A rank-adaptive robust integrator for dynamical low-rank approximation
A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrato...
Saved in:
Published in | BIT Vol. 62; no. 4; pp. 1149 - 1174 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator. |
---|---|
AbstractList | A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator. |
Author | Kusch, Jonas Ceruti, Gianluca Lubich, Christian |
Author_xml | – sequence: 1 givenname: Gianluca surname: Ceruti fullname: Ceruti, Gianluca email: ceruti@na.uni-tuebingen.de organization: Mathematisches Institut, Universität Tübingen – sequence: 2 givenname: Jonas surname: Kusch fullname: Kusch, Jonas organization: Karlsruhe Institute of Technology – sequence: 3 givenname: Christian surname: Lubich fullname: Lubich, Christian organization: Mathematisches Institut, Universität Tübingen |
BookMark | eNp9kM1OwzAQhC1UJNrCC3CKxNmw_kkcH6uKAhISFzhbduJUKakdbBfo25M2SEgceljtZb6d2ZmhifPOInRN4JYAiLtIIOcMAyUYQILA4gxNSS4oloTmEzQFgAKzkuUXaBbjBoDKgrApWi2yoN071rXuU_tps-DNLqasdcmug04-ZM0w9d7pbVvpLuv8Fz4Qme774L_brU6td5fovNFdtFe_e47eVvevy0f8_PLwtFw844oRmbCQtmHG2rqxTSmBiwJKqEvaiDLnVBiphSWMCl4ao43hBZMlNzWtOFSkAsLm6Ga8O3h_7GxMauN3wQ2WigomBONc8kFVjqoq-BiDbVTVpmPOFHTbKQLq0JoaW1NDa-rYmhIDSv-hfRh-DPvTEBuhOIjd2oa_VCeoHz52gV0 |
CitedBy_id | crossref_primary_10_1007_s10543_024_01019_8 crossref_primary_10_1016_j_laa_2024_11_001 crossref_primary_10_1080_00268976_2024_2306881 crossref_primary_10_1137_23M1547603 crossref_primary_10_1007_s10543_024_01039_4 crossref_primary_10_1137_23M1586215 crossref_primary_10_1016_j_cma_2024_117385 crossref_primary_10_1007_s10543_021_00907_7 crossref_primary_10_1137_21M1446289 crossref_primary_10_1016_j_cnsns_2023_107532 crossref_primary_10_1137_24M1646303 crossref_primary_10_1007_s10543_023_00942_6 crossref_primary_10_1137_22M1534948 crossref_primary_10_1017_jfm_2024_1019 crossref_primary_10_1007_s10915_024_02629_8 crossref_primary_10_1016_j_jcp_2024_112757 crossref_primary_10_1016_j_anucene_2024_111162 crossref_primary_10_1137_23M1601225 crossref_primary_10_1137_23M1565103 crossref_primary_10_1103_PhysRevLett_133_026401 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022039345 crossref_primary_10_1007_s10543_023_00953_3 crossref_primary_10_1007_s10543_024_01032_x crossref_primary_10_1016_j_jcp_2024_112925 crossref_primary_10_1016_j_jcp_2024_112827 crossref_primary_10_1103_PhysRevA_109_022420 crossref_primary_10_1098_rspa_2024_0658 crossref_primary_10_1007_s10044_024_01289_6 crossref_primary_10_1016_j_cma_2024_116879 crossref_primary_10_1007_s10915_025_02808_1 |
Cites_doi | 10.1007/978-3-319-00885-1_3 10.1080/00411450.2014.910226 10.1137/140976546 10.1016/j.jcp.2017.09.061 10.1137/18M116383X 10.1007/s10543-020-00811-6 10.1137/15M1026791 10.1007/s10543-021-00907-7 10.1016/j.jcp.2010.05.007 10.1137/07070111X 10.1016/j.physd.2009.09.017 10.1016/j.jcp.2008.12.018 10.1103/PhysRevB.102.094315 10.1137/21M1392772 10.1615/Int.J.UncertaintyQuantification.2022039345 10.5802/smai-jcm.42 10.1103/PhysRevLett.107.070601 10.1093/imanum/drt031 10.1137/S0895479898346995 10.1016/j.jcp.2021.110672 10.1007/s10543-013-0454-0 10.1016/j.jcp.2021.110495 10.1016/j.jcp.2019.109125 10.1137/050639703 10.1103/PhysRevB.94.165116 10.1137/16M1109394 10.1016/j.jcp.2020.109735 10.1137/S0895479896305696 10.1002/9783527627400 10.1016/0009-2614(90)87014-I |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10543-021-00907-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1572-9125 |
EndPage | 1174 |
ExternalDocumentID | 10_1007_s10543_021_00907_7 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: Project-ID 258734477 - SFB 1173; Project-ID 258734477 - SFB 1173 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Deutsche Forschungsgemeinschaft grantid: Project-ID 258734477 - SFB 1173 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -52 -BR -~X 1N0 23N 40D 40E 95- 95. 95~ ABDPE ABMNI ACIWK AGWIL ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BBWZM CAG COF CS3 H~9 KOW N2Q RHV SDD SOJ TN5 WH7 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c319t-79ef3beedfef890476080d82f785427b9a7e132748bbabb463984bd2c40c1c013 |
IEDL.DBID | U2A |
ISSN | 0006-3835 |
IngestDate | Mon Jun 30 09:02:53 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Tue Jul 01 02:03:20 EDT 2025 Fri Feb 21 02:44:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Dynamical low-rank approximation 65L05 Rank adaptivity 65L70 65L20 15A69 Structure-preserving integrator Matrix and tensor differential equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-79ef3beedfef890476080d82f785427b9a7e132748bbabb463984bd2c40c1c013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2737734494 |
PQPubID | 2043657 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2737734494 crossref_citationtrail_10_1007_s10543_021_00907_7 crossref_primary_10_1007_s10543_021_00907_7 springer_journals_10_1007_s10543_021_00907_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | BIT |
PublicationTitleAbbrev | Bit Numer Math |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | GarrettCKHauckCDA comparison of moment closures for linear kinetic transport equations: the line source benchmarkTransp. Theory Stat. Phys.2013426–720323510.1080/00411450.2014.9102261302.82088 MusharbashENobileFDual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditionsJ. Comput. Phys.2018354135162373810110.1016/j.jcp.2017.09.0611380.35171 YangMWhiteSRTime-dependent variational principle with ancillary Krylov subspacePhys. Rev. B2020102909431510.1103/PhysRevB.102.094315 MusharbashENobileFVidličkováESymplectic dynamical low rank approximation of wave equations with random parametersBIT Numer. Math.20206011531201417971910.1007/s10543-020-00811-61479.65009 HaegemanJCiracJIOsborneTJPižornIVerscheldeHVerstraeteFTime-dependent variational principle for quantum latticesPhys. Rev. Lett.2011107707060110.1103/PhysRevLett.107.070601 HaegemanJLubichCOseledetsIVandereyckenBVerstraeteFUnifying time evolution and optimization with matrix product statesPhys. Rev. B2016941616511610.1103/PhysRevB.94.165116 Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013) HairerELubichCEnergy-diminishing integration of gradient systemsIMA J. Numer. Anal.2014342452461319479510.1093/imanum/drt0311321.65115 Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999) Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020) TryoenJLe MaitreONdjingaMErnAIntrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systemsJ. Comput. Phys.20102291864856511266031610.1016/j.jcp.2010.05.0071197.65013 Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021) PengZMcClarrenRGA high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculationsJ. Comput. Phys.2021447110672431600510.1016/j.jcp.2021.11067207516431 KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/0506397031145.65031 De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026 Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021) KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M10267911336.65119 Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021) MeyerH-DGattiFWorthGAMultidimensional Quantum Dynamics: MCTDH Theory and Applications2009LondonWiley10.1002/9783527627400 PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.0181161.65309 FepponFLermusiauxPFDynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transportSIAM Rev.2018603595625384115910.1137/16M11093941427.65006 KuschJAlldredgeGWFrankMMaximum-principle-satisfying second-order intrusive polynomial moment schemeSMAI J. Comput. Math.201952351392853410.5802/smai-jcm.421447.35082 Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021) Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021) PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.10973507508360 LubichCOseledetsIVVandereyckenBTime integration of tensor trainsSIAM J. Numer. Anal.2015532917941332735910.1137/1409765461312.65114 De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005 Schrammer, S.: Doctoral thesis in preparation. KIT (2021) LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT2014541171188317796010.1007/s10543-013-0454-01314.65095 Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008) SapsisTPLermusiauxPFDynamically orthogonal field equations for continuous stochastic dynamical systemsPhysica D200923823–2423472360257607810.1016/j.physd.2009.09.0171180.37119 KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029 MeyerH-DMantheUCederbaumLSThe multi-configurational time-dependent Hartree approachChem. Phys. Lett.19901651737810.1016/0009-2614(90)87014-I EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X1408.35187 E Hairer (907_CR16) 2014; 34 G Poëtte (907_CR30) 2009; 228 C Lubich (907_CR23) 2015; 53 Z Peng (907_CR29) 2020; 421 Z Peng (907_CR28) 2021; 447 907_CR21 J Tryoen (907_CR33) 2010; 229 O Koch (907_CR18) 2007; 29 L De Lathauwer (907_CR3) 2000; 21 J Haegeman (907_CR15) 2016; 94 CK Garrett (907_CR13) 2013; 42 TG Kolda (907_CR19) 2009; 51 C Lubich (907_CR22) 2014; 54 E Musharbash (907_CR26) 2018; 354 E Musharbash (907_CR27) 2020; 60 TP Sapsis (907_CR31) 2009; 238 M Yang (907_CR34) 2020; 102 907_CR12 907_CR11 907_CR32 L De Lathauwer (907_CR4) 2000; 21 F Feppon (907_CR10) 2018; 60 L Einkemmer (907_CR8) 2018; 40 J Kusch (907_CR20) 2019; 5 907_CR9 H-D Meyer (907_CR25) 2009 907_CR7 907_CR6 E Kieri (907_CR17) 2016; 54 H-D Meyer (907_CR24) 1990; 165 907_CR5 J Haegeman (907_CR14) 2011; 107 907_CR2 907_CR1 |
References_xml | – reference: MusharbashENobileFVidličkováESymplectic dynamical low rank approximation of wave equations with random parametersBIT Numer. Math.20206011531201417971910.1007/s10543-020-00811-61479.65009 – reference: Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013) – reference: MusharbashENobileFDual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditionsJ. Comput. Phys.2018354135162373810110.1016/j.jcp.2017.09.0611380.35171 – reference: Schrammer, S.: Doctoral thesis in preparation. KIT (2021) – reference: De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026 – reference: KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/0506397031145.65031 – reference: FepponFLermusiauxPFDynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transportSIAM Rev.2018603595625384115910.1137/16M11093941427.65006 – reference: HairerELubichCEnergy-diminishing integration of gradient systemsIMA J. Numer. Anal.2014342452461319479510.1093/imanum/drt0311321.65115 – reference: KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M10267911336.65119 – reference: Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021) – reference: HaegemanJLubichCOseledetsIVandereyckenBVerstraeteFUnifying time evolution and optimization with matrix product statesPhys. Rev. B2016941616511610.1103/PhysRevB.94.165116 – reference: LubichCOseledetsIVVandereyckenBTime integration of tensor trainsSIAM J. Numer. Anal.2015532917941332735910.1137/1409765461312.65114 – reference: SapsisTPLermusiauxPFDynamically orthogonal field equations for continuous stochastic dynamical systemsPhysica D200923823–2423472360257607810.1016/j.physd.2009.09.0171180.37119 – reference: TryoenJLe MaitreONdjingaMErnAIntrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systemsJ. Comput. Phys.20102291864856511266031610.1016/j.jcp.2010.05.0071197.65013 – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029 – reference: Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021) – reference: PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.0181161.65309 – reference: YangMWhiteSRTime-dependent variational principle with ancillary Krylov subspacePhys. Rev. B2020102909431510.1103/PhysRevB.102.094315 – reference: Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008) – reference: KuschJAlldredgeGWFrankMMaximum-principle-satisfying second-order intrusive polynomial moment schemeSMAI J. Comput. Math.201952351392853410.5802/smai-jcm.421447.35082 – reference: MeyerH-DGattiFWorthGAMultidimensional Quantum Dynamics: MCTDH Theory and Applications2009LondonWiley10.1002/9783527627400 – reference: Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021) – reference: HaegemanJCiracJIOsborneTJPižornIVerscheldeHVerstraeteFTime-dependent variational principle for quantum latticesPhys. Rev. Lett.2011107707060110.1103/PhysRevLett.107.070601 – reference: PengZMcClarrenRGA high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculationsJ. Comput. Phys.2021447110672431600510.1016/j.jcp.2021.11067207516431 – reference: Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021) – reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005 – reference: LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT2014541171188317796010.1007/s10543-013-0454-01314.65095 – reference: MeyerH-DMantheUCederbaumLSThe multi-configurational time-dependent Hartree approachChem. Phys. Lett.19901651737810.1016/0009-2614(90)87014-I – reference: Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999) – reference: Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021) – reference: Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020) – reference: EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X1408.35187 – reference: GarrettCKHauckCDA comparison of moment closures for linear kinetic transport equations: the line source benchmarkTransp. Theory Stat. Phys.2013426–720323510.1080/00411450.2014.9102261302.82088 – reference: PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.10973507508360 – ident: 907_CR6 doi: 10.1007/978-3-319-00885-1_3 – volume: 42 start-page: 203 issue: 6–7 year: 2013 ident: 907_CR13 publication-title: Transp. Theory Stat. Phys. doi: 10.1080/00411450.2014.910226 – volume: 53 start-page: 917 issue: 2 year: 2015 ident: 907_CR23 publication-title: SIAM J. Numer. Anal. doi: 10.1137/140976546 – ident: 907_CR11 – volume: 354 start-page: 135 year: 2018 ident: 907_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.09.061 – volume: 40 start-page: B1330 issue: 5 year: 2018 ident: 907_CR8 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M116383X – volume: 60 start-page: 1153 year: 2020 ident: 907_CR27 publication-title: BIT Numer. Math. doi: 10.1007/s10543-020-00811-6 – volume: 54 start-page: 1020 issue: 2 year: 2016 ident: 907_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1026791 – ident: 907_CR1 doi: 10.1007/s10543-021-00907-7 – volume: 229 start-page: 6485 issue: 18 year: 2010 ident: 907_CR33 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.05.007 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 907_CR19 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 238 start-page: 2347 issue: 23–24 year: 2009 ident: 907_CR31 publication-title: Physica D doi: 10.1016/j.physd.2009.09.017 – volume: 228 start-page: 2443 issue: 7 year: 2009 ident: 907_CR30 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.12.018 – ident: 907_CR2 doi: 10.1007/s10543-021-00907-7 – volume: 102 start-page: 094315 issue: 9 year: 2020 ident: 907_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.094315 – ident: 907_CR9 doi: 10.1137/21M1392772 – ident: 907_CR21 doi: 10.1615/Int.J.UncertaintyQuantification.2022039345 – volume: 5 start-page: 23 year: 2019 ident: 907_CR20 publication-title: SMAI J. Comput. Math. doi: 10.5802/smai-jcm.42 – volume: 107 start-page: 070601 issue: 7 year: 2011 ident: 907_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.070601 – volume: 34 start-page: 452 issue: 2 year: 2014 ident: 907_CR16 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drt031 – volume: 21 start-page: 1324 issue: 4 year: 2000 ident: 907_CR4 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – volume: 447 start-page: 110672 year: 2021 ident: 907_CR28 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110672 – volume: 54 start-page: 171 issue: 1 year: 2014 ident: 907_CR22 publication-title: BIT doi: 10.1007/s10543-013-0454-0 – ident: 907_CR12 – ident: 907_CR7 doi: 10.1016/j.jcp.2021.110495 – ident: 907_CR5 doi: 10.1016/j.jcp.2019.109125 – volume: 29 start-page: 434 issue: 2 year: 2007 ident: 907_CR18 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/050639703 – ident: 907_CR32 – volume: 94 start-page: 165116 issue: 16 year: 2016 ident: 907_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.165116 – volume: 60 start-page: 595 issue: 3 year: 2018 ident: 907_CR10 publication-title: SIAM Rev. doi: 10.1137/16M1109394 – volume: 421 start-page: 109735 year: 2020 ident: 907_CR29 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109735 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 907_CR3 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications year: 2009 ident: 907_CR25 doi: 10.1002/9783527627400 – volume: 165 start-page: 73 issue: 1 year: 1990 ident: 907_CR24 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)87014-I |
SSID | ssj0029613 ssj0014816 ssj0000615 |
Score | 2.511182 |
Snippet | A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1149 |
SubjectTerms | Approximation Computational Mathematics and Numerical Analysis Differential equations Gradient flow Hamiltonian functions Integrators Mathematical analysis Mathematics Mathematics and Statistics Numeric Computing Robustness (mathematics) Schrodinger equation Subspaces Tensors |
Title | A rank-adaptive robust integrator for dynamical low-rank approximation |
URI | https://link.springer.com/article/10.1007/s10543-021-00907-7 https://www.proquest.com/docview/2737734494 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDNw3sI7vZHFtpLUp7slBPyyabglC6pbtFf76TbbatooKnhWweMJNMvmEy3wDchjLypiFn1EkiQVkkFE18pWiquaekp_ygZOAbjsLBmD1NgolNCsur1-5VSLK01DvJbgEzMUd0fx106Sjfh3pgfHfcxWOvs2N_3Q0CRrBv4I91wETo2spqIUXPLLBJND_P_vWi2qLPbwHT8h7qn8CRBZCks9b4KezpeQOOLZgk9qjm2FTVa6jaGnA43HC05mfQ7xBTsJ0mabIwNo8sM7nKC1IRSGRLgoCWpOuS9bjkLHunZgQpecg_3tZJj-cw7vdeHgbUVlWgCo9bQbnQU1_i1TjV00g4jIcIGlPUGI8C5nEpEq7RReUskjKRkiGEiZhMPcUc5SpEjBdQm2dzfQlE-2GKEuYy0S5TaAqkJ5iQvjLARiWqCW4lwlhZynFT-WIWb8mSjdhjFHtcij3mTbjbjFmsCTf-7N2qNBPbw5fHiMg49xkTrAn3lba2v3-f7ep_3a_hwDPJEOXjlhbUiuVK3yBEKWQb6p1-tzsy38fX51673KGf6ora8Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMAPnQ_qgx9TcTo1D75pYG3Tpnkc4pi67WmDvZUmTUGQdawd-ud7adNtigq-pkkKd8nldyR3B3AbyNBNA85oJw4FZaFQNPaUoonmrpKu8vwyA99wFPQn7HnqT21QWF6_dq-vJEtLvRHs5jNz54jubwddOsq3YQdhIDQPuSZud8P-OisCRtg3-GMdMBE4trJaQNEz820Qzc-zfz2o1vT57cK0PId6R3BgAZJ0K40fw5aeNeHQwiSxWzXHprpeQ93WhP3hKkdrfgK9LjEF22mcxHNj88gik8u8IHUCiWxBEGhJUpWsx1--Ze_UjCBlHvKP1yro8RQmvcfxQ5_aqgpU4XYrKBc69SQejalOQ9FhPEBoTFBjPPSZy6WIuUYXlbNQylhKhggTMpm4inWUo5AYz6Axy2b6HIj2ggQlzGWsHabQFEhXMCE9ZcBGxaoFTi3CSNmU46byxVu0TpZsxB6h2KNS7BFvwd1qzLxKuPFn73atmchuvjxCIuPcY0ywFtzX2lp__n22i_91v4Hd_ng4iAZPo5dL2HNNYET50KUNjWKx1FeIK4W8LlfnJ6qw2tQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiDH1NxOjUPvmlwbdOmeRzqmB8bPjjYW2nSFISxjq1D_3wvbbpNUcHXNEnhLrn7HZf7HcBlIEM3DTijrTgUlIVC0dhTiiaau0q6yvMLBr5eP-gO2OPQH65U8Rev3auUZFnTYFiaxvnNJElvVgrffGbyjxgKtzC8o3wdNtAcO-ZcD9z2ii12FmgYgb-BQjYYE4Fju6wFFKM03xbU_Lz7V6e1RKLfkqeFT-rswY4Fk6Rdan8f1vS4DrsWWBJ7bWc4VPVuqMbqsN1b8LXODqDTJqZ5O42TeGLsH5lmcj7LSUUmkU0JgluSlO3r8Zej7J2aFaTgJP94KwsgD2HQuX-97VLbYYEqlFVOudCpJ9FNpjoNRYvxAAFkgtrjoc9cLkXMNYarnIVSxlIyhDMhk4mrWEs5CtHjEdTG2VgfA9FekKCEuYy1wxSaBekKJqSnDMhRsWqAU4kwUpZ-3HTBGEVL4mQj9gjFHhVij3gDrhZrJiX5xp-zm5VmInsRZxGiM849xgRrwHWlreXn33c7-d_0C9h8uetEzw_9p1PYck2NRPHmpQm1fDrXZ4hccnleHM5PssjfEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rank-adaptive+robust+integrator+for+dynamical+low-rank+approximation&rft.jtitle=BIT+Numerical+Mathematics&rft.au=Ceruti%2C+Gianluca&rft.au=Kusch%2C+Jonas&rft.au=Lubich%2C+Christian&rft.date=2022-12-01&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=62&rft.issue=4&rft.spage=1149&rft.epage=1174&rft_id=info:doi/10.1007%2Fs10543-021-00907-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10543_021_00907_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon |