Exact solutions of the Schrödinger equation with a complex periodic potential

The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a confluent Heun function (CHF) H C ( α , β , γ , δ , η ; z ) . The energy spectra which are solved exactly by calculating the Wronskian determi...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical chemistry Vol. 61; no. 8; pp. 1684 - 1695
Main Authors Dong, Shi-Hai, Sun, Guo-Hua
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0259-9791
1572-8897
DOI10.1007/s10910-023-01483-7

Cover

Loading…
Abstract The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a confluent Heun function (CHF) H C ( α , β , γ , δ , η ; z ) . The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes a → - a or b → - b or c → - c due to the P T symmetry with the property V ( x ) = V ( - x ) ∗ .
AbstractList The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V(x)=-[iasin(bx)+c]2 (a,b,c∈R) are found as a confluent Heun function (CHF) HC(α,β,γ,δ,η;z). The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes a→-a or b→-b or c→-c due to the PT symmetry with the property V(x)=V(-x)∗.
The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a confluent Heun function (CHF) H C ( α , β , γ , δ , η ; z ) . The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes a → - a or b → - b or c → - c due to the P T symmetry with the property V ( x ) = V ( - x ) ∗ .
Author Sun, Guo-Hua
Dong, Shi-Hai
Author_xml – sequence: 1
  givenname: Shi-Hai
  surname: Dong
  fullname: Dong, Shi-Hai
  email: dongsh2@yahoo.com
  organization: Research Center for Quantum Physics, Huzhou University, CIC, Instituto Politécnico Nacional, UPALM
– sequence: 2
  givenname: Guo-Hua
  surname: Sun
  fullname: Sun, Guo-Hua
  organization: CIC, Instituto Politécnico Nacional, UPALM
BookMark eNp9kE1OwzAQRi1UJNrCBVhZYh2w46S2l6gqP1IFC2BtOc6Eukrj1HZFuRgX4GIkDRISi65mMfPmm3kTNGpcAwhdUnJNCeE3gRJJSUJSlhCaCZbwEzSmOU8TISQfoTFJc5lILukZmoSwJoRIMRNj9LTYaxNxcPUuWtcE7CocV4BfzMp_f5W2eQePYbvTfRd_2LjCGhu3aWvY4xa8daU1uHURmmh1fY5OK10HuPitU_R2t3idPyTL5_vH-e0yMYzKmPACBJWMVbqcZVDlTBSUM6qhKrgpMqlJCZSkWSVZygjIXEI5y2mmOdHQMWyKroa9rXfbHYSo1m7nmy5SpYIJzpjI-ql0mDLeheChUq23G-0_FSWq96YGb6rzpg7eFO8g8Q8yNh7ej17b-jjKBjR0Ob25v6uOUD9WeoVj
CitedBy_id crossref_primary_10_1140_epjp_s13360_023_04616_8
crossref_primary_10_1088_1402_4896_ad3510
Cites_doi 10.1016/j.aop.2015.08.027
10.1088/0305-4470/36/47/008
10.1016/j.vibspec.2017.09.003
10.1103/PhysRevLett.100.103904
10.1016/j.aop.2017.11.033
10.1007/s10910-020-01169-4
10.1007/978-1-4020-5796-0
10.1007/978-1-4757-1595-8
10.1088/0253-6102/71/2/231
10.1016/j.physleta.2020.126480
10.1103/PhysRevLett.123.193901
10.1016/j.physleta.2007.11.003
10.1142/q0178
10.1088/0305-4470/31/49/009
10.1142/S0217732316500176
10.1016/j.physleta.2021.127700
10.1016/j.physleta.2007.07.021
10.1364/OL.39.004215
10.3389/fphy.2020.00189
10.1016/S0375-9601(01)00426-1
10.1209/epl/i2004-10418-8
10.1140/epjp/i2018-11912-5
10.1016/S0375-9601(98)00517-9
10.1098/rspa.2020.0050
10.1007/s10910-019-01045-w
10.1103/PhysRevLett.110.083604
10.1155/2018/9105825
10.1007/978-94-007-1917-0
10.1103/PhysRevLett.80.5243
10.1016/j.physleta.2018.10.034
10.1103/PhysRevA.95.042115
10.1016/0370-1573(94)00080-M
10.1140/epjp/i2019-12980-7
10.1140/epjp/i2016-16176-5
10.1063/1.4811855
10.1016/j.physleta.2010.04.046
10.1016/j.physleta.2007.06.021
10.1016/j.aop.2016.06.016
10.1007/s10450-017-9890-5
10.1155/2018/5824271
10.1103/PhysRevLett.100.030402
10.1088/1751-8113/43/3/035203
10.1063/1.1326458
10.1021/acs.jctc.7b01017
10.1142/S0217732319502080
10.1088/1751-8113/41/24/244019
10.1016/j.comptc.2018.05.021
10.1209/0295-5075/89/10003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10910-023-01483-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1572-8897
EndPage 1695
ExternalDocumentID 10_1007_s10910_023_01483_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11975196; 20220865
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Secretarìa de Investigaciòn y Posgrado, Instituto Politècnico Nacional
  grantid: 20230316
  funderid: http://dx.doi.org/10.13039/501100007161
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z83
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-7be81933fad64ef538b1731aefb7cb49a0de1024f93230e959ed6514a70aead63
IEDL.DBID U2A
ISSN 0259-9791
IngestDate Fri Jul 25 11:10:07 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Tue Jul 01 03:50:17 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords The Wronskian determinant
1D Schrödinger equation
Complex periodic potential
Confluent Heun differential equation (CHDE)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7be81933fad64ef538b1731aefb7cb49a0de1024f93230e959ed6514a70aead63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2838733846
PQPubID 2043851
PageCount 12
ParticipantIDs proquest_journals_2838733846
crossref_primary_10_1007_s10910_023_01483_7
crossref_citationtrail_10_1007_s10910_023_01483_7
springer_journals_10_1007_s10910_023_01483_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Journal of mathematical chemistry
PublicationTitleAbbrev J Math Chem
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References TsoyENAllayarovIMAbdullaevFKhOpt. Lett.201439421525121690
IshkhanyanAMAnn. Phys.20183884561:CAS:528:DC%2BC2sXhvF2lur%2FP
LandauLDLifshitzEMQuantum Mechanics (Non-Relativistic Theory)19773New YorkPergamon
CiftciHHallRLSaadNJ. Phys. A: Math. and Gen.2003364711807
GuXYDongSHMaZQJ. Phys. A: Math. and Theor.2008423
S.Lj.S. Kočinac, V. Milanović, Phys. Lett. A 372, 191 (2008)
DongSHFactorization Method in Quantum Mechanics2007Kluwer Academic PublisherSpringer
TellanderFBerggrenKFPhys. Rev. A201795
SitnitskyAECompu. and Theor. Chem.20181138151:CAS:528:DC%2BC1cXhtV2gt7fM
MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNPhys. Rev. Lett.200810031:STN:280:DC%2BD1c%2Fns1KhtQ%3D%3D18232949
XieQTJ. Phys. A: Math. Theor.201245
BenderCMBoettcherSPhys. Rev. Lett.19988052431:CAS:528:DyaK1cXjvVyjsrw%3D
DongSSunGHFalayeBJDongSHThe European Physical Journal Plus20161315176
Q. Dong, G. H. Sun, M. Avila Aoki, C. Y. Chen, S. H. Dong, Mod. Phys. Lett. A 34 (26), 1950208 (2019)
RonveauxAHeun’s Differential Equations1995OxfordOxford University Press
CooperFKhareASukhatmeUSupersymmetry and Quantum MechanicsPhys. Rep.19952512671:CAS:528:DyaK2MXkt1Citb0%3D
ChoiJRFrontiers in Physics20208189
CannataFJunkerGTrostJPhys. Lett. A19982462191:CAS:528:DyaK1cXls1yiurk%3D
DongSHMaZQJ. Phys. A: Math. and Gen.199831499855
G. H. Sun, C. Y. Chen, Hind Taud, C. Yáñez-Márquez, S. H. Dong, Phys. Lett. A 384 (19), 126480 (2020)
VieiraHSBezerraVBSilvaGVAnn. Phys.20153625761:CAS:528:DC%2BC2MXhsVyit7nI
ChenCYWangXHYouYSunGHDongSHInt. J. Quan. Chem.2020120181:CAS:528:DC%2BB3cXht1Ciu7vL
DongQSunGHHeBDongSHJ. Math. Chem.20205821971:CAS:528:DC%2BB3cXhvVCktLrL
SchiffLIQuantum Mechanics19553New YorkMcGraw-Hill Book Co.
IshkhanyanAMEur. Phys. J. Plus201813383
MaZQXuBWEurophys. Lett.2005696851:CAS:528:DC%2BD2MXis1Wgu7Y%3D
DongQSunGHSaadNDongSHThe European Physical Journal Plus201913411562
BoydJKJ. Math. Phys.200142151:CAS:528:DC%2BD3MXltFGhtQ%3D%3D
DongSHWave Equations in Higher Dimensions2011NetherlandsSpringer
DongSFangQFalayeBJSunGHYáñez-MárquezCDongSHMod. Phys. Lett. A20163141650017
SitnitskyAEVib. Spectr.201793361:CAS:528:DC%2BC2sXhs1OhsbfL
HangCHuangGKonotopVVPhys. Rev. Lett.201311023473145
P. Rajesh Kumar, S. H. Dong, Phys. Lett. A 417, 127700 (2021)
Q. Dong, F. Serrano, G. H. Sun, J. Jing, S. H. Dong, Advances in High Energy Physics, Article ID 9105825, 7 pages (2018)
C. M. Bender, R. Tateo, P. E. Dorey, T. Clare Dunning, G. Levai, S. Kuzhel, H. F. Jones, A. Fring, D. W. Hook, PT Symmetry: In Quantum and Classical Physics, World Scientific, Singapore, and references therein (2019)
FizievPPJ. Phys. A: Math. Theor.201043
SakhdariMHajizadeganMZhongQChristodoulidesDNEl-GanainyRChenP-YPhys. Rev. Lett.20191231:CAS:528:DC%2BB3cXhvFyktLs%3D31765193
Q. Dong, H. Iván García Hernández, G. H. Sun, M. Toutounji, S. H. Dong, Proceedings of the Royal Society A 476 (2241), 20200050 (2020)
DowningCAJ. Math. Phys.201354
MakrisKGEl-GanainyRChristodoulidesDNMusslimaniZHPhys. Rev. Lett.2008100101:STN:280:DC%2BD1c7psVeitg%3D%3D18352189
ChenCYSunGHWangXHSunDSYouYLuFLDongSHActa Physica Sinica20217018
MaZQGonzalez-CisnerosAXuBWDongSHPhys. Lett. A200737131801:CAS:528:DC%2BD2sXht1anurfI
DongQTorres-ArenasAJSunGHCamacho-NietoOFemmamSJ. Math. Chem.20195719241:CAS:528:DC%2BC1MXhtlahsr7I
ChenCYLuFLSunGHWangXHYouYSunDSDongSHResults in Physics202234
PanahiHBaradaranMAzizianSRRomanian Reports in Physics201668156
NikiforovAFUvarovVBSpecial Functions of Mathematical Physics1988BaselBirkhäuser
DongQSunGHJingJDongSHPhys. Lett. A20193832–32701:CAS:528:DC%2BC1cXitVent7bN
ter HaarDProblems in Quantum Mechanics19753LondonPion Ltd
VieiraHSBezerraVBAnn. Phys.2016373281:CAS:528:DC%2BC28XhtFKktL3I
S. Dong, Q. Dong, G. H. Sun, S. Femmam, S. H. Dong, Advances in High Energy Physics Article ID 5824271, 5 pages (2018)
AhmedZPhys. Lett. A200128642311:CAS:528:DC%2BD3MXlsF2isbs%3D
QiangWCDongSHEPL20108910003
KermaniMMaghariAAdsorption2017235663
MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNJ. Phys. A: Math. Theor.200841
DongQDongSHernández-MárquezESilva-OrtigozaRSunGHDongSHCommun. Theor. Phys.2019712311:CAS:528:DC%2BC1MXhs1Wht7fF
BagchiBQuesneCRoychoudhuryRJ. Phys. A: Math. Theor.200841
MidyaBRoyBRoychoudhuryRPhys. Lett. A201037426051:CAS:528:DC%2BC3cXmtFWhu74%3D
ChenCYYouYWangXHLuFLSunDSDongSHResults in Physics202124
PawlakMBen-AsherAMoiseyevNJ. Chem. Theo. and Comp.2018142361:CAS:528:DC%2BC2sXhvVOkurnM
A. Frank, P. Van Isacker,Algebraic methods in molecular and nuclear structure physics, Wiley (1994)
GuXYDongSHPhys. Lett. A20083721219721:CAS:528:DC%2BD1cXislSqsrc%3D
ChenBHWuYXieQTJ. Phys. A: Math. Theor.201346
DongSHGuXYJ. Phys.: Conference Series2008961
CY Chen (1483_CR42) 2021; 70
F Tellander (1483_CR53) 2017; 95
SH Dong (1483_CR8) 2008; 96
AM Ishkhanyan (1483_CR34) 2018; 133
1483_CR13
CY Chen (1483_CR41) 2020; 120
KG Makris (1483_CR58) 2008; 100
M Sakhdari (1483_CR54) 2019; 123
XY Gu (1483_CR9) 2008; 372
BH Chen (1483_CR20) 2013; 46
JK Boyd (1483_CR46) 2001; 42
1483_CR52
H Ciftci (1483_CR15) 2003; 36
F Cannata (1483_CR49) 1998; 246
Z Ahmed (1483_CR51) 2001; 286
1483_CR26
CY Chen (1483_CR44) 2021; 24
1483_CR27
CA Downing (1483_CR23) 2013; 54
1483_CR4
D ter Haar (1483_CR2) 1975
XY Gu (1483_CR12) 2008; 42
Q Dong (1483_CR38) 2020; 58
ZH Musslimani (1483_CR57) 2008; 100
AF Nikiforov (1483_CR16) 1988
PP Fiziev (1483_CR33) 2010; 43
HS Vieira (1483_CR29) 2016; 373
JR Choi (1483_CR61) 2020; 8
B Midya (1483_CR60) 2010; 374
HS Vieira (1483_CR28) 2015; 362
M Kermani (1483_CR63) 2017; 23
QT Xie (1483_CR19) 2012; 45
Q Dong (1483_CR31) 2019; 383
EN Tsoy (1483_CR50) 2014; 39
S Dong (1483_CR25) 2016; 131
CY Chen (1483_CR43) 2022; 34
C Hang (1483_CR55) 2013; 110
1483_CR39
F Cooper (1483_CR5) 1995; 251
H Panahi (1483_CR14) 2016; 68
LD Landau (1483_CR3) 1977
LI Schiff (1483_CR1) 1955
Q Dong (1483_CR36) 2019; 57
SH Dong (1483_CR17) 1998; 31
AM Ishkhanyan (1483_CR35) 2018; 388
ZH Musslimani (1483_CR59) 2008; 41
SH Dong (1483_CR6) 2007
1483_CR32
SH Dong (1483_CR18) 2011
1483_CR48
AE Sitnitsky (1483_CR22) 2017; 93
S Dong (1483_CR24) 2016; 31
CM Bender (1483_CR47) 1998; 80
ZQ Ma (1483_CR7) 2007; 371
B Bagchi (1483_CR56) 2008; 41
AE Sitnitsky (1483_CR21) 2018; 1138
1483_CR40
WC Qiang (1483_CR10) 2010; 89
Q Dong (1483_CR30) 2019; 71
(1483_CR45) 1995
Q Dong (1483_CR37) 2019; 134
M Pawlak (1483_CR62) 2018; 14
ZQ Ma (1483_CR11) 2005; 69
References_xml – reference: LandauLDLifshitzEMQuantum Mechanics (Non-Relativistic Theory)19773New YorkPergamon
– reference: DongSSunGHFalayeBJDongSHThe European Physical Journal Plus20161315176
– reference: MaZQXuBWEurophys. Lett.2005696851:CAS:528:DC%2BD2MXis1Wgu7Y%3D
– reference: XieQTJ. Phys. A: Math. Theor.201245
– reference: G. H. Sun, C. Y. Chen, Hind Taud, C. Yáñez-Márquez, S. H. Dong, Phys. Lett. A 384 (19), 126480 (2020)
– reference: FizievPPJ. Phys. A: Math. Theor.201043
– reference: Q. Dong, F. Serrano, G. H. Sun, J. Jing, S. H. Dong, Advances in High Energy Physics, Article ID 9105825, 7 pages (2018)
– reference: DowningCAJ. Math. Phys.201354
– reference: ter HaarDProblems in Quantum Mechanics19753LondonPion Ltd
– reference: DongSHFactorization Method in Quantum Mechanics2007Kluwer Academic PublisherSpringer
– reference: S. Dong, Q. Dong, G. H. Sun, S. Femmam, S. H. Dong, Advances in High Energy Physics Article ID 5824271, 5 pages (2018)
– reference: AhmedZPhys. Lett. A200128642311:CAS:528:DC%2BD3MXlsF2isbs%3D
– reference: NikiforovAFUvarovVBSpecial Functions of Mathematical Physics1988BaselBirkhäuser
– reference: MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNPhys. Rev. Lett.200810031:STN:280:DC%2BD1c%2Fns1KhtQ%3D%3D18232949
– reference: GuXYDongSHPhys. Lett. A20083721219721:CAS:528:DC%2BD1cXislSqsrc%3D
– reference: BenderCMBoettcherSPhys. Rev. Lett.19988052431:CAS:528:DyaK1cXjvVyjsrw%3D
– reference: DongSFangQFalayeBJSunGHYáñez-MárquezCDongSHMod. Phys. Lett. A20163141650017
– reference: DongQSunGHJingJDongSHPhys. Lett. A20193832–32701:CAS:528:DC%2BC1cXitVent7bN
– reference: DongQTorres-ArenasAJSunGHCamacho-NietoOFemmamSJ. Math. Chem.20195719241:CAS:528:DC%2BC1MXhtlahsr7I
– reference: BoydJKJ. Math. Phys.200142151:CAS:528:DC%2BD3MXltFGhtQ%3D%3D
– reference: KermaniMMaghariAAdsorption2017235663
– reference: ChenCYSunGHWangXHSunDSYouYLuFLDongSHActa Physica Sinica20217018
– reference: TsoyENAllayarovIMAbdullaevFKhOpt. Lett.201439421525121690
– reference: DongQDongSHernández-MárquezESilva-OrtigozaRSunGHDongSHCommun. Theor. Phys.2019712311:CAS:528:DC%2BC1MXhs1Wht7fF
– reference: HangCHuangGKonotopVVPhys. Rev. Lett.201311023473145
– reference: GuXYDongSHMaZQJ. Phys. A: Math. and Theor.2008423
– reference: ChenCYYouYWangXHLuFLSunDSDongSHResults in Physics202124
– reference: VieiraHSBezerraVBSilvaGVAnn. Phys.20153625761:CAS:528:DC%2BC2MXhsVyit7nI
– reference: SitnitskyAECompu. and Theor. Chem.20181138151:CAS:528:DC%2BC1cXhtV2gt7fM
– reference: VieiraHSBezerraVBAnn. Phys.2016373281:CAS:528:DC%2BC28XhtFKktL3I
– reference: RonveauxAHeun’s Differential Equations1995OxfordOxford University Press
– reference: DongSHWave Equations in Higher Dimensions2011NetherlandsSpringer
– reference: MidyaBRoyBRoychoudhuryRPhys. Lett. A201037426051:CAS:528:DC%2BC3cXmtFWhu74%3D
– reference: A. Frank, P. Van Isacker,Algebraic methods in molecular and nuclear structure physics, Wiley (1994)
– reference: ChenBHWuYXieQTJ. Phys. A: Math. Theor.201346
– reference: ChenCYWangXHYouYSunGHDongSHInt. J. Quan. Chem.2020120181:CAS:528:DC%2BB3cXht1Ciu7vL
– reference: PawlakMBen-AsherAMoiseyevNJ. Chem. Theo. and Comp.2018142361:CAS:528:DC%2BC2sXhvVOkurnM
– reference: S.Lj.S. Kočinac, V. Milanović, Phys. Lett. A 372, 191 (2008)
– reference: SitnitskyAEVib. Spectr.201793361:CAS:528:DC%2BC2sXhs1OhsbfL
– reference: DongQSunGHHeBDongSHJ. Math. Chem.20205821971:CAS:528:DC%2BB3cXhvVCktLrL
– reference: MakrisKGEl-GanainyRChristodoulidesDNMusslimaniZHPhys. Rev. Lett.2008100101:STN:280:DC%2BD1c7psVeitg%3D%3D18352189
– reference: DongSHGuXYJ. Phys.: Conference Series2008961
– reference: IshkhanyanAMEur. Phys. J. Plus201813383
– reference: MaZQGonzalez-CisnerosAXuBWDongSHPhys. Lett. A200737131801:CAS:528:DC%2BD2sXht1anurfI
– reference: TellanderFBerggrenKFPhys. Rev. A201795
– reference: ChoiJRFrontiers in Physics20208189
– reference: DongSHMaZQJ. Phys. A: Math. and Gen.199831499855
– reference: IshkhanyanAMAnn. Phys.20183884561:CAS:528:DC%2BC2sXhvF2lur%2FP
– reference: ChenCYLuFLSunGHWangXHYouYSunDSDongSHResults in Physics202234
– reference: Q. Dong, H. Iván García Hernández, G. H. Sun, M. Toutounji, S. H. Dong, Proceedings of the Royal Society A 476 (2241), 20200050 (2020)
– reference: QiangWCDongSHEPL20108910003
– reference: Q. Dong, G. H. Sun, M. Avila Aoki, C. Y. Chen, S. H. Dong, Mod. Phys. Lett. A 34 (26), 1950208 (2019)
– reference: SchiffLIQuantum Mechanics19553New YorkMcGraw-Hill Book Co.
– reference: CooperFKhareASukhatmeUSupersymmetry and Quantum MechanicsPhys. Rep.19952512671:CAS:528:DyaK2MXkt1Citb0%3D
– reference: PanahiHBaradaranMAzizianSRRomanian Reports in Physics201668156
– reference: CannataFJunkerGTrostJPhys. Lett. A19982462191:CAS:528:DyaK1cXls1yiurk%3D
– reference: CiftciHHallRLSaadNJ. Phys. A: Math. and Gen.2003364711807
– reference: C. M. Bender, R. Tateo, P. E. Dorey, T. Clare Dunning, G. Levai, S. Kuzhel, H. F. Jones, A. Fring, D. W. Hook, PT Symmetry: In Quantum and Classical Physics, World Scientific, Singapore, and references therein (2019)
– reference: P. Rajesh Kumar, S. H. Dong, Phys. Lett. A 417, 127700 (2021)
– reference: MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNJ. Phys. A: Math. Theor.200841
– reference: BagchiBQuesneCRoychoudhuryRJ. Phys. A: Math. Theor.200841
– reference: SakhdariMHajizadeganMZhongQChristodoulidesDNEl-GanainyRChenP-YPhys. Rev. Lett.20191231:CAS:528:DC%2BB3cXhvFyktLs%3D31765193
– reference: DongQSunGHSaadNDongSHThe European Physical Journal Plus201913411562
– volume: 362
  start-page: 576
  year: 2015
  ident: 1483_CR28
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2015.08.027
– volume: 41
  year: 2008
  ident: 1483_CR56
  publication-title: J. Phys. A: Math. Theor.
– volume: 36
  start-page: 11807
  issue: 47
  year: 2003
  ident: 1483_CR15
  publication-title: J. Phys. A: Math. and Gen.
  doi: 10.1088/0305-4470/36/47/008
– volume: 42
  issue: 3
  year: 2008
  ident: 1483_CR12
  publication-title: J. Phys. A: Math. and Theor.
– volume: 93
  start-page: 36
  year: 2017
  ident: 1483_CR22
  publication-title: Vib. Spectr.
  doi: 10.1016/j.vibspec.2017.09.003
– volume: 100
  issue: 10
  year: 2008
  ident: 1483_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.103904
– volume: 388
  start-page: 456
  year: 2018
  ident: 1483_CR35
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2017.11.033
– volume: 58
  start-page: 2197
  year: 2020
  ident: 1483_CR38
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-020-01169-4
– volume-title: Factorization Method in Quantum Mechanics
  year: 2007
  ident: 1483_CR6
  doi: 10.1007/978-1-4020-5796-0
– volume-title: Problems in Quantum Mechanics
  year: 1975
  ident: 1483_CR2
– volume-title: Special Functions of Mathematical Physics
  year: 1988
  ident: 1483_CR16
  doi: 10.1007/978-1-4757-1595-8
– volume: 71
  start-page: 231
  year: 2019
  ident: 1483_CR30
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/2/231
– ident: 1483_CR40
  doi: 10.1016/j.physleta.2020.126480
– volume: 123
  year: 2019
  ident: 1483_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.193901
– volume: 372
  start-page: 1972
  issue: 12
  year: 2008
  ident: 1483_CR9
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.11.003
– ident: 1483_CR48
  doi: 10.1142/q0178
– volume: 46
  year: 2013
  ident: 1483_CR20
  publication-title: J. Phys. A: Math. Theor.
– volume: 31
  start-page: 9855
  issue: 49
  year: 1998
  ident: 1483_CR17
  publication-title: J. Phys. A: Math. and Gen.
  doi: 10.1088/0305-4470/31/49/009
– volume-title: Quantum Mechanics (Non-Relativistic Theory)
  year: 1977
  ident: 1483_CR3
– volume: 31
  start-page: 1650017
  issue: 4
  year: 2016
  ident: 1483_CR24
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732316500176
– volume: 34
  year: 2022
  ident: 1483_CR43
  publication-title: Results in Physics
– ident: 1483_CR13
  doi: 10.1016/j.physleta.2021.127700
– ident: 1483_CR52
  doi: 10.1016/j.physleta.2007.07.021
– volume: 39
  start-page: 4215
  year: 2014
  ident: 1483_CR50
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004215
– volume: 120
  issue: 18
  year: 2020
  ident: 1483_CR41
  publication-title: Int. J. Quan. Chem.
– volume: 24
  year: 2021
  ident: 1483_CR44
  publication-title: Results in Physics
– volume-title: Quantum Mechanics
  year: 1955
  ident: 1483_CR1
– volume: 45
  year: 2012
  ident: 1483_CR19
  publication-title: J. Phys. A: Math. Theor.
– volume: 96
  issue: 1
  year: 2008
  ident: 1483_CR8
  publication-title: J. Phys.: Conference Series
– volume: 70
  issue: 18
  year: 2021
  ident: 1483_CR42
  publication-title: Acta Physica Sinica
– volume: 8
  start-page: 189
  year: 2020
  ident: 1483_CR61
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2020.00189
– volume: 286
  start-page: 231
  issue: 4
  year: 2001
  ident: 1483_CR51
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00426-1
– volume: 69
  start-page: 685
  year: 2005
  ident: 1483_CR11
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2004-10418-8
– volume: 133
  start-page: 83
  year: 2018
  ident: 1483_CR34
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-11912-5
– volume: 246
  start-page: 219
  year: 1998
  ident: 1483_CR49
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00517-9
– volume: 68
  start-page: 56
  issue: 1
  year: 2016
  ident: 1483_CR14
  publication-title: Romanian Reports in Physics
– ident: 1483_CR39
  doi: 10.1098/rspa.2020.0050
– volume: 57
  start-page: 1924
  year: 2019
  ident: 1483_CR36
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-019-01045-w
– volume: 110
  year: 2013
  ident: 1483_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.083604
– ident: 1483_CR26
  doi: 10.1155/2018/9105825
– volume-title: Wave Equations in Higher Dimensions
  year: 2011
  ident: 1483_CR18
  doi: 10.1007/978-94-007-1917-0
– volume: 80
  start-page: 5243
  year: 1998
  ident: 1483_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– ident: 1483_CR4
– volume: 383
  start-page: 270
  issue: 2–3
  year: 2019
  ident: 1483_CR31
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.034
– volume: 95
  year: 2017
  ident: 1483_CR53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.042115
– volume: 251
  start-page: 267
  year: 1995
  ident: 1483_CR5
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(94)00080-M
– volume: 134
  start-page: 562
  issue: 11
  year: 2019
  ident: 1483_CR37
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/i2019-12980-7
– volume-title: Heun’s Differential Equations
  year: 1995
  ident: 1483_CR45
– volume: 131
  start-page: 176
  issue: 5
  year: 2016
  ident: 1483_CR25
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/i2016-16176-5
– volume: 54
  year: 2013
  ident: 1483_CR23
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4811855
– volume: 374
  start-page: 2605
  year: 2010
  ident: 1483_CR60
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.04.046
– volume: 371
  start-page: 180
  issue: 3
  year: 2007
  ident: 1483_CR7
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.06.021
– volume: 373
  start-page: 28
  year: 2016
  ident: 1483_CR29
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2016.06.016
– volume: 23
  start-page: 663
  issue: 5
  year: 2017
  ident: 1483_CR63
  publication-title: Adsorption
  doi: 10.1007/s10450-017-9890-5
– ident: 1483_CR27
  doi: 10.1155/2018/5824271
– volume: 100
  issue: 3
  year: 2008
  ident: 1483_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.030402
– volume: 43
  year: 2010
  ident: 1483_CR33
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/43/3/035203
– volume: 42
  start-page: 15
  year: 2001
  ident: 1483_CR46
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1326458
– volume: 14
  start-page: 236
  year: 2018
  ident: 1483_CR62
  publication-title: J. Chem. Theo. and Comp.
  doi: 10.1021/acs.jctc.7b01017
– ident: 1483_CR32
  doi: 10.1142/S0217732319502080
– volume: 41
  year: 2008
  ident: 1483_CR59
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/41/24/244019
– volume: 1138
  start-page: 15
  year: 2018
  ident: 1483_CR21
  publication-title: Compu. and Theor. Chem.
  doi: 10.1016/j.comptc.2018.05.021
– volume: 89
  start-page: 10003
  year: 2010
  ident: 1483_CR10
  publication-title: EPL
  doi: 10.1209/0295-5075/89/10003
SSID ssj0009868
Score 2.350139
Snippet The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a...
The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V(x)=-[iasin(bx)+c]2 (a,b,c∈R) are found as a confluent Heun function...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1684
SubjectTerms Chemistry
Chemistry and Materials Science
Eigenvalues
Eigenvectors
Energy spectra
Exact solutions
Math. Applications in Chemistry
Mathematical analysis
Original Paper
Physical Chemistry
Schrodinger equation
Substitutes
Theoretical and Computational Chemistry
Wave functions
Title Exact solutions of the Schrödinger equation with a complex periodic potential
URI https://link.springer.com/article/10.1007/s10910-023-01483-7
https://www.proquest.com/docview/2838733846
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4oPKgPRlEjiqQPvmmTsXXr-ggIGg28KAk-LW13iyYEEGbCL_MP-MdsxwZq1MSnPbTrkrtr7-vu7juAc6VdVEIiDWIdUhZrpEoJRkXoeOjwOHG5LXDu9YObAbsd-sO8KGxeZLsXIcnspP5U7CZs4Na1-T8s9CjfhLJv7u7Wrgduc021G2YFcMaZCyq4aOSlMj-v8dUdrTHmt7Bo5m26e7Cbw0TSXOp1HzZwXIGtdtGdrQI7vRXf6vwA-p2F1ClZ2RGZJMQMk3v9NHt_i7NPEHxZ0noT---VSJJlk-OCWK7jSfysyXSS2twhOTqEQbfz0L6heacEqs0WSilXaDy75yUyDhgm5hBTDe41JCaKa8WEdGI0SIIlBq15DgpfYBwYqCS5I40pBd4RlMaTMR4DwQCllGGIQmpzt0Tpa2lEqi0Q4shkFRqFwCKd04jbbhajaE2AbIUcGSFHmZAjXoWL1TvTJYnGn7NrhR6ifEPNI4OCQm6u0yyowmWhm_Xw76ud_G_6KWy7mXnYLLIalNLZK54Z2JGqOpSbratW1z6vH-869czqPgA-BdI7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEJ4oHNSD_0b87cGblixs2W6PhKAowkVJ8LRpu7PRSEBlSYgP5gv4YrbLLihRE87tdndnpp1v2pmvAGdKl1EJidQLtU9ZqJEqJRgVvuOiw8OozG2Bc6vtNTrsplvppkVhwyzbPTuSTFbqb8Vuwh7clm3-D_Ndypchz0wMXslBvnr10KzPyHb9pATOuHNBBReltFjm91F-OqQZypw7GE38zeUGdLIvnaSZPBdHsSrq9zkSx0V_ZRPWUwBKqhOL2YIl7G_DSi27920b1lpTJtfhDrTrY6ljMrVQMoiIaSZ3-vHt8yNM3krwdUIYTuyuLpEkyVPHMbEsyoPwSZOXQWyzkmRvFzqX9ftag6Z3MFBtJmdMuUKDGVw3kqHHMDLLoypxtyQxUlwrJqQTosEoLDI40HVQVASGngFhkjvSGKnn7kGuP-jjPhD0UErp-yikNlEryoqWRlXaQiyOTBaglCki0ClBub0noxfMqJWt3AIjtyCRW8ALcD595mVCz_Fv76NMv0E6VYeBwVc-N4E68wpwkalr1vz3aAeLdT-FlcZ96za4vW43D2G1nGjf5qodQS5-G-GxATexOklt-QsBpe8X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgQxEC1cwOUgrjiuOXjTYC-ZTuco6uA6CDrgrclSjYLMjNqCX-YP-GNWerpnVFTwnHQCVZXUS1fVK4AdYyM0SiNPnE25cBa5MUpwlQYxBtLlkfQFzpft5KQjzm6bt5-q-Mts9zokOahp8CxN3WK_7_L9T4VvygdxI58LJNKYy3GYpOs49EldnehgRLublsVw5NgVV1KFVdnMz2t8dU0jvPktRFp6ntY8zFWQkR0MdLwAY9hdhOnDulPbIsxeDrlXn5egffyqbcGGNsV6OaNhdm3vnt7fXLkFw8cBxTfz_2GZZmVmOb4yz3vcc_eW9XteHGScy9BpHd8cnvCqawK3dJwKLg2Sl4_jXLtEYE4XmgllHGrMjbRGKB04JFQhckJucYCqqdAlBJu0DDSZVRKvwES318VVYJig1jpNUWlL70zUTatJpNaDIolCNyCsBZbZilLcd7Z4yEZkyF7IGQk5K4WcyQbsDr_pDwg1_py9Ueshqw7Xc0aIKJX0tBZJA_Zq3YyGf19t7X_Tt2Hq6qiVXZy2z9dhJiotxSeXbcBE8fSCm4RGCrNVGtwHcY3WZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+solutions+of+the+Schr%C3%B6dinger+equation+with+a+complex+periodic+potential&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Dong%2C+Shi-Hai&rft.au=Sun%2C+Guo-Hua&rft.date=2023-09-01&rft.pub=Springer+International+Publishing&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=61&rft.issue=8&rft.spage=1684&rft.epage=1695&rft_id=info:doi/10.1007%2Fs10910-023-01483-7&rft.externalDocID=10_1007_s10910_023_01483_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon