Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering two different prey behaviours’ transition
In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutio...
Saved in:
Published in | Nonlinear dynamics Vol. 107; no. 1; pp. 1357 - 1381 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-021-07058-y |
Cover
Loading…
Abstract | In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutions corresponding to the temporal model, spatiotemporal model and the existence and priori boundedness of solutions corresponding to the spatiotemporal model without cross-diffusion. Then by analysing the eigenvalues of characteristic equation associated with the linearized system at the positive constant equilibrium point, we investigate the stability and instability of the corresponding spatiotemporal model. Moreover, by calculating and analysing the normal form on the centre manifold associated with the Turing–Hopf bifurcation, we investigate the dynamical classification near the Turing–Hopf bifurcation point in detail. At last, some numerical simulations results are given to support our analytic results. |
---|---|
AbstractList | In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutions corresponding to the temporal model, spatiotemporal model and the existence and priori boundedness of solutions corresponding to the spatiotemporal model without cross-diffusion. Then by analysing the eigenvalues of characteristic equation associated with the linearized system at the positive constant equilibrium point, we investigate the stability and instability of the corresponding spatiotemporal model. Moreover, by calculating and analysing the normal form on the centre manifold associated with the Turing–Hopf bifurcation, we investigate the dynamical classification near the Turing–Hopf bifurcation point in detail. At last, some numerical simulations results are given to support our analytic results. |
Author | Lv, Yehu |
Author_xml | – sequence: 1 givenname: Yehu orcidid: 0000-0002-7824-9557 surname: Lv fullname: Lv, Yehu email: mathyehul@163.com organization: School of Mathematical Sciences, Beijing Normal University |
BookMark | eNp9kMFKxDAQhoMouKu-gKeA5-ok3bbJUURdQfCisLfQpokbWZuapEpvCz6CJ19vn8R0Kwge9hASmP-bmXxTtN_YRiF0SuCcABQXnhAoSAI0ngIylvR7aEKyIk1ozhf7aAKczhLgsDhEU-9fACClwCbo87FzpnnerL_mttW4MrpzsgzGNtg0OCwVbp2qy2BdjMRnj19trVb4w4Qlls56n9RG684PhLSNN7UaGuLwYfFQUU41AW_JSi3Ld2M75zfrbxxcGdPDpGN0oMuVVye_9xF6url-vJon9w-3d1eX94lMCQ9JUVUgGVSEA0trSvJqxjKqKy2V1KArpilAVpKUs4KVCrKa5zWXszyt80JLnh6hs7Fv6-xbp3wQL3GZJo4UNCf5jEFkY4qNqe3vnNJCmrA1Ejc2K0FADMrFqFxE5WKrXPQRpf_Q1pnX0vW7oXSEfDuIU-5vqx3UD_oenWo |
CitedBy_id | crossref_primary_10_1103_PhysRevE_109_024214 crossref_primary_10_1007_s00033_023_02167_7 crossref_primary_10_1016_j_chaos_2024_115375 crossref_primary_10_2139_ssrn_4199142 crossref_primary_10_2139_ssrn_4153589 crossref_primary_10_1007_s12190_024_02183_4 crossref_primary_10_3934_era_2023229 crossref_primary_10_1002_mma_10480 crossref_primary_10_1016_j_chaos_2022_112659 crossref_primary_10_1140_epjp_s13360_024_05862_0 crossref_primary_10_1063_5_0157354 |
Cites_doi | 10.1016/0022-5193(79)90258-3 10.1007/s11071-012-0374-6 10.1007/b98868 10.1016/j.nonrwa.2011.02.002 10.1351/pac199163101441 10.1016/S0022-5193(89)80211-5 10.1007/s11071-014-1859-2 10.1007/s10440-014-9903-2 10.1016/j.camwa.2014.04.015 10.1016/S0893-9659(03)90096-6 10.1007/978-1-4757-3978-7 10.2478/amns.2020.1.00002 10.1016/j.jde.2013.08.015 10.1016/j.jde.2006.01.013 10.1016/S0092-8240(81)80085-7 10.1063/1.4816937 10.1007/978-1-4612-1140-2 10.1103/PhysRevE.88.042925 10.1016/j.camwa.2014.11.016 10.1142/S1793524519500074 10.1016/j.jde.2008.10.024 10.1177/0037549718779445 10.1140/epjb/e2013-30649-7 10.1016/j.jde.2011.03.004 10.1007/s11071-016-2873-3 10.1007/b98869 10.1016/j.cnsns.2015.10.002 10.4039/Ent91293-5 10.1016/j.nonrwa.2009.01.043 10.1126/science.26.653.21.b 10.1080/21642583.2016.1241194 10.1016/j.bulm.2004.09.003 10.1090/S0002-9947-00-02280-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-021-07058-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1381 |
ExternalDocumentID | 10_1007_s11071_021_07058_y |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-7bb0c80b19083d216b4852fbfcecf0fb8f2005a139878ae05d96d9c463d67fc93 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:05:30 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 01:52:09 EDT 2025 Fri Feb 21 02:46:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cross-diffusion Individual behaviour Turing–Hopf bifurcation analysis on manifolds 92 Biology and other natural sciences Herd behaviour 35 Partial differential equations 58 Global analysis Predator–prey model Spatially inhomogeneous periodic solution Self-diffusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7bb0c80b19083d216b4852fbfcecf0fb8f2005a139878ae05d96d9c463d67fc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7824-9557 |
PQID | 2616480139 |
PQPubID | 2043746 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2616480139 crossref_citationtrail_10_1007_s11071_021_07058_y crossref_primary_10_1007_s11071_021_07058_y springer_journals_10_1007_s11071_021_07058_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Wang, Shi, Wei (CR11) 2011; 251 Aziz-alaoui, Okiye (CR6) 2003; 16 Shukla, Verma (CR23) 1981; 43 Kuznetsov (CR38) 2004 Gambino, Lombardo, Sammartino (CR28) 2013; 88 Saha, Samanta (CR14) 2019; 12 Arditi, Ginzburg (CR7) 1989; 139 Tripathi, Abbas, Thakur (CR9) 2015; 80 Shigesada, Kawasaki, Teramoto (CR22) 1979; 79 CR33 Lotka (CR1) 1907; 26 Pao (CR37) 1992 Freedman (CR3) 1980 Guckenheimer, Holmes (CR39) 1983 Maiti, Sen, Samanta (CR16) 2016; 4 Song, Zhang, Peng (CR34) 2016; 33 Song, Zou (CR8) 2014; 67 Sun, Jin, Li (CR25) 2012; 69 Berenstein, Beta (CR29) 2013; 23 Du, Shi (CR18) 2006; 229 De Assis, Pazim, Malavazi (CR35) 2020; 5 Kerner (CR21) 1957; 19 Vitagliano (CR36) 1991; 63 Guin (CR26) 2014; 226 Peng, Zhang (CR12) 2016; 275 Petrovskii, Morozov, Li (CR10) 2005; 67 Manna, Maiti, Samanta (CR15) 2019; 95 Murray (CR17) 2003 Gambino, Lombardo, Sammartino (CR31) 2014; 132 Ajraldi, Pittavino, Venturino (CR13) 2011; 12 Murray (CR4) 2002 Tian, Lin, Pedersen (CR24) 2010; 11 Fanelli, Cianci, Patti (CR30) 2013; 86 Volterra (CR2) 1926; 2 Holling (CR5) 1959; 91 Cui, Shi, Wu (CR20) 2014; 256 Yi, Wei, Shi (CR19) 2009; 246 Tang, Song, Zhang (CR32) 2016; 86 Zhang, Yan (CR27) 2015; 69 YH Du (7058_CR18) 2006; 229 A Maiti (7058_CR16) 2016; 4 CR Tian (7058_CR24) 2010; 11 CS Holling (7058_CR5) 1959; 91 R Arditi (7058_CR7) 1989; 139 YA Peng (7058_CR12) 2016; 275 JY Zhang (7058_CR27) 2015; 69 JD Murray (7058_CR4) 2002 YA Kuznetsov (7058_CR38) 2004 FQ Yi (7058_CR19) 2009; 246 V Vitagliano (7058_CR36) 1991; 63 XS Tang (7058_CR32) 2016; 86 JD Murray (7058_CR17) 2003 S Saha (7058_CR14) 2019; 12 V Ajraldi (7058_CR13) 2011; 12 D Manna (7058_CR15) 2019; 95 RH Cui (7058_CR20) 2014; 256 YL Song (7058_CR34) 2016; 33 HI Freedman (7058_CR3) 1980 CV Pao (7058_CR37) 1992 I Berenstein (7058_CR29) 2013; 23 JF Wang (7058_CR11) 2011; 251 GQ Sun (7058_CR25) 2012; 69 YL Song (7058_CR8) 2014; 67 EH Kerner (7058_CR21) 1957; 19 J Guckenheimer (7058_CR39) 1983 MA Aziz-alaoui (7058_CR6) 2003; 16 N Shigesada (7058_CR22) 1979; 79 JB Shukla (7058_CR23) 1981; 43 JP Tripathi (7058_CR9) 2015; 80 S Petrovskii (7058_CR10) 2005; 67 LN Guin (7058_CR26) 2014; 226 V Volterra (7058_CR2) 1926; 2 7058_CR33 G Gambino (7058_CR28) 2013; 88 G Gambino (7058_CR31) 2014; 132 AJ Lotka (7058_CR1) 1907; 26 D Fanelli (7058_CR30) 2013; 86 RA De Assis (7058_CR35) 2020; 5 |
References_xml | – volume: 226 start-page: 320 issue: 1 year: 2014 end-page: 335 ident: CR26 article-title: Existence of spatial patterns in a predator–prey model with self- and cross-diffusion publication-title: Appl. Math. Comput. – volume: 79 start-page: 83 issue: 1 year: 1979 end-page: 99 ident: CR22 article-title: Spatial segregation of interacting species publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(79)90258-3 – volume: 69 start-page: 1631 issue: 4 year: 2012 end-page: 1638 ident: CR25 article-title: Spatial patterns of a predator–prey model with cross diffusion publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0374-6 – volume: 19 start-page: 121 issue: 2 year: 1957 end-page: 146 ident: CR21 article-title: A statistical mechanics of interacting biological species publication-title: Bull. Math. Biol. – year: 1992 ident: CR37 publication-title: Nonlinear Parabolic and Elliptic Equations – year: 2002 ident: CR4 publication-title: Mathematical Biology I: An Introduction doi: 10.1007/b98868 – volume: 12 start-page: 2319 issue: 4 year: 2011 end-page: 2338 ident: CR13 article-title: Modeling herd behavior in population systems publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2011.02.002 – volume: 63 start-page: 1441 issue: 10 year: 1991 end-page: 1448 ident: CR36 article-title: Some phenomenological and thermodynamic aspects of diffusion in multicomponent systems publication-title: Pure Appl. Chem. doi: 10.1351/pac199163101441 – ident: CR33 – volume: 139 start-page: 311 issue: 3 year: 1989 end-page: 326 ident: CR7 article-title: Coupling in predator–prey dynamics: ratio-dependence publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(89)80211-5 – volume: 80 start-page: 177 issue: 1–2 year: 2015 end-page: 196 ident: CR9 article-title: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1859-2 – volume: 132 start-page: 283 issue: 1 year: 2014 end-page: 294 ident: CR31 article-title: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion publication-title: Acta Applicandae Mathematicae doi: 10.1007/s10440-014-9903-2 – volume: 67 start-page: 1978 issue: 10 year: 2014 end-page: 1997 ident: CR8 article-title: Spatiotemporal dynamics in a diffusive ratio-dependent predator–prey model near a Hopf–Turing bifurcation point publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.04.015 – volume: 16 start-page: 1069 issue: 7 year: 2003 end-page: 1075 ident: CR6 article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II type schemes publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(03)90096-6 – year: 2004 ident: CR38 publication-title: Elements of Applied Bifurcation Theory doi: 10.1007/978-1-4757-3978-7 – volume: 5 start-page: 11 issue: 1 year: 2020 end-page: 24 ident: CR35 article-title: A mathematical model to describe the herd behaviour considering group defense publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00002 – volume: 256 start-page: 108 issue: 1 year: 2014 end-page: 129 ident: CR20 article-title: Strong Allee effect in a diffusive predator–prey system with a protection zone publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2013.08.015 – volume: 229 start-page: 63 issue: 1 year: 2006 end-page: 91 ident: CR18 article-title: A diffusive predator–prey model with a protection zone publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2006.01.013 – volume: 43 start-page: 593 issue: 5 year: 1981 end-page: 610 ident: CR23 article-title: Effects of convective and dispersive interactions on the stability of two species publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(81)80085-7 – year: 1980 ident: CR3 publication-title: Deterministic Mathematical Models in Population Ecology – volume: 23 start-page: 033119 issue: 3 year: 2013 ident: CR29 article-title: Cross-diffusion in the two-variable Oregonator model publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4816937 – year: 1983 ident: CR39 publication-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields doi: 10.1007/978-1-4612-1140-2 – volume: 2 start-page: 31 issue: 6 year: 1926 end-page: 113 ident: CR2 article-title: Variazione e fluttuazini del numero individui in specie animali conviventi publication-title: Memorie della R. Acc. deiLincei. – volume: 88 start-page: 042925 issue: 4 year: 2013 ident: CR28 article-title: Turing pattern formation in the Brusselator system with nonlinear diffusion publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.042925 – volume: 69 start-page: 157 issue: 3 year: 2015 end-page: 169 ident: CR27 article-title: Lattice Boltzmann simulation of pattern formation under cross-diffusion publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.11.016 – volume: 12 start-page: 1950007 issue: 1 year: 2019 ident: CR14 article-title: Analysis of a predator–prey model with herd behavior and disease in prey incorporating prey refuge publication-title: Int. J. Biomath. doi: 10.1142/S1793524519500074 – volume: 246 start-page: 1944 issue: 5 year: 2009 end-page: 1977 ident: CR19 article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2008.10.024 – volume: 95 start-page: 339 issue: 4 year: 2019 end-page: 349 ident: CR15 article-title: Deterministic and stochastic analysis of a predator–prey model with Allee effect and herd behaviour publication-title: Simulation doi: 10.1177/0037549718779445 – volume: 86 start-page: 1 issue: 4 year: 2013 end-page: 8 ident: CR30 article-title: Turing instabilities in reaction–diffusion systems with cross diffusion publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-30649-7 – volume: 251 start-page: 1276 issue: 4–5 year: 2011 end-page: 1304 ident: CR11 article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.03.004 – volume: 86 start-page: 1 issue: 1 year: 2016 end-page: 17 ident: CR32 article-title: Turing–Hopf bifurcation analysis of a predator–prey model with herd behavior and cross-diffusion publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2873-3 – volume: 275 start-page: 1 year: 2016 end-page: 12 ident: CR12 article-title: Turing instability and pattern induced by cross-diffusion in a predator–prey system with Allee effect publication-title: Appl. Math. Comput. – year: 2003 ident: CR17 publication-title: Mathematical Biology II: Spatial Models and Biomedical Applications doi: 10.1007/b98869 – volume: 33 start-page: 229 year: 2016 end-page: 258 ident: CR34 article-title: Turing–Hopf bifurcation in the reaction–diffusion equations and its applications publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.10.002 – volume: 91 start-page: 293 issue: 5 year: 1959 end-page: 320 ident: CR5 article-title: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly publication-title: Can. Entomol. doi: 10.4039/Ent91293-5 – volume: 11 start-page: 1036 issue: 2 year: 2010 end-page: 1045 ident: CR24 article-title: Instability induced by cross diffusion in reaction-diffusion systems publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2009.01.043 – volume: 26 start-page: 21 issue: 653 year: 1907 end-page: 26 ident: CR1 article-title: Relation between birth rates and death rates publication-title: Science doi: 10.1126/science.26.653.21.b – volume: 4 start-page: 259 issue: 1 year: 2016 end-page: 269 ident: CR16 article-title: Deterministic and stochastic analysis of a prey–predator model with herd behaviour in both publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2016.1241194 – volume: 67 start-page: 637 issue: 3 year: 2005 end-page: 661 ident: CR10 article-title: Regimes of biological invasion in a predator–prey system with the Allee effect publication-title: Bull. Math. Biol. doi: 10.1016/j.bulm.2004.09.003 – volume: 26 start-page: 21 issue: 653 year: 1907 ident: 7058_CR1 publication-title: Science doi: 10.1126/science.26.653.21.b – volume: 86 start-page: 1 issue: 4 year: 2013 ident: 7058_CR30 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-30649-7 – volume: 63 start-page: 1441 issue: 10 year: 1991 ident: 7058_CR36 publication-title: Pure Appl. Chem. doi: 10.1351/pac199163101441 – volume: 2 start-page: 31 issue: 6 year: 1926 ident: 7058_CR2 publication-title: Memorie della R. Acc. deiLincei. – volume: 16 start-page: 1069 issue: 7 year: 2003 ident: 7058_CR6 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(03)90096-6 – volume: 19 start-page: 121 issue: 2 year: 1957 ident: 7058_CR21 publication-title: Bull. Math. Biol. – volume: 69 start-page: 1631 issue: 4 year: 2012 ident: 7058_CR25 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0374-6 – volume: 11 start-page: 1036 issue: 2 year: 2010 ident: 7058_CR24 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2009.01.043 – volume: 139 start-page: 311 issue: 3 year: 1989 ident: 7058_CR7 publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(89)80211-5 – volume-title: Mathematical Biology II: Spatial Models and Biomedical Applications year: 2003 ident: 7058_CR17 doi: 10.1007/b98869 – volume: 5 start-page: 11 issue: 1 year: 2020 ident: 7058_CR35 publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00002 – volume: 95 start-page: 339 issue: 4 year: 2019 ident: 7058_CR15 publication-title: Simulation doi: 10.1177/0037549718779445 – volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields year: 1983 ident: 7058_CR39 doi: 10.1007/978-1-4612-1140-2 – volume: 67 start-page: 637 issue: 3 year: 2005 ident: 7058_CR10 publication-title: Bull. Math. Biol. doi: 10.1016/j.bulm.2004.09.003 – volume: 12 start-page: 1950007 issue: 1 year: 2019 ident: 7058_CR14 publication-title: Int. J. Biomath. doi: 10.1142/S1793524519500074 – volume: 79 start-page: 83 issue: 1 year: 1979 ident: 7058_CR22 publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(79)90258-3 – volume-title: Nonlinear Parabolic and Elliptic Equations year: 1992 ident: 7058_CR37 – volume: 88 start-page: 042925 issue: 4 year: 2013 ident: 7058_CR28 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.042925 – volume: 67 start-page: 1978 issue: 10 year: 2014 ident: 7058_CR8 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.04.015 – ident: 7058_CR33 doi: 10.1090/S0002-9947-00-02280-7 – volume: 275 start-page: 1 year: 2016 ident: 7058_CR12 publication-title: Appl. Math. Comput. – volume: 256 start-page: 108 issue: 1 year: 2014 ident: 7058_CR20 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2013.08.015 – volume: 33 start-page: 229 year: 2016 ident: 7058_CR34 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.10.002 – volume-title: Mathematical Biology I: An Introduction year: 2002 ident: 7058_CR4 doi: 10.1007/b98868 – volume: 132 start-page: 283 issue: 1 year: 2014 ident: 7058_CR31 publication-title: Acta Applicandae Mathematicae doi: 10.1007/s10440-014-9903-2 – volume-title: Deterministic Mathematical Models in Population Ecology year: 1980 ident: 7058_CR3 – volume: 12 start-page: 2319 issue: 4 year: 2011 ident: 7058_CR13 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2011.02.002 – volume-title: Elements of Applied Bifurcation Theory year: 2004 ident: 7058_CR38 doi: 10.1007/978-1-4757-3978-7 – volume: 43 start-page: 593 issue: 5 year: 1981 ident: 7058_CR23 publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(81)80085-7 – volume: 69 start-page: 157 issue: 3 year: 2015 ident: 7058_CR27 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2014.11.016 – volume: 23 start-page: 033119 issue: 3 year: 2013 ident: 7058_CR29 publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4816937 – volume: 4 start-page: 259 issue: 1 year: 2016 ident: 7058_CR16 publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2016.1241194 – volume: 246 start-page: 1944 issue: 5 year: 2009 ident: 7058_CR19 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2008.10.024 – volume: 226 start-page: 320 issue: 1 year: 2014 ident: 7058_CR26 publication-title: Appl. Math. Comput. – volume: 91 start-page: 293 issue: 5 year: 1959 ident: 7058_CR5 publication-title: Can. Entomol. doi: 10.4039/Ent91293-5 – volume: 251 start-page: 1276 issue: 4–5 year: 2011 ident: 7058_CR11 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.03.004 – volume: 229 start-page: 63 issue: 1 year: 2006 ident: 7058_CR18 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2006.01.013 – volume: 86 start-page: 1 issue: 1 year: 2016 ident: 7058_CR32 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2873-3 – volume: 80 start-page: 177 issue: 1–2 year: 2015 ident: 7058_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1859-2 |
SSID | ssj0003208 |
Score | 2.3900204 |
Snippet | In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1357 |
SubjectTerms | Automotive Engineering Behavior Boundary conditions Canonical forms Classical Mechanics Control Defense Diffusion Dynamical Systems Eigenvalues Eigenvectors Engineering Equilibrium Hopf bifurcation Mathematical models Mechanical Engineering Original Paper Partial differential equations Population Predator-prey simulation Predators Stability analysis Vibration |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3rwLVar5OBNg_ve5CQi1iLoqYXeluYFBWlru0V6E_wJnvx7_hJn0qxVwR4WFjYblp1M5suXzHyEnOUqD50DmkTkLDFKMMG1ZhD7YiOiHoAMzEZ-eMxaneS-m3Y94TbxxyqrOdFN1HqokCO_BKSfYamTWFyNnhmqRuHuqpfQWCVrIUQaHOG8efc9E8eRU6QLYI2BfETXJ83MU-dg3QML6QiuPEg5m_0OTAu0-WeD1MWd5jbZ9ICRXs8tvENWzGCXbHnwSL1rTnbJxo_Kgnvkre3SDz9f31vDkaWyb6fjOTlH-wMKoI-OxkbjghuawO2MOkkcirQsdR_IUDplilwaVV7UEzqk5cuQVqIqJXVv-kz_6Xjy-fpBSwx-7hzYPuk0b9s3Leb1FpgCRyxZLmWgeCABI_BYR2EmE55GVlpllA2s5BYpqB6YgOe8Z4JUi0wLlWSxznKrRHxAaoPhwBwSagOhTSqF0JFIlMl7QkAzLMYecRUKXSdh9bML5YuRoybGU7Eoo4wGKsBAhTNQMauT8-93RvNSHEtbNyobFt4tJ8ViENXJRWXXxeP_ezta3tsxWY8wLcJRMw1SK8dTcwJgpZSnbkR-AVTs6ks priority: 102 providerName: ProQuest |
Title | Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering two different prey behaviours’ transition |
URI | https://link.springer.com/article/10.1007/s11071-021-07058-y https://www.proquest.com/docview/2616480139 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58XPTgW6yPkoM3XdhmX8mxSmtRFBEL9bQ0LxCkLe0W6U3wJ3jy7_lLnKRZq6KCh2UXdjIsO5nMN5PMDMBhJrOaU0Ad8yyIteQBZ0oFaPsizWkXQYbNRr68Slvt-LyTdHxS2Kg87V5uSbqVepbshp4Kur4UryxMWDCZh8UEfXc7r9u0_rH-RtT1oQvRs7BRiI5PlfmZx1dzNMOY37ZFnbVprsGKh4mkPpXrOszp3gaseshIvEKONmD5Uz3BTXi-dUmHb08vrf7AEHFvxsNpSI7c9whCPTIYamXdbCTBxwlxjXCIDcYS94GBbZgythE0In0rT2RIisc-KVupFMSN9Pn94-Ho7emVFNbkudNfW9BuNm5PW4HvshBIVL8iyIQIJQsFIgMWKVpLRcwSaoSRWprQCGZs4KmLSJFlrKvDRPFUcRmnkUozI3m0DQu9fk_vADEhVzoRnCvKY6mzLudIZkuwUyZrXFWgVv7sXPoS5LYTxkM-K55sBZSjgHInoHxSgaOPMYNpAY4_qfdLGeZeGUc5OomprZIT8Qocl3Kdvf6d2-7_yPdgidrkCBeg2YeFYjjWBwhZClGFedY8q8Ji_ezuooH3k8bV9U3Vzdt3A5fryA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE40FJABFrYA5xghbN-7R4qhFpCSh-nVMrNZF9SJZSExFGVWyV-Aif-BD-qv6Qz63UDSPTWgyVLXq8tz3heu_N9AK9LU3bDD-gyVfLMGcWVtJaj70udEiMMMqgb-eS06J9lX4b5cA1-t70wtK2ytYnBUNuJoRr5e4z0C4I6SdWH6XdOrFG0utpSaDRqceSWF5iyzfcOD1C-b4TofRrs93lkFeAG1a3mpdaJkYlGTyhTK7qFzmQuvPbGGZ94LT0VWkb4IFnKkUtyqwqrTFaktii9IfAlNPkbWZoq2kIoe59vLH8qAgNegjkN1T-GsUmnadXDPAsTd4FHmeSSL_92hKvo9p8F2eDnelvwMAao7GOjUY9gzY23YTMGqyyagvk2PPgDyfAx_BiEdsery5_9ydQzfe4Xs6YYyM7HDINMNp05Swk-DsHTJQsUPIzKwCy8ICeqlgXV7piJJKI4IasvJqwlcalZuDMiCyxm86vLX6wmZxv2nT2BszuRxFNYH0_G7hkwnyjrcq2UFSozrhwphcMI_F1I01W2A932Y1cmgp8TB8e3agXbTAKqUEBVEFC17MDbm3umDfTHraN3WhlW0QzMq5XSduBdK9fV5f_P9vz22V7Bvf7g5Lg6Pjw9egH3BbVkhLLQDqzXs4XbxUCp1i-DdjL4ete_wzVPpyd6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSiNBEC5WF8Q9uGt02azu2gdvOjjT89d9FNeQXTV4SCC3If0HAZmEZMKSm-AjeNrX80ms7vQkKq7gYWBgqpthaqrrq-r-qgAOc5lHzgB1wvMg0ZIHnCkVoO-LNacDBBmWjXzVydq95E8_7T9h8bvT7vWW5ILTYKs0ldXJWJmTFfENoxYMgyleeZiyYL4GH3E5juyhrh49Xa7FMXU96UKMMmxGou9pM6_P8dw1rfDmiy1S53laX2DLQ0ZyutDxNnzQZQM-e_hIvHFOG_DpSW3BHbjrOgLiw-19ezQ2RAzNbLJIz5FhSRD2kfFEKxtyowjezolrikNsYpa4Fwxs85SZzaYR6dt64oSk-jsidVuViriRnus_m0wfbv-Ryro_dxJsF3qt8-5ZO_AdFwKJplgFuRChZKFAlMBiRaNMJCylRhippQmNYMYmoQaIGlnOBjpMFc8Ul0kWqyw3ksdfYb0clfobEBNypVPBuaI8kTofcI5ithw7ZTLiqglR_bEL6cuR264YN8WqkLJVUIEKKpyCinkTjpZjxotiHG9K79c6LLxhTgsMGDNbMSfmTTiu9bp6_P_Zvr9P_AA2rn-1isvfnYs92KSWM-HyNvuwXk1m-gcimUr8dD_rIz_87uM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turing%E2%80%93Hopf+bifurcation+in+the+predator%E2%80%93prey+model+with+cross-diffusion+considering+two+different+prey+behaviours%E2%80%99+transition&rft.jtitle=Nonlinear+dynamics&rft.au=Lv%2C+Yehu&rft.date=2022-01-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1357&rft.epage=1381&rft_id=info:doi/10.1007%2Fs11071-021-07058-y&rft.externalDocID=10_1007_s11071_021_07058_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |