a review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019138 – volume: 93 start-page: 323 year: 2001 end-page: 328 ident: CR4 article-title: Method a −percept publication-title: Mot. Skills. doi: 10.2466/pms.2001.93.2.323 – volume: 8 start-page: 18 year: 2008 end-page: 22 ident: CR3 article-title: On the gage factor for optical fiber grating strain gages publication-title: Int. SAMPE Symp. Exhib. – volume: 38 start-page: 148 year: 2015 end-page: 153 ident: CR26 article-title: Measuring grip strength in older adults Comparing the grip-ball with the Jamar dynamometer publication-title: J. Geriatr. Phys. Ther. doi: 10.1519/JPT.0000000000000034 – volume: 6 start-page: 71 year: 2010 end-page: 78 ident: CR2 article-title: Noninvasive quantitative assessment of bone healing after distraction osteogenesis publication-title: HSS J. doi: 10.1007/s11420-009-9130-y – volume: 39 start-page: 412 year: 2010 end-page: 423 ident: CR9 article-title: Sarcopenia European consensus on definition and diagnosis publication-title: Age Age. doi: 10.1093/ageing/afq034 – volume: 42 start-page: 551 year: 2011 end-page: 555 ident: CR14 article-title: The biology of fracture healing publication-title: Injury doi: 10.1016/j.injury.2011.03.031 – volume: 15 start-page: 579 year: 2010 end-page: 585 ident: CR13 article-title: Predicting maximal grip strength using hand circumference Man publication-title: Ther. – volume: 21 start-page: 117002 year: 2016 end-page: 117006 ident: CR1 article-title: Spinal needle monitoring during lumbar puncture using fiber Bragg grating force device publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.11.117002 – volume: 8 start-page: 304 year: 2019 end-page: 312 ident: CR18 article-title: What is the role of ultrasound in fracture management? publication-title: Bone Jt. Res. doi: 10.1302/2046-3758.87.BJR-2018-0215.R2 – volume: 60 start-page: 531 year: 2014 end-page: 533 ident: CR12 article-title: The biology of fracture healing in long bones publication-title: Class. Pap. Orthop. doi: 10.1007/978-1-4471-5451-8_139 – volume: 20 start-page: 1 year: 2020 end-page: 12 ident: CR15 article-title: Fiber Bragg grating sensors for cardiorespiratory monitoring: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2949608 – ident: CR7 – volume: 44 start-page: 3696 year: 2005 end-page: 3704 ident: CR22 article-title: Fiber-optic sensor for handgrip-strength monitoring: conception and design publication-title: Appl. Opt. doi: 10.1364/AO.44.003696 – volume: 37 start-page: 1873 year: 2019 ident: 3429_CR29 publication-title: J. Orthop. Res. doi: 10.1002/jor.24325 – volume: 6 start-page: 71 year: 2010 ident: 3429_CR2 publication-title: HSS J. doi: 10.1007/s11420-009-9130-y – volume: 60 start-page: 531 year: 2014 ident: 3429_CR12 publication-title: Class. Pap. Orthop. doi: 10.1007/978-1-4471-5451-8_139 – volume: 18 start-page: 3115 year: 2018 ident: 3429_CR5 publication-title: Sensors doi: 10.3390/s18093115 – ident: 3429_CR7 doi: 10.1109/CONECCT50063.2020.9198583 – volume: 10 start-page: 17315 year: 2015 ident: 3429_CR27 publication-title: Int. J. Appl. Eng. Res. – volume: 6 start-page: 1 year: 2019 ident: 3429_CR6 publication-title: JETIR – volume: 24 start-page: 143 year: 2005 ident: 3429_CR20 publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2004.08.007 – volume: 39 start-page: 412 year: 2010 ident: 3429_CR9 publication-title: Age Age. doi: 10.1093/ageing/afq034 – volume: 68 start-page: 4309 year: 1997 ident: 3429_CR21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148392 – volume: 12 start-page: 1898 year: 2012 ident: 3429_CR16 publication-title: Sensors. doi: 10.3390/s120201898 – ident: 3429_CR8 doi: 10.1016/j.matpr.2020.10.471 – volume: 93 start-page: 323 year: 2001 ident: 3429_CR4 publication-title: Mot. Skills. doi: 10.2466/pms.2001.93.2.323 – volume: 38 start-page: 148 year: 2015 ident: 3429_CR26 publication-title: J. Geriatr. Phys. Ther. doi: 10.1519/JPT.0000000000000034 – volume: 21 start-page: 117002 year: 2016 ident: 3429_CR1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.11.117002 – volume: 41 start-page: 0 year: 2017 ident: 3429_CR25 publication-title: Physiol. Meas. – volume: 79 start-page: 285 year: 2006 ident: 3429_CR28 publication-title: Br. J. Radiol. doi: 10.1259/bjr/55733882 – volume: 34 start-page: 140 year: 2012 ident: 3429_CR30 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.08.011 – volume: 8 start-page: 304 year: 2019 ident: 3429_CR18 publication-title: Bone Jt. Res. doi: 10.1302/2046-3758.87.BJR-2018-0215.R2 – volume: 8 start-page: 18 year: 2008 ident: 3429_CR3 publication-title: Int. SAMPE Symp. Exhib. – volume: 42 start-page: 551 year: 2011 ident: 3429_CR14 publication-title: Injury doi: 10.1016/j.injury.2011.03.031 – volume: 44 start-page: 3696 year: 2005 ident: 3429_CR22 publication-title: Appl. Opt. doi: 10.1364/AO.44.003696 – volume: 15 start-page: 1263 year: 1997 ident: 3429_CR10 publication-title: J. Light. Technol. doi: 10.1109/50.618320 – volume: 35 start-page: 605 year: 2005 ident: 3429_CR19 publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2005.01.007 – volume: 8 start-page: 156863 year: 2020 ident: 3429_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019138 – volume: 20 start-page: 1 year: 2020 ident: 3429_CR15 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2949608 – volume: 15 start-page: 579 year: 2010 ident: 3429_CR13 publication-title: Ther. – volume: 36 start-page: 480 year: 2005 ident: 3429_CR24 publication-title: Bone doi: 10.1016/j.bone.2004.11.007 – volume: 10 start-page: 1 year: 2001 ident: 3429_CR11 publication-title: Neurosurg. Focus. doi: 10.3171/foc.2001.10.4.2 – volume: 134 start-page: 1179 year: 2014 ident: 3429_CR17 publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-014-2027-3 |
SSID | ssj0006450 |
Score | 2.2901256 |
Snippet | A non-invasive optical fiber Bragg grating based handgrip device for the dynamic measurement of the handgrip force is proposed. The handgrip force is an... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biomechanics Bones Bragg gratings Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Electromagnetic interference Fractures Grip force Lasers Optical Devices Optical fibers Optics Photonics Physics Physics and Astronomy Rehabilitation |
Title | Design and development of optical fiber Bragg grating based device for measurement of handgrip force |
URI | https://link.springer.com/article/10.1007/s11082-021-03429-2 https://www.proquest.com/docview/2616383144 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQCAkOPAaIwUA5cINING3T9jje4nWBSeNU5bkLbNM2_j92aCkgQOLUQ-Ic6tj-7PgBcCCPtcxsrHiSC8MT5yNe-GPLnSR8kAm0-RSHvLuXV73kup_2q6KwaZ3tXj9JBk3dFLtFaK44pRRQ27qCo-JdSNF3J3Hsie6H_pVJmMtKYJjnRVRUpTI_n_HVHDUY89uzaLA2F2uwUsFE1n3n6zrMuWELVivIyCqBnLZg-VM_wRYshnxOM90AexYyM5gaWmabvCA28mw0DuFr5ilXhJ1M1GDAqGEEnsDIpgUCVB8M4Sx7aUKIREth9gGqGVozbhN6F-ePp1e8GqjADUrajGfGGp9q76Wmetsit1abQpg4RlRndZSoXLnUChR7L9PEmVwo7VLpUqOFckm8BfPD0dBtA0uK3EWpzjKDDokzWltlVaGjXKo887FsQ1T_19JU3cZp6MVz2fRJJl6UyIsy8KIUbTj8oBm_99r4c3enZldZyd20RH8QFUqMXmIbjmoWNsu_n7bzv-27sCSoDiLEYjowP5u8uj1EJzO9Dwvds7vbB_pePt2c74fL-QZYMt1j |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQEAIOPAaIwYAcuEEkmrZpeuQ1jeeJSdyqPHeBbVrH_8cJ7QoIkDgn9qGu7c-OHwDH_EzxzMSSJoJpmlgX0dydGWq5xwcZQ5_v85APj7w_SG6f0-eqKaysq93rJ8lgqZtmtwjdFfUlBX5sXU7R8C4iGBB-b8GAnc_tL0_CXlYPhqnIo7xqlfmZx1d31GDMb8-iwdv0NmCtgonk_EOum7BgR21YryAjqRSybMPqp3mCbVgK9Zy63AJzFSoziBwZYpq6IDJ2ZDwJ6WvifK0IuZjK4ZD4gRHIgXifFgjQfBCEs-S1SSF6Wp9mH6KZ8WfabsOgd_102afVQgWqUdNmNNNGu1Q5x5Xvt82FMUrnTMcxojqjokQKaVPDUO0dTxOrBZPKptymWjFpk3gHWqPxyO4CSXJho1RlmcaAxGqljDQyV5HgUmQu5h2I6u9a6GrauF968VI0c5K9LAqURRFkUbAOnMxpJh-zNv683a3FVVR6VxYYD6JBiTFK7MBpLcLm-Hdue_-7fgTL_aeH--L-5vFuH1aY74kIeZkutGbTN3uASGWmDsOP-Q4NWd0u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hEAgOLAVEWX3gBhbESZzkyFaxiwOVuEVee4G0ouX_mXFTAgiQOHs5eOw3z-OZZ4B9eaxlZmPFk1wYnjgf8cIfW-4k8YNMoM-nOOTdvbzsJtdP6dOnKv6Q7T55khzXNJBKUzU6Glh_1BS-Rei6OKUXkIRdwRGEZxCOI9rpXXHygcUyCX-0EjHmeREVddnMz3N8dU0N3_z2RBo8T2cZFmvKyE7GNl6BKVe1YKmmj6w-nMMWLHzSFmzBbMjtNMNVsOchS4OpyjLb5Aixvmf9QQhlM095I-z0VfV6jMQjcAZG_i0MQChhSG3ZSxNOpLEUcu8h5FCbcWvQ7Vw8nl3y-nMFbvDUjXhmrPGp9l5qqr0tcmu1KYSJY2R4VkeJypVLrUAI8DJNnMmF0i6VLjVaKJfE6zBd9Su3ASwpchelOssMXk6c0doqqwod5VLlmY9lG6LJupamVh6nDzCey0YzmWxRoi3KYItStOHgY8xgrLvxZ-_tibnK-gwOS7wbIrjEeGNsw-HEhE3z77Nt_q_7Hsw9nHfK26v7my2YF1QeEUI02zA9en1zO0haRno37Mt39Kbhag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+optical+fiber+Bragg+grating+based+device+for+measurement+of+handgrip+force&rft.jtitle=Optical+and+quantum+electronics&rft.au=Jahan%2C+M.+A.+Ibrar&rft.au=Chethana%2C+K.&rft.au=Honnungar%2C+Rajini+V.&rft.au=Asokan%2C+S.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=54&rft.issue=1&rft_id=info:doi/10.1007%2Fs11082-021-03429-2&rft.externalDocID=10_1007_s11082_021_03429_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |