Exact solutions of the Schrödinger equation with a complex periodic potential
The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a confluent Heun function (CHF) H C ( α , β , γ , δ , η ; z ) . The energy spectra which are solved exactly by calculating the Wronskian determi...
Saved in:
Published in | Journal of mathematical chemistry Vol. 61; no. 8; pp. 1684 - 1695 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0259-9791 1572-8897 |
DOI | 10.1007/s10910-023-01483-7 |
Cover
Loading…
Abstract | The exact solutions of 1D Schrödinger equation subject to a complex periodic potential
V
(
x
)
=
-
[
i
a
sin
(
b
x
)
+
c
]
2
(
a
,
b
,
c
∈
R
) are found as a confluent Heun function (CHF)
H
C
(
α
,
β
,
γ
,
δ
,
η
;
z
)
. The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes
a
→
-
a
or
b
→
-
b
or
c
→
-
c
due to the
P
T
symmetry with the property
V
(
x
)
=
V
(
-
x
)
∗
. |
---|---|
AbstractList | The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V(x)=-[iasin(bx)+c]2 (a,b,c∈R) are found as a confluent Heun function (CHF) HC(α,β,γ,δ,η;z). The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes a→-a or b→-b or c→-c due to the PT symmetry with the property V(x)=V(-x)∗. The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V ( x ) = - [ i a sin ( b x ) + c ] 2 ( a , b , c ∈ R ) are found as a confluent Heun function (CHF) H C ( α , β , γ , δ , η ; z ) . The energy spectra which are solved exactly by calculating the Wronskian determinant are found as real except for complex values. It is found that the eigenvalues obtained by two constraints on the CHF are not reliable or complete any more since they are only one small part of those evaluated by the Wronskian determinant. The wave functions are illustrated when eigenvalues are substituted into the eigenfunctions. We also notice that the energy spectra remain invariant when one substitutes a → - a or b → - b or c → - c due to the P T symmetry with the property V ( x ) = V ( - x ) ∗ . |
Author | Sun, Guo-Hua Dong, Shi-Hai |
Author_xml | – sequence: 1 givenname: Shi-Hai surname: Dong fullname: Dong, Shi-Hai email: dongsh2@yahoo.com organization: Research Center for Quantum Physics, Huzhou University, CIC, Instituto Politécnico Nacional, UPALM – sequence: 2 givenname: Guo-Hua surname: Sun fullname: Sun, Guo-Hua organization: CIC, Instituto Politécnico Nacional, UPALM |
BookMark | eNp9kE1OwzAQRi1UJNrCBVhZYh2w46S2l6gqP1IFC2BtOc6Eukrj1HZFuRgX4GIkDRISi65mMfPmm3kTNGpcAwhdUnJNCeE3gRJJSUJSlhCaCZbwEzSmOU8TISQfoTFJc5lILukZmoSwJoRIMRNj9LTYaxNxcPUuWtcE7CocV4BfzMp_f5W2eQePYbvTfRd_2LjCGhu3aWvY4xa8daU1uHURmmh1fY5OK10HuPitU_R2t3idPyTL5_vH-e0yMYzKmPACBJWMVbqcZVDlTBSUM6qhKrgpMqlJCZSkWSVZygjIXEI5y2mmOdHQMWyKroa9rXfbHYSo1m7nmy5SpYIJzpjI-ql0mDLeheChUq23G-0_FSWq96YGb6rzpg7eFO8g8Q8yNh7ej17b-jjKBjR0Ob25v6uOUD9WeoVj |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_023_04616_8 crossref_primary_10_1088_1402_4896_ad3510 |
Cites_doi | 10.1016/j.aop.2015.08.027 10.1088/0305-4470/36/47/008 10.1016/j.vibspec.2017.09.003 10.1103/PhysRevLett.100.103904 10.1016/j.aop.2017.11.033 10.1007/s10910-020-01169-4 10.1007/978-1-4020-5796-0 10.1007/978-1-4757-1595-8 10.1088/0253-6102/71/2/231 10.1016/j.physleta.2020.126480 10.1103/PhysRevLett.123.193901 10.1016/j.physleta.2007.11.003 10.1142/q0178 10.1088/0305-4470/31/49/009 10.1142/S0217732316500176 10.1016/j.physleta.2021.127700 10.1016/j.physleta.2007.07.021 10.1364/OL.39.004215 10.3389/fphy.2020.00189 10.1016/S0375-9601(01)00426-1 10.1209/epl/i2004-10418-8 10.1140/epjp/i2018-11912-5 10.1016/S0375-9601(98)00517-9 10.1098/rspa.2020.0050 10.1007/s10910-019-01045-w 10.1103/PhysRevLett.110.083604 10.1155/2018/9105825 10.1007/978-94-007-1917-0 10.1103/PhysRevLett.80.5243 10.1016/j.physleta.2018.10.034 10.1103/PhysRevA.95.042115 10.1016/0370-1573(94)00080-M 10.1140/epjp/i2019-12980-7 10.1140/epjp/i2016-16176-5 10.1063/1.4811855 10.1016/j.physleta.2010.04.046 10.1016/j.physleta.2007.06.021 10.1016/j.aop.2016.06.016 10.1007/s10450-017-9890-5 10.1155/2018/5824271 10.1103/PhysRevLett.100.030402 10.1088/1751-8113/43/3/035203 10.1063/1.1326458 10.1021/acs.jctc.7b01017 10.1142/S0217732319502080 10.1088/1751-8113/41/24/244019 10.1016/j.comptc.2018.05.021 10.1209/0295-5075/89/10003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10910-023-01483-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Mathematics |
EISSN | 1572-8897 |
EndPage | 1695 |
ExternalDocumentID | 10_1007_s10910_023_01483_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11975196; 20220865 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Secretarìa de Investigaciòn y Posgrado, Instituto Politècnico Nacional grantid: 20230316 funderid: http://dx.doi.org/10.13039/501100007161 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z83 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-7be81933fad64ef538b1731aefb7cb49a0de1024f93230e959ed6514a70aead63 |
IEDL.DBID | U2A |
ISSN | 0259-9791 |
IngestDate | Fri Jul 25 11:10:07 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Tue Jul 01 03:50:17 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | The Wronskian determinant 1D Schrödinger equation Complex periodic potential Confluent Heun differential equation (CHDE) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7be81933fad64ef538b1731aefb7cb49a0de1024f93230e959ed6514a70aead63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2838733846 |
PQPubID | 2043851 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2838733846 crossref_primary_10_1007_s10910_023_01483_7 crossref_citationtrail_10_1007_s10910_023_01483_7 springer_journals_10_1007_s10910_023_01483_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Journal of mathematical chemistry |
PublicationTitleAbbrev | J Math Chem |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | TsoyENAllayarovIMAbdullaevFKhOpt. Lett.201439421525121690 IshkhanyanAMAnn. Phys.20183884561:CAS:528:DC%2BC2sXhvF2lur%2FP LandauLDLifshitzEMQuantum Mechanics (Non-Relativistic Theory)19773New YorkPergamon CiftciHHallRLSaadNJ. Phys. A: Math. and Gen.2003364711807 GuXYDongSHMaZQJ. Phys. A: Math. and Theor.2008423 S.Lj.S. Kočinac, V. Milanović, Phys. Lett. A 372, 191 (2008) DongSHFactorization Method in Quantum Mechanics2007Kluwer Academic PublisherSpringer TellanderFBerggrenKFPhys. Rev. A201795 SitnitskyAECompu. and Theor. Chem.20181138151:CAS:528:DC%2BC1cXhtV2gt7fM MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNPhys. Rev. Lett.200810031:STN:280:DC%2BD1c%2Fns1KhtQ%3D%3D18232949 XieQTJ. Phys. A: Math. Theor.201245 BenderCMBoettcherSPhys. Rev. Lett.19988052431:CAS:528:DyaK1cXjvVyjsrw%3D DongSSunGHFalayeBJDongSHThe European Physical Journal Plus20161315176 Q. Dong, G. H. Sun, M. Avila Aoki, C. Y. Chen, S. H. Dong, Mod. Phys. Lett. A 34 (26), 1950208 (2019) RonveauxAHeun’s Differential Equations1995OxfordOxford University Press CooperFKhareASukhatmeUSupersymmetry and Quantum MechanicsPhys. Rep.19952512671:CAS:528:DyaK2MXkt1Citb0%3D ChoiJRFrontiers in Physics20208189 CannataFJunkerGTrostJPhys. Lett. A19982462191:CAS:528:DyaK1cXls1yiurk%3D DongSHMaZQJ. Phys. A: Math. and Gen.199831499855 G. H. Sun, C. Y. Chen, Hind Taud, C. Yáñez-Márquez, S. H. Dong, Phys. Lett. A 384 (19), 126480 (2020) VieiraHSBezerraVBSilvaGVAnn. Phys.20153625761:CAS:528:DC%2BC2MXhsVyit7nI ChenCYWangXHYouYSunGHDongSHInt. J. Quan. Chem.2020120181:CAS:528:DC%2BB3cXht1Ciu7vL DongQSunGHHeBDongSHJ. Math. Chem.20205821971:CAS:528:DC%2BB3cXhvVCktLrL SchiffLIQuantum Mechanics19553New YorkMcGraw-Hill Book Co. IshkhanyanAMEur. Phys. J. Plus201813383 MaZQXuBWEurophys. Lett.2005696851:CAS:528:DC%2BD2MXis1Wgu7Y%3D DongQSunGHSaadNDongSHThe European Physical Journal Plus201913411562 BoydJKJ. Math. Phys.200142151:CAS:528:DC%2BD3MXltFGhtQ%3D%3D DongSHWave Equations in Higher Dimensions2011NetherlandsSpringer DongSFangQFalayeBJSunGHYáñez-MárquezCDongSHMod. Phys. Lett. A20163141650017 SitnitskyAEVib. Spectr.201793361:CAS:528:DC%2BC2sXhs1OhsbfL HangCHuangGKonotopVVPhys. Rev. Lett.201311023473145 P. Rajesh Kumar, S. H. Dong, Phys. Lett. A 417, 127700 (2021) Q. Dong, F. Serrano, G. H. Sun, J. Jing, S. H. Dong, Advances in High Energy Physics, Article ID 9105825, 7 pages (2018) C. M. Bender, R. Tateo, P. E. Dorey, T. Clare Dunning, G. Levai, S. Kuzhel, H. F. Jones, A. Fring, D. W. Hook, PT Symmetry: In Quantum and Classical Physics, World Scientific, Singapore, and references therein (2019) FizievPPJ. Phys. A: Math. Theor.201043 SakhdariMHajizadeganMZhongQChristodoulidesDNEl-GanainyRChenP-YPhys. Rev. Lett.20191231:CAS:528:DC%2BB3cXhvFyktLs%3D31765193 Q. Dong, H. Iván García Hernández, G. H. Sun, M. Toutounji, S. H. Dong, Proceedings of the Royal Society A 476 (2241), 20200050 (2020) DowningCAJ. Math. Phys.201354 MakrisKGEl-GanainyRChristodoulidesDNMusslimaniZHPhys. Rev. Lett.2008100101:STN:280:DC%2BD1c7psVeitg%3D%3D18352189 ChenCYSunGHWangXHSunDSYouYLuFLDongSHActa Physica Sinica20217018 MaZQGonzalez-CisnerosAXuBWDongSHPhys. Lett. A200737131801:CAS:528:DC%2BD2sXht1anurfI DongQTorres-ArenasAJSunGHCamacho-NietoOFemmamSJ. Math. Chem.20195719241:CAS:528:DC%2BC1MXhtlahsr7I ChenCYLuFLSunGHWangXHYouYSunDSDongSHResults in Physics202234 PanahiHBaradaranMAzizianSRRomanian Reports in Physics201668156 NikiforovAFUvarovVBSpecial Functions of Mathematical Physics1988BaselBirkhäuser DongQSunGHJingJDongSHPhys. Lett. A20193832–32701:CAS:528:DC%2BC1cXitVent7bN ter HaarDProblems in Quantum Mechanics19753LondonPion Ltd VieiraHSBezerraVBAnn. Phys.2016373281:CAS:528:DC%2BC28XhtFKktL3I S. Dong, Q. Dong, G. H. Sun, S. Femmam, S. H. Dong, Advances in High Energy Physics Article ID 5824271, 5 pages (2018) AhmedZPhys. Lett. A200128642311:CAS:528:DC%2BD3MXlsF2isbs%3D QiangWCDongSHEPL20108910003 KermaniMMaghariAAdsorption2017235663 MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNJ. Phys. A: Math. Theor.200841 DongQDongSHernández-MárquezESilva-OrtigozaRSunGHDongSHCommun. Theor. Phys.2019712311:CAS:528:DC%2BC1MXhs1Wht7fF BagchiBQuesneCRoychoudhuryRJ. Phys. A: Math. Theor.200841 MidyaBRoyBRoychoudhuryRPhys. Lett. A201037426051:CAS:528:DC%2BC3cXmtFWhu74%3D ChenCYYouYWangXHLuFLSunDSDongSHResults in Physics202124 PawlakMBen-AsherAMoiseyevNJ. Chem. Theo. and Comp.2018142361:CAS:528:DC%2BC2sXhvVOkurnM A. Frank, P. Van Isacker,Algebraic methods in molecular and nuclear structure physics, Wiley (1994) GuXYDongSHPhys. Lett. A20083721219721:CAS:528:DC%2BD1cXislSqsrc%3D ChenBHWuYXieQTJ. Phys. A: Math. Theor.201346 DongSHGuXYJ. Phys.: Conference Series2008961 CY Chen (1483_CR42) 2021; 70 F Tellander (1483_CR53) 2017; 95 SH Dong (1483_CR8) 2008; 96 AM Ishkhanyan (1483_CR34) 2018; 133 1483_CR13 CY Chen (1483_CR41) 2020; 120 KG Makris (1483_CR58) 2008; 100 M Sakhdari (1483_CR54) 2019; 123 XY Gu (1483_CR9) 2008; 372 BH Chen (1483_CR20) 2013; 46 JK Boyd (1483_CR46) 2001; 42 1483_CR52 H Ciftci (1483_CR15) 2003; 36 F Cannata (1483_CR49) 1998; 246 Z Ahmed (1483_CR51) 2001; 286 1483_CR26 CY Chen (1483_CR44) 2021; 24 1483_CR27 CA Downing (1483_CR23) 2013; 54 1483_CR4 D ter Haar (1483_CR2) 1975 XY Gu (1483_CR12) 2008; 42 Q Dong (1483_CR38) 2020; 58 ZH Musslimani (1483_CR57) 2008; 100 AF Nikiforov (1483_CR16) 1988 PP Fiziev (1483_CR33) 2010; 43 HS Vieira (1483_CR29) 2016; 373 JR Choi (1483_CR61) 2020; 8 B Midya (1483_CR60) 2010; 374 HS Vieira (1483_CR28) 2015; 362 M Kermani (1483_CR63) 2017; 23 QT Xie (1483_CR19) 2012; 45 Q Dong (1483_CR31) 2019; 383 EN Tsoy (1483_CR50) 2014; 39 S Dong (1483_CR25) 2016; 131 CY Chen (1483_CR43) 2022; 34 C Hang (1483_CR55) 2013; 110 1483_CR39 F Cooper (1483_CR5) 1995; 251 H Panahi (1483_CR14) 2016; 68 LD Landau (1483_CR3) 1977 LI Schiff (1483_CR1) 1955 Q Dong (1483_CR36) 2019; 57 SH Dong (1483_CR17) 1998; 31 AM Ishkhanyan (1483_CR35) 2018; 388 ZH Musslimani (1483_CR59) 2008; 41 SH Dong (1483_CR6) 2007 1483_CR32 SH Dong (1483_CR18) 2011 1483_CR48 AE Sitnitsky (1483_CR22) 2017; 93 S Dong (1483_CR24) 2016; 31 CM Bender (1483_CR47) 1998; 80 ZQ Ma (1483_CR7) 2007; 371 B Bagchi (1483_CR56) 2008; 41 AE Sitnitsky (1483_CR21) 2018; 1138 1483_CR40 WC Qiang (1483_CR10) 2010; 89 Q Dong (1483_CR30) 2019; 71 (1483_CR45) 1995 Q Dong (1483_CR37) 2019; 134 M Pawlak (1483_CR62) 2018; 14 ZQ Ma (1483_CR11) 2005; 69 |
References_xml | – reference: LandauLDLifshitzEMQuantum Mechanics (Non-Relativistic Theory)19773New YorkPergamon – reference: DongSSunGHFalayeBJDongSHThe European Physical Journal Plus20161315176 – reference: MaZQXuBWEurophys. Lett.2005696851:CAS:528:DC%2BD2MXis1Wgu7Y%3D – reference: XieQTJ. Phys. A: Math. Theor.201245 – reference: G. H. Sun, C. Y. Chen, Hind Taud, C. Yáñez-Márquez, S. H. Dong, Phys. Lett. A 384 (19), 126480 (2020) – reference: FizievPPJ. Phys. A: Math. Theor.201043 – reference: Q. Dong, F. Serrano, G. H. Sun, J. Jing, S. H. Dong, Advances in High Energy Physics, Article ID 9105825, 7 pages (2018) – reference: DowningCAJ. Math. Phys.201354 – reference: ter HaarDProblems in Quantum Mechanics19753LondonPion Ltd – reference: DongSHFactorization Method in Quantum Mechanics2007Kluwer Academic PublisherSpringer – reference: S. Dong, Q. Dong, G. H. Sun, S. Femmam, S. H. Dong, Advances in High Energy Physics Article ID 5824271, 5 pages (2018) – reference: AhmedZPhys. Lett. A200128642311:CAS:528:DC%2BD3MXlsF2isbs%3D – reference: NikiforovAFUvarovVBSpecial Functions of Mathematical Physics1988BaselBirkhäuser – reference: MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNPhys. Rev. Lett.200810031:STN:280:DC%2BD1c%2Fns1KhtQ%3D%3D18232949 – reference: GuXYDongSHPhys. Lett. A20083721219721:CAS:528:DC%2BD1cXislSqsrc%3D – reference: BenderCMBoettcherSPhys. Rev. Lett.19988052431:CAS:528:DyaK1cXjvVyjsrw%3D – reference: DongSFangQFalayeBJSunGHYáñez-MárquezCDongSHMod. Phys. Lett. A20163141650017 – reference: DongQSunGHJingJDongSHPhys. Lett. A20193832–32701:CAS:528:DC%2BC1cXitVent7bN – reference: DongQTorres-ArenasAJSunGHCamacho-NietoOFemmamSJ. Math. Chem.20195719241:CAS:528:DC%2BC1MXhtlahsr7I – reference: BoydJKJ. Math. Phys.200142151:CAS:528:DC%2BD3MXltFGhtQ%3D%3D – reference: KermaniMMaghariAAdsorption2017235663 – reference: ChenCYSunGHWangXHSunDSYouYLuFLDongSHActa Physica Sinica20217018 – reference: TsoyENAllayarovIMAbdullaevFKhOpt. Lett.201439421525121690 – reference: DongQDongSHernández-MárquezESilva-OrtigozaRSunGHDongSHCommun. Theor. Phys.2019712311:CAS:528:DC%2BC1MXhs1Wht7fF – reference: HangCHuangGKonotopVVPhys. Rev. Lett.201311023473145 – reference: GuXYDongSHMaZQJ. Phys. A: Math. and Theor.2008423 – reference: ChenCYYouYWangXHLuFLSunDSDongSHResults in Physics202124 – reference: VieiraHSBezerraVBSilvaGVAnn. Phys.20153625761:CAS:528:DC%2BC2MXhsVyit7nI – reference: SitnitskyAECompu. and Theor. Chem.20181138151:CAS:528:DC%2BC1cXhtV2gt7fM – reference: VieiraHSBezerraVBAnn. Phys.2016373281:CAS:528:DC%2BC28XhtFKktL3I – reference: RonveauxAHeun’s Differential Equations1995OxfordOxford University Press – reference: DongSHWave Equations in Higher Dimensions2011NetherlandsSpringer – reference: MidyaBRoyBRoychoudhuryRPhys. Lett. A201037426051:CAS:528:DC%2BC3cXmtFWhu74%3D – reference: A. Frank, P. Van Isacker,Algebraic methods in molecular and nuclear structure physics, Wiley (1994) – reference: ChenBHWuYXieQTJ. Phys. A: Math. Theor.201346 – reference: ChenCYWangXHYouYSunGHDongSHInt. J. Quan. Chem.2020120181:CAS:528:DC%2BB3cXht1Ciu7vL – reference: PawlakMBen-AsherAMoiseyevNJ. Chem. Theo. and Comp.2018142361:CAS:528:DC%2BC2sXhvVOkurnM – reference: S.Lj.S. Kočinac, V. Milanović, Phys. Lett. A 372, 191 (2008) – reference: SitnitskyAEVib. Spectr.201793361:CAS:528:DC%2BC2sXhs1OhsbfL – reference: DongQSunGHHeBDongSHJ. Math. Chem.20205821971:CAS:528:DC%2BB3cXhvVCktLrL – reference: MakrisKGEl-GanainyRChristodoulidesDNMusslimaniZHPhys. Rev. Lett.2008100101:STN:280:DC%2BD1c7psVeitg%3D%3D18352189 – reference: DongSHGuXYJ. Phys.: Conference Series2008961 – reference: IshkhanyanAMEur. Phys. J. Plus201813383 – reference: MaZQGonzalez-CisnerosAXuBWDongSHPhys. Lett. A200737131801:CAS:528:DC%2BD2sXht1anurfI – reference: TellanderFBerggrenKFPhys. Rev. A201795 – reference: ChoiJRFrontiers in Physics20208189 – reference: DongSHMaZQJ. Phys. A: Math. and Gen.199831499855 – reference: IshkhanyanAMAnn. Phys.20183884561:CAS:528:DC%2BC2sXhvF2lur%2FP – reference: ChenCYLuFLSunGHWangXHYouYSunDSDongSHResults in Physics202234 – reference: Q. Dong, H. Iván García Hernández, G. H. Sun, M. Toutounji, S. H. Dong, Proceedings of the Royal Society A 476 (2241), 20200050 (2020) – reference: QiangWCDongSHEPL20108910003 – reference: Q. Dong, G. H. Sun, M. Avila Aoki, C. Y. Chen, S. H. Dong, Mod. Phys. Lett. A 34 (26), 1950208 (2019) – reference: SchiffLIQuantum Mechanics19553New YorkMcGraw-Hill Book Co. – reference: CooperFKhareASukhatmeUSupersymmetry and Quantum MechanicsPhys. Rep.19952512671:CAS:528:DyaK2MXkt1Citb0%3D – reference: PanahiHBaradaranMAzizianSRRomanian Reports in Physics201668156 – reference: CannataFJunkerGTrostJPhys. Lett. A19982462191:CAS:528:DyaK1cXls1yiurk%3D – reference: CiftciHHallRLSaadNJ. Phys. A: Math. and Gen.2003364711807 – reference: C. M. Bender, R. Tateo, P. E. Dorey, T. Clare Dunning, G. Levai, S. Kuzhel, H. F. Jones, A. Fring, D. W. Hook, PT Symmetry: In Quantum and Classical Physics, World Scientific, Singapore, and references therein (2019) – reference: P. Rajesh Kumar, S. H. Dong, Phys. Lett. A 417, 127700 (2021) – reference: MusslimaniZHMakrisKGEl-GanainyRChristodoulidesDNJ. Phys. A: Math. Theor.200841 – reference: BagchiBQuesneCRoychoudhuryRJ. Phys. A: Math. Theor.200841 – reference: SakhdariMHajizadeganMZhongQChristodoulidesDNEl-GanainyRChenP-YPhys. Rev. Lett.20191231:CAS:528:DC%2BB3cXhvFyktLs%3D31765193 – reference: DongQSunGHSaadNDongSHThe European Physical Journal Plus201913411562 – volume: 362 start-page: 576 year: 2015 ident: 1483_CR28 publication-title: Ann. Phys. doi: 10.1016/j.aop.2015.08.027 – volume: 41 year: 2008 ident: 1483_CR56 publication-title: J. Phys. A: Math. Theor. – volume: 36 start-page: 11807 issue: 47 year: 2003 ident: 1483_CR15 publication-title: J. Phys. A: Math. and Gen. doi: 10.1088/0305-4470/36/47/008 – volume: 42 issue: 3 year: 2008 ident: 1483_CR12 publication-title: J. Phys. A: Math. and Theor. – volume: 93 start-page: 36 year: 2017 ident: 1483_CR22 publication-title: Vib. Spectr. doi: 10.1016/j.vibspec.2017.09.003 – volume: 100 issue: 10 year: 2008 ident: 1483_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.103904 – volume: 388 start-page: 456 year: 2018 ident: 1483_CR35 publication-title: Ann. Phys. doi: 10.1016/j.aop.2017.11.033 – volume: 58 start-page: 2197 year: 2020 ident: 1483_CR38 publication-title: J. Math. Chem. doi: 10.1007/s10910-020-01169-4 – volume-title: Factorization Method in Quantum Mechanics year: 2007 ident: 1483_CR6 doi: 10.1007/978-1-4020-5796-0 – volume-title: Problems in Quantum Mechanics year: 1975 ident: 1483_CR2 – volume-title: Special Functions of Mathematical Physics year: 1988 ident: 1483_CR16 doi: 10.1007/978-1-4757-1595-8 – volume: 71 start-page: 231 year: 2019 ident: 1483_CR30 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/2/231 – ident: 1483_CR40 doi: 10.1016/j.physleta.2020.126480 – volume: 123 year: 2019 ident: 1483_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.193901 – volume: 372 start-page: 1972 issue: 12 year: 2008 ident: 1483_CR9 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.11.003 – ident: 1483_CR48 doi: 10.1142/q0178 – volume: 46 year: 2013 ident: 1483_CR20 publication-title: J. Phys. A: Math. Theor. – volume: 31 start-page: 9855 issue: 49 year: 1998 ident: 1483_CR17 publication-title: J. Phys. A: Math. and Gen. doi: 10.1088/0305-4470/31/49/009 – volume-title: Quantum Mechanics (Non-Relativistic Theory) year: 1977 ident: 1483_CR3 – volume: 31 start-page: 1650017 issue: 4 year: 2016 ident: 1483_CR24 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732316500176 – volume: 34 year: 2022 ident: 1483_CR43 publication-title: Results in Physics – ident: 1483_CR13 doi: 10.1016/j.physleta.2021.127700 – ident: 1483_CR52 doi: 10.1016/j.physleta.2007.07.021 – volume: 39 start-page: 4215 year: 2014 ident: 1483_CR50 publication-title: Opt. Lett. doi: 10.1364/OL.39.004215 – volume: 120 issue: 18 year: 2020 ident: 1483_CR41 publication-title: Int. J. Quan. Chem. – volume: 24 year: 2021 ident: 1483_CR44 publication-title: Results in Physics – volume-title: Quantum Mechanics year: 1955 ident: 1483_CR1 – volume: 45 year: 2012 ident: 1483_CR19 publication-title: J. Phys. A: Math. Theor. – volume: 96 issue: 1 year: 2008 ident: 1483_CR8 publication-title: J. Phys.: Conference Series – volume: 70 issue: 18 year: 2021 ident: 1483_CR42 publication-title: Acta Physica Sinica – volume: 8 start-page: 189 year: 2020 ident: 1483_CR61 publication-title: Frontiers in Physics doi: 10.3389/fphy.2020.00189 – volume: 286 start-page: 231 issue: 4 year: 2001 ident: 1483_CR51 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00426-1 – volume: 69 start-page: 685 year: 2005 ident: 1483_CR11 publication-title: Europhys. Lett. doi: 10.1209/epl/i2004-10418-8 – volume: 133 start-page: 83 year: 2018 ident: 1483_CR34 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-11912-5 – volume: 246 start-page: 219 year: 1998 ident: 1483_CR49 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00517-9 – volume: 68 start-page: 56 issue: 1 year: 2016 ident: 1483_CR14 publication-title: Romanian Reports in Physics – ident: 1483_CR39 doi: 10.1098/rspa.2020.0050 – volume: 57 start-page: 1924 year: 2019 ident: 1483_CR36 publication-title: J. Math. Chem. doi: 10.1007/s10910-019-01045-w – volume: 110 year: 2013 ident: 1483_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.083604 – ident: 1483_CR26 doi: 10.1155/2018/9105825 – volume-title: Wave Equations in Higher Dimensions year: 2011 ident: 1483_CR18 doi: 10.1007/978-94-007-1917-0 – volume: 80 start-page: 5243 year: 1998 ident: 1483_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5243 – ident: 1483_CR4 – volume: 383 start-page: 270 issue: 2–3 year: 2019 ident: 1483_CR31 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.034 – volume: 95 year: 2017 ident: 1483_CR53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.042115 – volume: 251 start-page: 267 year: 1995 ident: 1483_CR5 publication-title: Phys. Rep. doi: 10.1016/0370-1573(94)00080-M – volume: 134 start-page: 562 issue: 11 year: 2019 ident: 1483_CR37 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2019-12980-7 – volume-title: Heun’s Differential Equations year: 1995 ident: 1483_CR45 – volume: 131 start-page: 176 issue: 5 year: 2016 ident: 1483_CR25 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2016-16176-5 – volume: 54 year: 2013 ident: 1483_CR23 publication-title: J. Math. Phys. doi: 10.1063/1.4811855 – volume: 374 start-page: 2605 year: 2010 ident: 1483_CR60 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.04.046 – volume: 371 start-page: 180 issue: 3 year: 2007 ident: 1483_CR7 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.06.021 – volume: 373 start-page: 28 year: 2016 ident: 1483_CR29 publication-title: Ann. Phys. doi: 10.1016/j.aop.2016.06.016 – volume: 23 start-page: 663 issue: 5 year: 2017 ident: 1483_CR63 publication-title: Adsorption doi: 10.1007/s10450-017-9890-5 – ident: 1483_CR27 doi: 10.1155/2018/5824271 – volume: 100 issue: 3 year: 2008 ident: 1483_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.030402 – volume: 43 year: 2010 ident: 1483_CR33 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/3/035203 – volume: 42 start-page: 15 year: 2001 ident: 1483_CR46 publication-title: J. Math. Phys. doi: 10.1063/1.1326458 – volume: 14 start-page: 236 year: 2018 ident: 1483_CR62 publication-title: J. Chem. Theo. and Comp. doi: 10.1021/acs.jctc.7b01017 – ident: 1483_CR32 doi: 10.1142/S0217732319502080 – volume: 41 year: 2008 ident: 1483_CR59 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/41/24/244019 – volume: 1138 start-page: 15 year: 2018 ident: 1483_CR21 publication-title: Compu. and Theor. Chem. doi: 10.1016/j.comptc.2018.05.021 – volume: 89 start-page: 10003 year: 2010 ident: 1483_CR10 publication-title: EPL doi: 10.1209/0295-5075/89/10003 |
SSID | ssj0009868 |
Score | 2.350139 |
Snippet | The exact solutions of 1D Schrödinger equation subject to a complex periodic potential
V
(
x
)
=
-
[
i
a
sin
(
b
x
)
+
c
]
2
(
a
,
b
,
c
∈
R
) are found as a... The exact solutions of 1D Schrödinger equation subject to a complex periodic potential V(x)=-[iasin(bx)+c]2 (a,b,c∈R) are found as a confluent Heun function... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1684 |
SubjectTerms | Chemistry Chemistry and Materials Science Eigenvalues Eigenvectors Energy spectra Exact solutions Math. Applications in Chemistry Mathematical analysis Original Paper Physical Chemistry Schrodinger equation Substitutes Theoretical and Computational Chemistry Wave functions |
Title | Exact solutions of the Schrödinger equation with a complex periodic potential |
URI | https://link.springer.com/article/10.1007/s10910-023-01483-7 https://www.proquest.com/docview/2838733846 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4oPKgPRlEjiqQPvmmTsXXr-ggIGg28KAk-LW13iyYEEGbCL_MP-MdsxwZq1MSnPbTrkrtr7-vu7juAc6VdVEIiDWIdUhZrpEoJRkXoeOjwOHG5LXDu9YObAbsd-sO8KGxeZLsXIcnspP5U7CZs4Na1-T8s9CjfhLJv7u7Wrgduc021G2YFcMaZCyq4aOSlMj-v8dUdrTHmt7Bo5m26e7Cbw0TSXOp1HzZwXIGtdtGdrQI7vRXf6vwA-p2F1ClZ2RGZJMQMk3v9NHt_i7NPEHxZ0noT---VSJJlk-OCWK7jSfysyXSS2twhOTqEQbfz0L6heacEqs0WSilXaDy75yUyDhgm5hBTDe41JCaKa8WEdGI0SIIlBq15DgpfYBwYqCS5I40pBd4RlMaTMR4DwQCllGGIQmpzt0Tpa2lEqi0Q4shkFRqFwCKd04jbbhajaE2AbIUcGSFHmZAjXoWL1TvTJYnGn7NrhR6ifEPNI4OCQm6u0yyowmWhm_Xw76ud_G_6KWy7mXnYLLIalNLZK54Z2JGqOpSbratW1z6vH-869czqPgA-BdI7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEJ4oHNSD_0b87cGblixs2W6PhKAowkVJ8LRpu7PRSEBlSYgP5gv4YrbLLihRE87tdndnpp1v2pmvAGdKl1EJidQLtU9ZqJEqJRgVvuOiw8OozG2Bc6vtNTrsplvppkVhwyzbPTuSTFbqb8Vuwh7clm3-D_Ndypchz0wMXslBvnr10KzPyHb9pATOuHNBBReltFjm91F-OqQZypw7GE38zeUGdLIvnaSZPBdHsSrq9zkSx0V_ZRPWUwBKqhOL2YIl7G_DSi27920b1lpTJtfhDrTrY6ljMrVQMoiIaSZ3-vHt8yNM3krwdUIYTuyuLpEkyVPHMbEsyoPwSZOXQWyzkmRvFzqX9ftag6Z3MFBtJmdMuUKDGVw3kqHHMDLLoypxtyQxUlwrJqQTosEoLDI40HVQVASGngFhkjvSGKnn7kGuP-jjPhD0UErp-yikNlEryoqWRlXaQiyOTBaglCki0ClBub0noxfMqJWt3AIjtyCRW8ALcD595mVCz_Fv76NMv0E6VYeBwVc-N4E68wpwkalr1vz3aAeLdT-FlcZ96za4vW43D2G1nGjf5qodQS5-G-GxATexOklt-QsBpe8X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgQxEC1cwOUgrjiuOXjTYC-ZTuco6uA6CDrgrclSjYLMjNqCX-YP-GNWerpnVFTwnHQCVZXUS1fVK4AdYyM0SiNPnE25cBa5MUpwlQYxBtLlkfQFzpft5KQjzm6bt5-q-Mts9zokOahp8CxN3WK_7_L9T4VvygdxI58LJNKYy3GYpOs49EldnehgRLublsVw5NgVV1KFVdnMz2t8dU0jvPktRFp6ntY8zFWQkR0MdLwAY9hdhOnDulPbIsxeDrlXn5egffyqbcGGNsV6OaNhdm3vnt7fXLkFw8cBxTfz_2GZZmVmOb4yz3vcc_eW9XteHGScy9BpHd8cnvCqawK3dJwKLg2Sl4_jXLtEYE4XmgllHGrMjbRGKB04JFQhckJucYCqqdAlBJu0DDSZVRKvwES318VVYJig1jpNUWlL70zUTatJpNaDIolCNyCsBZbZilLcd7Z4yEZkyF7IGQk5K4WcyQbsDr_pDwg1_py9Ueshqw7Xc0aIKJX0tBZJA_Zq3YyGf19t7X_Tt2Hq6qiVXZy2z9dhJiotxSeXbcBE8fSCm4RGCrNVGtwHcY3WZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+solutions+of+the+Schr%C3%B6dinger+equation+with+a+complex+periodic+potential&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Dong%2C+Shi-Hai&rft.au=Sun%2C+Guo-Hua&rft.date=2023-09-01&rft.pub=Springer+International+Publishing&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=61&rft.issue=8&rft.spage=1684&rft.epage=1695&rft_id=info:doi/10.1007%2Fs10910-023-01483-7&rft.externalDocID=10_1007_s10910_023_01483_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon |