Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering two different prey behaviours’ transition

In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutio...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 107; no. 1; pp. 1357 - 1381
Main Author Lv, Yehu
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-021-07058-y

Cover

Loading…
Abstract In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutions corresponding to the temporal model, spatiotemporal model and the existence and priori boundedness of solutions corresponding to the spatiotemporal model without cross-diffusion. Then by analysing the eigenvalues of characteristic equation associated with the linearized system at the positive constant equilibrium point, we investigate the stability and instability of the corresponding spatiotemporal model. Moreover, by calculating and analysing the normal form on the centre manifold associated with the Turing–Hopf bifurcation, we investigate the dynamical classification near the Turing–Hopf bifurcation point in detail. At last, some numerical simulations results are given to support our analytic results.
AbstractList In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour transition of prey population subject to homogeneous Neumann boundary condition. Firstly, we study the non-negativity and boundedness of solutions corresponding to the temporal model, spatiotemporal model and the existence and priori boundedness of solutions corresponding to the spatiotemporal model without cross-diffusion. Then by analysing the eigenvalues of characteristic equation associated with the linearized system at the positive constant equilibrium point, we investigate the stability and instability of the corresponding spatiotemporal model. Moreover, by calculating and analysing the normal form on the centre manifold associated with the Turing–Hopf bifurcation, we investigate the dynamical classification near the Turing–Hopf bifurcation point in detail. At last, some numerical simulations results are given to support our analytic results.
Author Lv, Yehu
Author_xml – sequence: 1
  givenname: Yehu
  orcidid: 0000-0002-7824-9557
  surname: Lv
  fullname: Lv, Yehu
  email: mathyehul@163.com
  organization: School of Mathematical Sciences, Beijing Normal University
BookMark eNp9kMFKxDAQhoMouKu-gKeA5-ok3bbJUURdQfCisLfQpokbWZuapEpvCz6CJ19vn8R0Kwge9hASmP-bmXxTtN_YRiF0SuCcABQXnhAoSAI0ngIylvR7aEKyIk1ozhf7aAKczhLgsDhEU-9fACClwCbo87FzpnnerL_mttW4MrpzsgzGNtg0OCwVbp2qy2BdjMRnj19trVb4w4Qlls56n9RG684PhLSNN7UaGuLwYfFQUU41AW_JSi3Ld2M75zfrbxxcGdPDpGN0oMuVVye_9xF6url-vJon9w-3d1eX94lMCQ9JUVUgGVSEA0trSvJqxjKqKy2V1KArpilAVpKUs4KVCrKa5zWXszyt80JLnh6hs7Fv6-xbp3wQL3GZJo4UNCf5jEFkY4qNqe3vnNJCmrA1Ejc2K0FADMrFqFxE5WKrXPQRpf_Q1pnX0vW7oXSEfDuIU-5vqx3UD_oenWo
CitedBy_id crossref_primary_10_1103_PhysRevE_109_024214
crossref_primary_10_1007_s00033_023_02167_7
crossref_primary_10_1016_j_chaos_2024_115375
crossref_primary_10_2139_ssrn_4199142
crossref_primary_10_2139_ssrn_4153589
crossref_primary_10_1007_s12190_024_02183_4
crossref_primary_10_3934_era_2023229
crossref_primary_10_1002_mma_10480
crossref_primary_10_1016_j_chaos_2022_112659
crossref_primary_10_1140_epjp_s13360_024_05862_0
crossref_primary_10_1063_5_0157354
Cites_doi 10.1016/0022-5193(79)90258-3
10.1007/s11071-012-0374-6
10.1007/b98868
10.1016/j.nonrwa.2011.02.002
10.1351/pac199163101441
10.1016/S0022-5193(89)80211-5
10.1007/s11071-014-1859-2
10.1007/s10440-014-9903-2
10.1016/j.camwa.2014.04.015
10.1016/S0893-9659(03)90096-6
10.1007/978-1-4757-3978-7
10.2478/amns.2020.1.00002
10.1016/j.jde.2013.08.015
10.1016/j.jde.2006.01.013
10.1016/S0092-8240(81)80085-7
10.1063/1.4816937
10.1007/978-1-4612-1140-2
10.1103/PhysRevE.88.042925
10.1016/j.camwa.2014.11.016
10.1142/S1793524519500074
10.1016/j.jde.2008.10.024
10.1177/0037549718779445
10.1140/epjb/e2013-30649-7
10.1016/j.jde.2011.03.004
10.1007/s11071-016-2873-3
10.1007/b98869
10.1016/j.cnsns.2015.10.002
10.4039/Ent91293-5
10.1016/j.nonrwa.2009.01.043
10.1126/science.26.653.21.b
10.1080/21642583.2016.1241194
10.1016/j.bulm.2004.09.003
10.1090/S0002-9947-00-02280-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-021-07058-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1381
ExternalDocumentID 10_1007_s11071_021_07058_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-7bb0c80b19083d216b4852fbfcecf0fb8f2005a139878ae05d96d9c463d67fc93
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Fri Jul 25 11:05:30 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Tue Jul 01 01:52:09 EDT 2025
Fri Feb 21 02:46:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cross-diffusion
Individual behaviour
Turing–Hopf bifurcation
analysis on manifolds
92 Biology and other natural sciences
Herd behaviour
35 Partial differential equations
58 Global analysis
Predator–prey model
Spatially inhomogeneous periodic solution
Self-diffusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7bb0c80b19083d216b4852fbfcecf0fb8f2005a139878ae05d96d9c463d67fc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7824-9557
PQID 2616480139
PQPubID 2043746
PageCount 25
ParticipantIDs proquest_journals_2616480139
crossref_citationtrail_10_1007_s11071_021_07058_y
crossref_primary_10_1007_s11071_021_07058_y
springer_journals_10_1007_s11071_021_07058_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Wang, Shi, Wei (CR11) 2011; 251
Aziz-alaoui, Okiye (CR6) 2003; 16
Shukla, Verma (CR23) 1981; 43
Kuznetsov (CR38) 2004
Gambino, Lombardo, Sammartino (CR28) 2013; 88
Saha, Samanta (CR14) 2019; 12
Arditi, Ginzburg (CR7) 1989; 139
Tripathi, Abbas, Thakur (CR9) 2015; 80
Shigesada, Kawasaki, Teramoto (CR22) 1979; 79
CR33
Lotka (CR1) 1907; 26
Pao (CR37) 1992
Freedman (CR3) 1980
Guckenheimer, Holmes (CR39) 1983
Maiti, Sen, Samanta (CR16) 2016; 4
Song, Zhang, Peng (CR34) 2016; 33
Song, Zou (CR8) 2014; 67
Sun, Jin, Li (CR25) 2012; 69
Berenstein, Beta (CR29) 2013; 23
Du, Shi (CR18) 2006; 229
De Assis, Pazim, Malavazi (CR35) 2020; 5
Kerner (CR21) 1957; 19
Vitagliano (CR36) 1991; 63
Guin (CR26) 2014; 226
Peng, Zhang (CR12) 2016; 275
Petrovskii, Morozov, Li (CR10) 2005; 67
Manna, Maiti, Samanta (CR15) 2019; 95
Murray (CR17) 2003
Gambino, Lombardo, Sammartino (CR31) 2014; 132
Ajraldi, Pittavino, Venturino (CR13) 2011; 12
Murray (CR4) 2002
Tian, Lin, Pedersen (CR24) 2010; 11
Fanelli, Cianci, Patti (CR30) 2013; 86
Volterra (CR2) 1926; 2
Holling (CR5) 1959; 91
Cui, Shi, Wu (CR20) 2014; 256
Yi, Wei, Shi (CR19) 2009; 246
Tang, Song, Zhang (CR32) 2016; 86
Zhang, Yan (CR27) 2015; 69
YH Du (7058_CR18) 2006; 229
A Maiti (7058_CR16) 2016; 4
CR Tian (7058_CR24) 2010; 11
CS Holling (7058_CR5) 1959; 91
R Arditi (7058_CR7) 1989; 139
YA Peng (7058_CR12) 2016; 275
JY Zhang (7058_CR27) 2015; 69
JD Murray (7058_CR4) 2002
YA Kuznetsov (7058_CR38) 2004
FQ Yi (7058_CR19) 2009; 246
V Vitagliano (7058_CR36) 1991; 63
XS Tang (7058_CR32) 2016; 86
JD Murray (7058_CR17) 2003
S Saha (7058_CR14) 2019; 12
V Ajraldi (7058_CR13) 2011; 12
D Manna (7058_CR15) 2019; 95
RH Cui (7058_CR20) 2014; 256
YL Song (7058_CR34) 2016; 33
HI Freedman (7058_CR3) 1980
CV Pao (7058_CR37) 1992
I Berenstein (7058_CR29) 2013; 23
JF Wang (7058_CR11) 2011; 251
GQ Sun (7058_CR25) 2012; 69
YL Song (7058_CR8) 2014; 67
EH Kerner (7058_CR21) 1957; 19
J Guckenheimer (7058_CR39) 1983
MA Aziz-alaoui (7058_CR6) 2003; 16
N Shigesada (7058_CR22) 1979; 79
JB Shukla (7058_CR23) 1981; 43
JP Tripathi (7058_CR9) 2015; 80
S Petrovskii (7058_CR10) 2005; 67
LN Guin (7058_CR26) 2014; 226
V Volterra (7058_CR2) 1926; 2
7058_CR33
G Gambino (7058_CR28) 2013; 88
G Gambino (7058_CR31) 2014; 132
AJ Lotka (7058_CR1) 1907; 26
D Fanelli (7058_CR30) 2013; 86
RA De Assis (7058_CR35) 2020; 5
References_xml – volume: 226
  start-page: 320
  issue: 1
  year: 2014
  end-page: 335
  ident: CR26
  article-title: Existence of spatial patterns in a predator–prey model with self- and cross-diffusion
  publication-title: Appl. Math. Comput.
– volume: 79
  start-page: 83
  issue: 1
  year: 1979
  end-page: 99
  ident: CR22
  article-title: Spatial segregation of interacting species
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(79)90258-3
– volume: 69
  start-page: 1631
  issue: 4
  year: 2012
  end-page: 1638
  ident: CR25
  article-title: Spatial patterns of a predator–prey model with cross diffusion
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0374-6
– volume: 19
  start-page: 121
  issue: 2
  year: 1957
  end-page: 146
  ident: CR21
  article-title: A statistical mechanics of interacting biological species
  publication-title: Bull. Math. Biol.
– year: 1992
  ident: CR37
  publication-title: Nonlinear Parabolic and Elliptic Equations
– year: 2002
  ident: CR4
  publication-title: Mathematical Biology I: An Introduction
  doi: 10.1007/b98868
– volume: 12
  start-page: 2319
  issue: 4
  year: 2011
  end-page: 2338
  ident: CR13
  article-title: Modeling herd behavior in population systems
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2011.02.002
– volume: 63
  start-page: 1441
  issue: 10
  year: 1991
  end-page: 1448
  ident: CR36
  article-title: Some phenomenological and thermodynamic aspects of diffusion in multicomponent systems
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199163101441
– ident: CR33
– volume: 139
  start-page: 311
  issue: 3
  year: 1989
  end-page: 326
  ident: CR7
  article-title: Coupling in predator–prey dynamics: ratio-dependence
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– volume: 80
  start-page: 177
  issue: 1–2
  year: 2015
  end-page: 196
  ident: CR9
  article-title: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1859-2
– volume: 132
  start-page: 283
  issue: 1
  year: 2014
  end-page: 294
  ident: CR31
  article-title: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion
  publication-title: Acta Applicandae Mathematicae
  doi: 10.1007/s10440-014-9903-2
– volume: 67
  start-page: 1978
  issue: 10
  year: 2014
  end-page: 1997
  ident: CR8
  article-title: Spatiotemporal dynamics in a diffusive ratio-dependent predator–prey model near a Hopf–Turing bifurcation point
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.04.015
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  end-page: 1075
  ident: CR6
  article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II type schemes
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– year: 2004
  ident: CR38
  publication-title: Elements of Applied Bifurcation Theory
  doi: 10.1007/978-1-4757-3978-7
– volume: 5
  start-page: 11
  issue: 1
  year: 2020
  end-page: 24
  ident: CR35
  article-title: A mathematical model to describe the herd behaviour considering group defense
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/amns.2020.1.00002
– volume: 256
  start-page: 108
  issue: 1
  year: 2014
  end-page: 129
  ident: CR20
  article-title: Strong Allee effect in a diffusive predator–prey system with a protection zone
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2013.08.015
– volume: 229
  start-page: 63
  issue: 1
  year: 2006
  end-page: 91
  ident: CR18
  article-title: A diffusive predator–prey model with a protection zone
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2006.01.013
– volume: 43
  start-page: 593
  issue: 5
  year: 1981
  end-page: 610
  ident: CR23
  article-title: Effects of convective and dispersive interactions on the stability of two species
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(81)80085-7
– year: 1980
  ident: CR3
  publication-title: Deterministic Mathematical Models in Population Ecology
– volume: 23
  start-page: 033119
  issue: 3
  year: 2013
  ident: CR29
  article-title: Cross-diffusion in the two-variable Oregonator model
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4816937
– year: 1983
  ident: CR39
  publication-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
  doi: 10.1007/978-1-4612-1140-2
– volume: 2
  start-page: 31
  issue: 6
  year: 1926
  end-page: 113
  ident: CR2
  article-title: Variazione e fluttuazini del numero individui in specie animali conviventi
  publication-title: Memorie della R. Acc. deiLincei.
– volume: 88
  start-page: 042925
  issue: 4
  year: 2013
  ident: CR28
  article-title: Turing pattern formation in the Brusselator system with nonlinear diffusion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.042925
– volume: 69
  start-page: 157
  issue: 3
  year: 2015
  end-page: 169
  ident: CR27
  article-title: Lattice Boltzmann simulation of pattern formation under cross-diffusion
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.11.016
– volume: 12
  start-page: 1950007
  issue: 1
  year: 2019
  ident: CR14
  article-title: Analysis of a predator–prey model with herd behavior and disease in prey incorporating prey refuge
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524519500074
– volume: 246
  start-page: 1944
  issue: 5
  year: 2009
  end-page: 1977
  ident: CR19
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2008.10.024
– volume: 95
  start-page: 339
  issue: 4
  year: 2019
  end-page: 349
  ident: CR15
  article-title: Deterministic and stochastic analysis of a predator–prey model with Allee effect and herd behaviour
  publication-title: Simulation
  doi: 10.1177/0037549718779445
– volume: 86
  start-page: 1
  issue: 4
  year: 2013
  end-page: 8
  ident: CR30
  article-title: Turing instabilities in reaction–diffusion systems with cross diffusion
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-30649-7
– volume: 251
  start-page: 1276
  issue: 4–5
  year: 2011
  end-page: 1304
  ident: CR11
  article-title: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.03.004
– volume: 86
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  ident: CR32
  article-title: Turing–Hopf bifurcation analysis of a predator–prey model with herd behavior and cross-diffusion
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2873-3
– volume: 275
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR12
  article-title: Turing instability and pattern induced by cross-diffusion in a predator–prey system with Allee effect
  publication-title: Appl. Math. Comput.
– year: 2003
  ident: CR17
  publication-title: Mathematical Biology II: Spatial Models and Biomedical Applications
  doi: 10.1007/b98869
– volume: 33
  start-page: 229
  year: 2016
  end-page: 258
  ident: CR34
  article-title: Turing–Hopf bifurcation in the reaction–diffusion equations and its applications
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.10.002
– volume: 91
  start-page: 293
  issue: 5
  year: 1959
  end-page: 320
  ident: CR5
  article-title: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly
  publication-title: Can. Entomol.
  doi: 10.4039/Ent91293-5
– volume: 11
  start-page: 1036
  issue: 2
  year: 2010
  end-page: 1045
  ident: CR24
  article-title: Instability induced by cross diffusion in reaction-diffusion systems
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2009.01.043
– volume: 26
  start-page: 21
  issue: 653
  year: 1907
  end-page: 26
  ident: CR1
  article-title: Relation between birth rates and death rates
  publication-title: Science
  doi: 10.1126/science.26.653.21.b
– volume: 4
  start-page: 259
  issue: 1
  year: 2016
  end-page: 269
  ident: CR16
  article-title: Deterministic and stochastic analysis of a prey–predator model with herd behaviour in both
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2016.1241194
– volume: 67
  start-page: 637
  issue: 3
  year: 2005
  end-page: 661
  ident: CR10
  article-title: Regimes of biological invasion in a predator–prey system with the Allee effect
  publication-title: Bull. Math. Biol.
  doi: 10.1016/j.bulm.2004.09.003
– volume: 26
  start-page: 21
  issue: 653
  year: 1907
  ident: 7058_CR1
  publication-title: Science
  doi: 10.1126/science.26.653.21.b
– volume: 86
  start-page: 1
  issue: 4
  year: 2013
  ident: 7058_CR30
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-30649-7
– volume: 63
  start-page: 1441
  issue: 10
  year: 1991
  ident: 7058_CR36
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199163101441
– volume: 2
  start-page: 31
  issue: 6
  year: 1926
  ident: 7058_CR2
  publication-title: Memorie della R. Acc. deiLincei.
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  ident: 7058_CR6
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– volume: 19
  start-page: 121
  issue: 2
  year: 1957
  ident: 7058_CR21
  publication-title: Bull. Math. Biol.
– volume: 69
  start-page: 1631
  issue: 4
  year: 2012
  ident: 7058_CR25
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0374-6
– volume: 11
  start-page: 1036
  issue: 2
  year: 2010
  ident: 7058_CR24
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2009.01.043
– volume: 139
  start-page: 311
  issue: 3
  year: 1989
  ident: 7058_CR7
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– volume-title: Mathematical Biology II: Spatial Models and Biomedical Applications
  year: 2003
  ident: 7058_CR17
  doi: 10.1007/b98869
– volume: 5
  start-page: 11
  issue: 1
  year: 2020
  ident: 7058_CR35
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/amns.2020.1.00002
– volume: 95
  start-page: 339
  issue: 4
  year: 2019
  ident: 7058_CR15
  publication-title: Simulation
  doi: 10.1177/0037549718779445
– volume-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
  year: 1983
  ident: 7058_CR39
  doi: 10.1007/978-1-4612-1140-2
– volume: 67
  start-page: 637
  issue: 3
  year: 2005
  ident: 7058_CR10
  publication-title: Bull. Math. Biol.
  doi: 10.1016/j.bulm.2004.09.003
– volume: 12
  start-page: 1950007
  issue: 1
  year: 2019
  ident: 7058_CR14
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524519500074
– volume: 79
  start-page: 83
  issue: 1
  year: 1979
  ident: 7058_CR22
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(79)90258-3
– volume-title: Nonlinear Parabolic and Elliptic Equations
  year: 1992
  ident: 7058_CR37
– volume: 88
  start-page: 042925
  issue: 4
  year: 2013
  ident: 7058_CR28
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.042925
– volume: 67
  start-page: 1978
  issue: 10
  year: 2014
  ident: 7058_CR8
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.04.015
– ident: 7058_CR33
  doi: 10.1090/S0002-9947-00-02280-7
– volume: 275
  start-page: 1
  year: 2016
  ident: 7058_CR12
  publication-title: Appl. Math. Comput.
– volume: 256
  start-page: 108
  issue: 1
  year: 2014
  ident: 7058_CR20
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2013.08.015
– volume: 33
  start-page: 229
  year: 2016
  ident: 7058_CR34
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.10.002
– volume-title: Mathematical Biology I: An Introduction
  year: 2002
  ident: 7058_CR4
  doi: 10.1007/b98868
– volume: 132
  start-page: 283
  issue: 1
  year: 2014
  ident: 7058_CR31
  publication-title: Acta Applicandae Mathematicae
  doi: 10.1007/s10440-014-9903-2
– volume-title: Deterministic Mathematical Models in Population Ecology
  year: 1980
  ident: 7058_CR3
– volume: 12
  start-page: 2319
  issue: 4
  year: 2011
  ident: 7058_CR13
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2011.02.002
– volume-title: Elements of Applied Bifurcation Theory
  year: 2004
  ident: 7058_CR38
  doi: 10.1007/978-1-4757-3978-7
– volume: 43
  start-page: 593
  issue: 5
  year: 1981
  ident: 7058_CR23
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(81)80085-7
– volume: 69
  start-page: 157
  issue: 3
  year: 2015
  ident: 7058_CR27
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.11.016
– volume: 23
  start-page: 033119
  issue: 3
  year: 2013
  ident: 7058_CR29
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4816937
– volume: 4
  start-page: 259
  issue: 1
  year: 2016
  ident: 7058_CR16
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2016.1241194
– volume: 246
  start-page: 1944
  issue: 5
  year: 2009
  ident: 7058_CR19
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2008.10.024
– volume: 226
  start-page: 320
  issue: 1
  year: 2014
  ident: 7058_CR26
  publication-title: Appl. Math. Comput.
– volume: 91
  start-page: 293
  issue: 5
  year: 1959
  ident: 7058_CR5
  publication-title: Can. Entomol.
  doi: 10.4039/Ent91293-5
– volume: 251
  start-page: 1276
  issue: 4–5
  year: 2011
  ident: 7058_CR11
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.03.004
– volume: 229
  start-page: 63
  issue: 1
  year: 2006
  ident: 7058_CR18
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2006.01.013
– volume: 86
  start-page: 1
  issue: 1
  year: 2016
  ident: 7058_CR32
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2873-3
– volume: 80
  start-page: 177
  issue: 1–2
  year: 2015
  ident: 7058_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1859-2
SSID ssj0003208
Score 2.3900204
Snippet In this paper, we study the Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering the individual behaviour and herd behaviour...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1357
SubjectTerms Automotive Engineering
Behavior
Boundary conditions
Canonical forms
Classical Mechanics
Control
Defense
Diffusion
Dynamical Systems
Eigenvalues
Eigenvectors
Engineering
Equilibrium
Hopf bifurcation
Mathematical models
Mechanical Engineering
Original Paper
Partial differential equations
Population
Predator-prey simulation
Predators
Stability analysis
Vibration
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3rwLVar5OBNg_ve5CQi1iLoqYXeluYFBWlru0V6E_wJnvx7_hJn0qxVwR4WFjYblp1M5suXzHyEnOUqD50DmkTkLDFKMMG1ZhD7YiOiHoAMzEZ-eMxaneS-m3Y94TbxxyqrOdFN1HqokCO_BKSfYamTWFyNnhmqRuHuqpfQWCVrIUQaHOG8efc9E8eRU6QLYI2BfETXJ83MU-dg3QML6QiuPEg5m_0OTAu0-WeD1MWd5jbZ9ICRXs8tvENWzGCXbHnwSL1rTnbJxo_Kgnvkre3SDz9f31vDkaWyb6fjOTlH-wMKoI-OxkbjghuawO2MOkkcirQsdR_IUDplilwaVV7UEzqk5cuQVqIqJXVv-kz_6Xjy-fpBSwx-7hzYPuk0b9s3Leb1FpgCRyxZLmWgeCABI_BYR2EmE55GVlpllA2s5BYpqB6YgOe8Z4JUi0wLlWSxznKrRHxAaoPhwBwSagOhTSqF0JFIlMl7QkAzLMYecRUKXSdh9bML5YuRoybGU7Eoo4wGKsBAhTNQMauT8-93RvNSHEtbNyobFt4tJ8ViENXJRWXXxeP_ezta3tsxWY8wLcJRMw1SK8dTcwJgpZSnbkR-AVTs6ks
  priority: 102
  providerName: ProQuest
Title Turing–Hopf bifurcation in the predator–prey model with cross-diffusion considering two different prey behaviours’ transition
URI https://link.springer.com/article/10.1007/s11071-021-07058-y
https://www.proquest.com/docview/2616480139
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58XPTgW6yPkoM3XdhmX8mxSmtRFBEL9bQ0LxCkLe0W6U3wJ3jy7_lLnKRZq6KCh2UXdjIsO5nMN5PMDMBhJrOaU0Ad8yyIteQBZ0oFaPsizWkXQYbNRr68Slvt-LyTdHxS2Kg87V5uSbqVepbshp4Kur4UryxMWDCZh8UEfXc7r9u0_rH-RtT1oQvRs7BRiI5PlfmZx1dzNMOY37ZFnbVprsGKh4mkPpXrOszp3gaseshIvEKONmD5Uz3BTXi-dUmHb08vrf7AEHFvxsNpSI7c9whCPTIYamXdbCTBxwlxjXCIDcYS94GBbZgythE0In0rT2RIisc-KVupFMSN9Pn94-Ho7emVFNbkudNfW9BuNm5PW4HvshBIVL8iyIQIJQsFIgMWKVpLRcwSaoSRWprQCGZs4KmLSJFlrKvDRPFUcRmnkUozI3m0DQu9fk_vADEhVzoRnCvKY6mzLudIZkuwUyZrXFWgVv7sXPoS5LYTxkM-K55sBZSjgHInoHxSgaOPMYNpAY4_qfdLGeZeGUc5OomprZIT8Qocl3Kdvf6d2-7_yPdgidrkCBeg2YeFYjjWBwhZClGFedY8q8Ji_ezuooH3k8bV9U3Vzdt3A5fryA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE40FJABFrYA5xghbN-7R4qhFpCSh-nVMrNZF9SJZSExFGVWyV-Aif-BD-qv6Qz63UDSPTWgyVLXq8tz3heu_N9AK9LU3bDD-gyVfLMGcWVtJaj70udEiMMMqgb-eS06J9lX4b5cA1-t70wtK2ytYnBUNuJoRr5e4z0C4I6SdWH6XdOrFG0utpSaDRqceSWF5iyzfcOD1C-b4TofRrs93lkFeAG1a3mpdaJkYlGTyhTK7qFzmQuvPbGGZ94LT0VWkb4IFnKkUtyqwqrTFaktii9IfAlNPkbWZoq2kIoe59vLH8qAgNegjkN1T-GsUmnadXDPAsTd4FHmeSSL_92hKvo9p8F2eDnelvwMAao7GOjUY9gzY23YTMGqyyagvk2PPgDyfAx_BiEdsery5_9ydQzfe4Xs6YYyM7HDINMNp05Swk-DsHTJQsUPIzKwCy8ICeqlgXV7piJJKI4IasvJqwlcalZuDMiCyxm86vLX6wmZxv2nT2BszuRxFNYH0_G7hkwnyjrcq2UFSozrhwphcMI_F1I01W2A932Y1cmgp8TB8e3agXbTAKqUEBVEFC17MDbm3umDfTHraN3WhlW0QzMq5XSduBdK9fV5f_P9vz22V7Bvf7g5Lg6Pjw9egH3BbVkhLLQDqzXs4XbxUCp1i-DdjL4ete_wzVPpyd6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSiNBEC5WF8Q9uGt02azu2gdvOjjT89d9FNeQXTV4SCC3If0HAZmEZMKSm-AjeNrX80ms7vQkKq7gYWBgqpthaqrrq-r-qgAOc5lHzgB1wvMg0ZIHnCkVoO-LNacDBBmWjXzVydq95E8_7T9h8bvT7vWW5ILTYKs0ldXJWJmTFfENoxYMgyleeZiyYL4GH3E5juyhrh49Xa7FMXU96UKMMmxGou9pM6_P8dw1rfDmiy1S53laX2DLQ0ZyutDxNnzQZQM-e_hIvHFOG_DpSW3BHbjrOgLiw-19ezQ2RAzNbLJIz5FhSRD2kfFEKxtyowjezolrikNsYpa4Fwxs85SZzaYR6dt64oSk-jsidVuViriRnus_m0wfbv-Ryro_dxJsF3qt8-5ZO_AdFwKJplgFuRChZKFAlMBiRaNMJCylRhippQmNYMYmoQaIGlnOBjpMFc8Ul0kWqyw3ksdfYb0clfobEBNypVPBuaI8kTofcI5ithw7ZTLiqglR_bEL6cuR264YN8WqkLJVUIEKKpyCinkTjpZjxotiHG9K79c6LLxhTgsMGDNbMSfmTTiu9bp6_P_Zvr9P_AA2rn-1isvfnYs92KSWM-HyNvuwXk1m-gcimUr8dD_rIz_87uM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turing%E2%80%93Hopf+bifurcation+in+the+predator%E2%80%93prey+model+with+cross-diffusion+considering+two+different+prey+behaviours%E2%80%99+transition&rft.jtitle=Nonlinear+dynamics&rft.au=Lv%2C+Yehu&rft.date=2022-01-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1357&rft.epage=1381&rft_id=info:doi/10.1007%2Fs11071-021-07058-y&rft.externalDocID=10_1007_s11071_021_07058_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon