A rank-adaptive robust integrator for dynamical low-rank approximation

A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrato...

Full description

Saved in:
Bibliographic Details
Published inBIT Vol. 62; no. 4; pp. 1149 - 1174
Main Authors Ceruti, Gianluca, Kusch, Jonas, Lubich, Christian
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator.
AbstractList A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator.
Author Kusch, Jonas
Ceruti, Gianluca
Lubich, Christian
Author_xml – sequence: 1
  givenname: Gianluca
  surname: Ceruti
  fullname: Ceruti, Gianluca
  email: ceruti@na.uni-tuebingen.de
  organization: Mathematisches Institut, Universität Tübingen
– sequence: 2
  givenname: Jonas
  surname: Kusch
  fullname: Kusch, Jonas
  organization: Karlsruhe Institute of Technology
– sequence: 3
  givenname: Christian
  surname: Lubich
  fullname: Lubich, Christian
  organization: Mathematisches Institut, Universität Tübingen
BookMark eNp9kM1OwzAQhC1UJNrCC3CKxNmw_kkcH6uKAhISFzhbduJUKakdbBfo25M2SEgceljtZb6d2ZmhifPOInRN4JYAiLtIIOcMAyUYQILA4gxNSS4oloTmEzQFgAKzkuUXaBbjBoDKgrApWi2yoN071rXuU_tps-DNLqasdcmug04-ZM0w9d7pbVvpLuv8Fz4Qme774L_brU6td5fovNFdtFe_e47eVvevy0f8_PLwtFw844oRmbCQtmHG2rqxTSmBiwJKqEvaiDLnVBiphSWMCl4ao43hBZMlNzWtOFSkAsLm6Ga8O3h_7GxMauN3wQ2WigomBONc8kFVjqoq-BiDbVTVpmPOFHTbKQLq0JoaW1NDa-rYmhIDSv-hfRh-DPvTEBuhOIjd2oa_VCeoHz52gV0
CitedBy_id crossref_primary_10_1007_s10543_024_01019_8
crossref_primary_10_1016_j_laa_2024_11_001
crossref_primary_10_1080_00268976_2024_2306881
crossref_primary_10_1137_23M1547603
crossref_primary_10_1007_s10543_024_01039_4
crossref_primary_10_1137_23M1586215
crossref_primary_10_1016_j_cma_2024_117385
crossref_primary_10_1007_s10543_021_00907_7
crossref_primary_10_1137_21M1446289
crossref_primary_10_1016_j_cnsns_2023_107532
crossref_primary_10_1137_24M1646303
crossref_primary_10_1007_s10543_023_00942_6
crossref_primary_10_1137_22M1534948
crossref_primary_10_1017_jfm_2024_1019
crossref_primary_10_1007_s10915_024_02629_8
crossref_primary_10_1016_j_jcp_2024_112757
crossref_primary_10_1016_j_anucene_2024_111162
crossref_primary_10_1137_23M1601225
crossref_primary_10_1137_23M1565103
crossref_primary_10_1103_PhysRevLett_133_026401
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022039345
crossref_primary_10_1007_s10543_023_00953_3
crossref_primary_10_1007_s10543_024_01032_x
crossref_primary_10_1016_j_jcp_2024_112925
crossref_primary_10_1016_j_jcp_2024_112827
crossref_primary_10_1103_PhysRevA_109_022420
crossref_primary_10_1098_rspa_2024_0658
crossref_primary_10_1007_s10044_024_01289_6
crossref_primary_10_1016_j_cma_2024_116879
crossref_primary_10_1007_s10915_025_02808_1
Cites_doi 10.1007/978-3-319-00885-1_3
10.1080/00411450.2014.910226
10.1137/140976546
10.1016/j.jcp.2017.09.061
10.1137/18M116383X
10.1007/s10543-020-00811-6
10.1137/15M1026791
10.1007/s10543-021-00907-7
10.1016/j.jcp.2010.05.007
10.1137/07070111X
10.1016/j.physd.2009.09.017
10.1016/j.jcp.2008.12.018
10.1103/PhysRevB.102.094315
10.1137/21M1392772
10.1615/Int.J.UncertaintyQuantification.2022039345
10.5802/smai-jcm.42
10.1103/PhysRevLett.107.070601
10.1093/imanum/drt031
10.1137/S0895479898346995
10.1016/j.jcp.2021.110672
10.1007/s10543-013-0454-0
10.1016/j.jcp.2021.110495
10.1016/j.jcp.2019.109125
10.1137/050639703
10.1103/PhysRevB.94.165116
10.1137/16M1109394
10.1016/j.jcp.2020.109735
10.1137/S0895479896305696
10.1002/9783527627400
10.1016/0009-2614(90)87014-I
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10543-021-00907-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9125
EndPage 1174
ExternalDocumentID 10_1007_s10543_021_00907_7
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: Project-ID 258734477 - SFB 1173; Project-ID 258734477 - SFB 1173
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Project-ID 258734477 - SFB 1173
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -52
-BR
-~X
1N0
23N
40D
40E
95-
95.
95~
ABDPE
ABMNI
ACIWK
AGWIL
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BBWZM
CAG
COF
CS3
H~9
KOW
N2Q
RHV
SDD
SOJ
TN5
WH7
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c319t-79ef3beedfef890476080d82f785427b9a7e132748bbabb463984bd2c40c1c013
IEDL.DBID U2A
ISSN 0006-3835
IngestDate Mon Jun 30 09:02:53 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Tue Jul 01 02:03:20 EDT 2025
Fri Feb 21 02:44:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Dynamical low-rank approximation
65L05
Rank adaptivity
65L70
65L20
15A69
Structure-preserving integrator
Matrix and tensor differential equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-79ef3beedfef890476080d82f785427b9a7e132748bbabb463984bd2c40c1c013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2737734494
PQPubID 2043657
PageCount 26
ParticipantIDs proquest_journals_2737734494
crossref_citationtrail_10_1007_s10543_021_00907_7
crossref_primary_10_1007_s10543_021_00907_7
springer_journals_10_1007_s10543_021_00907_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle BIT
PublicationTitleAbbrev Bit Numer Math
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References GarrettCKHauckCDA comparison of moment closures for linear kinetic transport equations: the line source benchmarkTransp. Theory Stat. Phys.2013426–720323510.1080/00411450.2014.9102261302.82088
MusharbashENobileFDual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditionsJ. Comput. Phys.2018354135162373810110.1016/j.jcp.2017.09.0611380.35171
YangMWhiteSRTime-dependent variational principle with ancillary Krylov subspacePhys. Rev. B2020102909431510.1103/PhysRevB.102.094315
MusharbashENobileFVidličkováESymplectic dynamical low rank approximation of wave equations with random parametersBIT Numer. Math.20206011531201417971910.1007/s10543-020-00811-61479.65009
HaegemanJCiracJIOsborneTJPižornIVerscheldeHVerstraeteFTime-dependent variational principle for quantum latticesPhys. Rev. Lett.2011107707060110.1103/PhysRevLett.107.070601
HaegemanJLubichCOseledetsIVandereyckenBVerstraeteFUnifying time evolution and optimization with matrix product statesPhys. Rev. B2016941616511610.1103/PhysRevB.94.165116
Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013)
HairerELubichCEnergy-diminishing integration of gradient systemsIMA J. Numer. Anal.2014342452461319479510.1093/imanum/drt0311321.65115
Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999)
Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020)
TryoenJLe MaitreONdjingaMErnAIntrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systemsJ. Comput. Phys.20102291864856511266031610.1016/j.jcp.2010.05.0071197.65013
Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021)
PengZMcClarrenRGA high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculationsJ. Comput. Phys.2021447110672431600510.1016/j.jcp.2021.11067207516431
KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/0506397031145.65031
De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021)
KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M10267911336.65119
Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021)
MeyerH-DGattiFWorthGAMultidimensional Quantum Dynamics: MCTDH Theory and Applications2009LondonWiley10.1002/9783527627400
PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.0181161.65309
FepponFLermusiauxPFDynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transportSIAM Rev.2018603595625384115910.1137/16M11093941427.65006
KuschJAlldredgeGWFrankMMaximum-principle-satisfying second-order intrusive polynomial moment schemeSMAI J. Comput. Math.201952351392853410.5802/smai-jcm.421447.35082
Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021)
Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021)
PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.10973507508360
LubichCOseledetsIVVandereyckenBTime integration of tensor trainsSIAM J. Numer. Anal.2015532917941332735910.1137/1409765461312.65114
De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005
Schrammer, S.: Doctoral thesis in preparation. KIT (2021)
LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT2014541171188317796010.1007/s10543-013-0454-01314.65095
Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008)
SapsisTPLermusiauxPFDynamically orthogonal field equations for continuous stochastic dynamical systemsPhysica D200923823–2423472360257607810.1016/j.physd.2009.09.0171180.37119
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029
MeyerH-DMantheUCederbaumLSThe multi-configurational time-dependent Hartree approachChem. Phys. Lett.19901651737810.1016/0009-2614(90)87014-I
EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X1408.35187
E Hairer (907_CR16) 2014; 34
G Poëtte (907_CR30) 2009; 228
C Lubich (907_CR23) 2015; 53
Z Peng (907_CR29) 2020; 421
Z Peng (907_CR28) 2021; 447
907_CR21
J Tryoen (907_CR33) 2010; 229
O Koch (907_CR18) 2007; 29
L De Lathauwer (907_CR3) 2000; 21
J Haegeman (907_CR15) 2016; 94
CK Garrett (907_CR13) 2013; 42
TG Kolda (907_CR19) 2009; 51
C Lubich (907_CR22) 2014; 54
E Musharbash (907_CR26) 2018; 354
E Musharbash (907_CR27) 2020; 60
TP Sapsis (907_CR31) 2009; 238
M Yang (907_CR34) 2020; 102
907_CR12
907_CR11
907_CR32
L De Lathauwer (907_CR4) 2000; 21
F Feppon (907_CR10) 2018; 60
L Einkemmer (907_CR8) 2018; 40
J Kusch (907_CR20) 2019; 5
907_CR9
H-D Meyer (907_CR25) 2009
907_CR7
907_CR6
E Kieri (907_CR17) 2016; 54
H-D Meyer (907_CR24) 1990; 165
907_CR5
J Haegeman (907_CR14) 2011; 107
907_CR2
907_CR1
References_xml – reference: MusharbashENobileFVidličkováESymplectic dynamical low rank approximation of wave equations with random parametersBIT Numer. Math.20206011531201417971910.1007/s10543-020-00811-61479.65009
– reference: Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013)
– reference: MusharbashENobileFDual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditionsJ. Comput. Phys.2018354135162373810110.1016/j.jcp.2017.09.0611380.35171
– reference: Schrammer, S.: Doctoral thesis in preparation. KIT (2021)
– reference: De LathauwerLDe MoorBVandewalleJOn the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
– reference: KochOLubichCDynamical low-rank approximationSIAM J. Matrix Anal. Appl.2007292434454231835710.1137/0506397031145.65031
– reference: FepponFLermusiauxPFDynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transportSIAM Rev.2018603595625384115910.1137/16M11093941427.65006
– reference: HairerELubichCEnergy-diminishing integration of gradient systemsIMA J. Numer. Anal.2014342452461319479510.1093/imanum/drt0311321.65115
– reference: KieriELubichCWalachHDiscretized dynamical low-rank approximation in the presence of small singular valuesSIAM J. Numer. Anal.201654210201038348239710.1137/15M10267911336.65119
– reference: Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021)
– reference: HaegemanJLubichCOseledetsIVandereyckenBVerstraeteFUnifying time evolution and optimization with matrix product statesPhys. Rev. B2016941616511610.1103/PhysRevB.94.165116
– reference: LubichCOseledetsIVVandereyckenBTime integration of tensor trainsSIAM J. Numer. Anal.2015532917941332735910.1137/1409765461312.65114
– reference: SapsisTPLermusiauxPFDynamically orthogonal field equations for continuous stochastic dynamical systemsPhysica D200923823–2423472360257607810.1016/j.physd.2009.09.0171180.37119
– reference: TryoenJLe MaitreONdjingaMErnAIntrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systemsJ. Comput. Phys.20102291864856511266031610.1016/j.jcp.2010.05.0071197.65013
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029
– reference: Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021)
– reference: PoëtteGDesprésBLucorDUncertainty quantification for systems of conservation lawsJ. Comput. Phys.2009228724432467250169310.1016/j.jcp.2008.12.0181161.65309
– reference: YangMWhiteSRTime-dependent variational principle with ancillary Krylov subspacePhys. Rev. B2020102909431510.1103/PhysRevB.102.094315
– reference: Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008)
– reference: KuschJAlldredgeGWFrankMMaximum-principle-satisfying second-order intrusive polynomial moment schemeSMAI J. Comput. Math.201952351392853410.5802/smai-jcm.421447.35082
– reference: MeyerH-DGattiFWorthGAMultidimensional Quantum Dynamics: MCTDH Theory and Applications2009LondonWiley10.1002/9783527627400
– reference: Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021)
– reference: HaegemanJCiracJIOsborneTJPižornIVerscheldeHVerstraeteFTime-dependent variational principle for quantum latticesPhys. Rev. Lett.2011107707060110.1103/PhysRevLett.107.070601
– reference: PengZMcClarrenRGA high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculationsJ. Comput. Phys.2021447110672431600510.1016/j.jcp.2021.11067207516431
– reference: Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021)
– reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005
– reference: LubichCOseledetsIVA projector-splitting integrator for dynamical low-rank approximationBIT2014541171188317796010.1007/s10543-013-0454-01314.65095
– reference: MeyerH-DMantheUCederbaumLSThe multi-configurational time-dependent Hartree approachChem. Phys. Lett.19901651737810.1016/0009-2614(90)87014-I
– reference: Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999)
– reference: Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021)
– reference: Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020)
– reference: EinkemmerLLubichCA low-rank projector-splitting integrator for the Vlasov–Poisson equationSIAM J. Sci. Comput.2018405B1330B1360386307510.1137/18M116383X1408.35187
– reference: GarrettCKHauckCDA comparison of moment closures for linear kinetic transport equations: the line source benchmarkTransp. Theory Stat. Phys.2013426–720323510.1080/00411450.2014.9102261302.82088
– reference: PengZMcClarrenRGFrankMA low-rank method for two-dimensional time-dependent radiation transport calculationsJ. Comput. Phys.2020421109735413284810.1016/j.jcp.2020.10973507508360
– ident: 907_CR6
  doi: 10.1007/978-3-319-00885-1_3
– volume: 42
  start-page: 203
  issue: 6–7
  year: 2013
  ident: 907_CR13
  publication-title: Transp. Theory Stat. Phys.
  doi: 10.1080/00411450.2014.910226
– volume: 53
  start-page: 917
  issue: 2
  year: 2015
  ident: 907_CR23
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140976546
– ident: 907_CR11
– volume: 354
  start-page: 135
  year: 2018
  ident: 907_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.09.061
– volume: 40
  start-page: B1330
  issue: 5
  year: 2018
  ident: 907_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M116383X
– volume: 60
  start-page: 1153
  year: 2020
  ident: 907_CR27
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-020-00811-6
– volume: 54
  start-page: 1020
  issue: 2
  year: 2016
  ident: 907_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1026791
– ident: 907_CR1
  doi: 10.1007/s10543-021-00907-7
– volume: 229
  start-page: 6485
  issue: 18
  year: 2010
  ident: 907_CR33
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.05.007
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 907_CR19
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 238
  start-page: 2347
  issue: 23–24
  year: 2009
  ident: 907_CR31
  publication-title: Physica D
  doi: 10.1016/j.physd.2009.09.017
– volume: 228
  start-page: 2443
  issue: 7
  year: 2009
  ident: 907_CR30
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.018
– ident: 907_CR2
  doi: 10.1007/s10543-021-00907-7
– volume: 102
  start-page: 094315
  issue: 9
  year: 2020
  ident: 907_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.094315
– ident: 907_CR9
  doi: 10.1137/21M1392772
– ident: 907_CR21
  doi: 10.1615/Int.J.UncertaintyQuantification.2022039345
– volume: 5
  start-page: 23
  year: 2019
  ident: 907_CR20
  publication-title: SMAI J. Comput. Math.
  doi: 10.5802/smai-jcm.42
– volume: 107
  start-page: 070601
  issue: 7
  year: 2011
  ident: 907_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.070601
– volume: 34
  start-page: 452
  issue: 2
  year: 2014
  ident: 907_CR16
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drt031
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  ident: 907_CR4
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 447
  start-page: 110672
  year: 2021
  ident: 907_CR28
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110672
– volume: 54
  start-page: 171
  issue: 1
  year: 2014
  ident: 907_CR22
  publication-title: BIT
  doi: 10.1007/s10543-013-0454-0
– ident: 907_CR12
– ident: 907_CR7
  doi: 10.1016/j.jcp.2021.110495
– ident: 907_CR5
  doi: 10.1016/j.jcp.2019.109125
– volume: 29
  start-page: 434
  issue: 2
  year: 2007
  ident: 907_CR18
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/050639703
– ident: 907_CR32
– volume: 94
  start-page: 165116
  issue: 16
  year: 2016
  ident: 907_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165116
– volume: 60
  start-page: 595
  issue: 3
  year: 2018
  ident: 907_CR10
  publication-title: SIAM Rev.
  doi: 10.1137/16M1109394
– volume: 421
  start-page: 109735
  year: 2020
  ident: 907_CR29
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109735
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 907_CR3
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications
  year: 2009
  ident: 907_CR25
  doi: 10.1002/9783527627400
– volume: 165
  start-page: 73
  issue: 1
  year: 1990
  ident: 907_CR24
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)87014-I
SSID ssj0029613
ssj0014816
ssj0000615
Score 2.511182
Snippet A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1149
SubjectTerms Approximation
Computational Mathematics and Numerical Analysis
Differential equations
Gradient flow
Hamiltonian functions
Integrators
Mathematical analysis
Mathematics
Mathematics and Statistics
Numeric Computing
Robustness (mathematics)
Schrodinger equation
Subspaces
Tensors
Title A rank-adaptive robust integrator for dynamical low-rank approximation
URI https://link.springer.com/article/10.1007/s10543-021-00907-7
https://www.proquest.com/docview/2737734494
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDNw3sI7vZHFtpLUp7slBPyyabglC6pbtFf76TbbatooKnhWweMJNMvmEy3wDchjLypiFn1EkiQVkkFE18pWiquaekp_ygZOAbjsLBmD1NgolNCsur1-5VSLK01DvJbgEzMUd0fx106Sjfh3pgfHfcxWOvs2N_3Q0CRrBv4I91wETo2spqIUXPLLBJND_P_vWi2qLPbwHT8h7qn8CRBZCks9b4KezpeQOOLZgk9qjm2FTVa6jaGnA43HC05mfQ7xBTsJ0mabIwNo8sM7nKC1IRSGRLgoCWpOuS9bjkLHunZgQpecg_3tZJj-cw7vdeHgbUVlWgCo9bQbnQU1_i1TjV00g4jIcIGlPUGI8C5nEpEq7RReUskjKRkiGEiZhMPcUc5SpEjBdQm2dzfQlE-2GKEuYy0S5TaAqkJ5iQvjLARiWqCW4lwlhZynFT-WIWb8mSjdhjFHtcij3mTbjbjFmsCTf-7N2qNBPbw5fHiMg49xkTrAn3lba2v3-f7ep_3a_hwDPJEOXjlhbUiuVK3yBEKWQb6p1-tzsy38fX51673KGf6ora8Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMAPnQ_qgx9TcTo1D75pYG3Tpnkc4pi67WmDvZUmTUGQdawd-ud7adNtigq-pkkKd8nldyR3B3AbyNBNA85oJw4FZaFQNPaUoonmrpKu8vwyA99wFPQn7HnqT21QWF6_dq-vJEtLvRHs5jNz54jubwddOsq3YQdhIDQPuSZud8P-OisCRtg3-GMdMBE4trJaQNEz820Qzc-zfz2o1vT57cK0PId6R3BgAZJ0K40fw5aeNeHQwiSxWzXHprpeQ93WhP3hKkdrfgK9LjEF22mcxHNj88gik8u8IHUCiWxBEGhJUpWsx1--Ze_UjCBlHvKP1yro8RQmvcfxQ5_aqgpU4XYrKBc69SQejalOQ9FhPEBoTFBjPPSZy6WIuUYXlbNQylhKhggTMpm4inWUo5AYz6Axy2b6HIj2ggQlzGWsHabQFEhXMCE9ZcBGxaoFTi3CSNmU46byxVu0TpZsxB6h2KNS7BFvwd1qzLxKuPFn73atmchuvjxCIuPcY0ywFtzX2lp__n22i_91v4Hd_ng4iAZPo5dL2HNNYET50KUNjWKx1FeIK4W8LlfnJ6qw2tQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiDH1NxOjUPvmlwbdOmeRzqmB8bPjjYW2nSFISxjq1D_3wvbbpNUcHXNEnhLrn7HZf7HcBlIEM3DTijrTgUlIVC0dhTiiaau0q6yvMLBr5eP-gO2OPQH65U8Rev3auUZFnTYFiaxvnNJElvVgrffGbyjxgKtzC8o3wdNtAcO-ZcD9z2ii12FmgYgb-BQjYYE4Fju6wFFKM03xbU_Lz7V6e1RKLfkqeFT-rswY4Fk6Rdan8f1vS4DrsWWBJ7bWc4VPVuqMbqsN1b8LXODqDTJqZ5O42TeGLsH5lmcj7LSUUmkU0JgluSlO3r8Zej7J2aFaTgJP94KwsgD2HQuX-97VLbYYEqlFVOudCpJ9FNpjoNRYvxAAFkgtrjoc9cLkXMNYarnIVSxlIyhDMhk4mrWEs5CtHjEdTG2VgfA9FekKCEuYy1wxSaBekKJqSnDMhRsWqAU4kwUpZ-3HTBGEVL4mQj9gjFHhVij3gDrhZrJiX5xp-zm5VmInsRZxGiM849xgRrwHWlreXn33c7-d_0C9h8uetEzw_9p1PYck2NRPHmpQm1fDrXZ4hccnleHM5PssjfEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rank-adaptive+robust+integrator+for+dynamical+low-rank+approximation&rft.jtitle=BIT+Numerical+Mathematics&rft.au=Ceruti%2C+Gianluca&rft.au=Kusch%2C+Jonas&rft.au=Lubich%2C+Christian&rft.date=2022-12-01&rft.issn=0006-3835&rft.eissn=1572-9125&rft.volume=62&rft.issue=4&rft.spage=1149&rft.epage=1174&rft_id=info:doi/10.1007%2Fs10543-021-00907-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10543_021_00907_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3835&client=summon